UMBC logo
UMBC Department of Physics
News & Events

About February 2014

This page contains all entries posted to Physics Announcements in February 2014. They are listed from oldest to newest.

January 2014 is the previous archive.

March 2014 is the next archive.

Many more can be found on the main index page or by looking through the archives.

Powered by
Movable Type 3.34

« January 2014 | Main | March 2014 »

February 2014 Archives

February 3, 2014

Seminar: Wednesday Feb 3 at 3:30 pm

Aerosol Remote Sensing:
Investing in the Next Generation of Scientists
Lorraine Remer
JCET

Through the stories of my interaction with four young scientists, I will explore different aspects of Aerosol Remote Sensing. These will include developing an operational algorithm for wide community use, developing a specialized product to retrieve that hard-to-acquire aerosol characterization of spectral absorption, and exploring aerosol-cloud interaction in two different ways. Aerosol remote sensing spans both data producers and data users, and both types of scientists discover new knowledge in pursuit of their projects. My four young scientists each made a significant contribution to science as they pursued their Ph.D.s and post-docs, and also enriched my experience in the process.

Location: Physics Bldg., Room 401

February 12, 2014

Seminar: Wednesday, Feb 12 at 3:30 pm

Climate and clean air in the 21st century:
Understanding and reducing uncertainties
in atmospheric change
Christopher D. Homes
Department of Earth System Science
University of California, Irvine

Rising concentrations of greenhouse gases are the main drivers of current and projected future climate change. Reactive gases, including methane (CH4) and ozone (O3), contribute substantially to climate forcing and the chemistry controlling their abundances also responds to climate change. Using multiple global chemical transport models we diagnose factors controlling the year-to-year variations in tropospheric hydroxyl (OH), the main sink for atmospheric CH4. The modeled variations over the last decade are then evaluated against our best observational constraints. Using factors that control OH in the recent past, we project CH4 lifetime and abundance forward in time for a range of future climate scenarios. This simple approach agrees with projections from fully coupled Earth System Models. All this information is combined into an uncertainty analysis of the future CH4 abundance and global warming potential. Key process uncertainties are identified and can guide future research priorities.

Location: Physics Bldg., Room 401

February 19, 2014

Seminar: Wednesday, Feb. 19 at 3:30 pm

Light, Ocean, and Life
Pengwang Zhai
SSAI, NASA Langley Research Center

Phytoplankton are unicellular organisms that are responsible for half of all photosynthetic activity on Earth. According to their functional types, phytoplankton are divided into several different conceptual groups that include calcifiers, nitrogen fixers, DMS producers and silicifiers. Coccolithophores belong to the calcifier group which plays important roles in global carbon cycle processes. When proper nutrition and light conditions are met, phytoplankton can produce massive blooms, which have large environmental impacts. I am primarily interested in how light interacts with particles, particularly phytoplankton and other oceanic particles, and how light can be used to remote sense and monitor ocean water optical properties. In this talk I will cover three general aspects of my research interests: light scattering, radiative transfer, and optical remote sensing. Light scattering studies the interaction of light with single particles within the classical electromagnetic theory and linear optics. Radiative transfer theory covers light field multiply scattered within turbid media consisting of individual particles. It is understood that optical properties of single particles are known knowledge in radiative transfer theory. Generally radiative transfer theory assumes incoherent scattering, which means that there is no systematic phase correlation among light waves scattered by a group of particles. Nonetheless, coherent scattering is significant in coherent backscattering and other phenomena. Optical remote sensing is to use light scattered by particles, singly or multiply, to retrieve information about particles’ properties. In other words, light scattering and radiative transfer theories are building blocks and diagnostic tools for optical remote sensing. I will present two examples of my research efforts in each of the three theoretical categories. In light scattering, the examples are invisible particles for monostatic lidar/radar detections and simulation of light scattering by nonspherical coccolithophores. In radiative transfer theory section, I will cover how polarization is treated and two methods are presented to solve light field in a turbid medium: Monte Carlo and the successive order of scattering. In the optical remote sensing section, two applications of polarized radiative transfer solutions are given for ocean color and aerosol remote sensing.

Location: Physics Bldg., Room 401

February 26, 2014

Seminar: Wednesday, Feb 26 at 3:30 pm

A Challenge We Must Face: A Cloudy Picture in Climate Science
Tianle Yuan
Goddard Space Flight Center

It is increasingly realized that clouds are at the heart of physical climate science. They are the most important player in the energy balance of the Earth by interacting with both shortwave and longwave radiation. Tiny changes in cloud properties can have major consequences for our climate.

Here I concentrate on how aerosols affect clouds, the so-called aerosol indirect effects (AIEs), which remain one of the most uncertain factors in our scientific understanding and projection of climate change. Two cloud regimes will be discussed.

In one, aerosols invigorate maritime tropical convection at a large scale. The invigoration effect manifests in characters of precipitation radar reflectivity vertical profiles, cloud top ice particle size and cloud glaciation temperature. Furthermore, lightning, as a hallmark of strong convection, increases at a rate of 20-40 times per unit increase of aerosol optical depth. Aerosol-induced lightning changes also have interesting implications for ozone chemistry and wildfire activity.

In the other, aerosols change cloud properties of trade cumuli at a large scale. They decreased cloud droplet size, decreased precipitation efficiency and increased cloud amount. In addition we find significantly higher cloud tops for polluted clouds. Changes in cloud properties caused by aerosols perturbed the energy balance by more than 20Wm-2, almost an order of magnitude higher than aerosol direct forcing alone. It highlights the strong leverage of AIE in this cloud regime. Furthermore, the precipitation reduction associated with enhanced aerosol leads to large changes in the energetics of air-sea exchange within trade wind boundary layer.

Results from both regimes open up new opportunities for future research in reducing uncertainty surrounding AIEs and climate adaptation/mitigation.

Location: Physics Bldg., Room 401

UMBC's Department of Physics   |   410-455-2513 or 1-877-707-1969 (toll free)   |   physics@umbc.edu  |  Site Info