Statistical Science at FDA

Estelle Russek-Cohen
Director, Division of Biostatistics
Center for Biologics Evaluation and Research

Disclaimer

• Many of the thoughts are my own and may not necessarily reflect FDA perspectives.

• Acknowledgements
 Thanks to Mike Nguyen for many of the slides on vaccine safety and to my colleagues on the tree-scan team.
Outline

• Overview of FDA
• The FDA Statistical Community
• Why two Adaptive Design Guidances?
• Estimands: Asking the right question of a clinical trial
• Personalized Medicine: Design Challenges
• Postmarket and big data
• Data and transparency
• Research funding, training and conclusions
FDA Statistical Community

• Over 300statisticians in all the centers of FDA
• FDA Statistical Association:
 from all parts of FDA.
• Majority: reviews in support of decision-making at FDA. Includes evaluating study designs and study summaries submitted by “sponsors”.
• Many have a PhD; Many like being creative
• Research often motivated by reviews.

Statisticians at FDA

• Work in teams to review submissions
• Develop guidances (...work in teams)
• Active in many joint ventures with industry and academia (DIA, SCT and ASA working groups)
• Present talks at meetings: DIA-Stat Forum, JSM, ENAR, ASA Regulatory Workshop, etc.
• Mentor summer interns (ORISE)
• Senior statisticians serve on editorial boards of journals; are officers in statistical societies.
Medical Product evaluation:
Drugs/Biologics or Devices

- Most **diagnostics** are regulated as **devices**
- Most **therapeutics** are either **drugs** or **biologics**
- Development of diagnostics, therapeutic drugs/biologics and therapeutic devices are often different
- Typically different companies/sponsors are involved
- The statutes rather than the center typically drive regulation.
- When a diagnostic is used to decide who gets a new drug, may have more than one center involved.
- All 3 centers concerned with total product life cycle
- **Biggest challenge: Translation of acronyms….**

Guidance background

Levels of FDA policy

- Statutes are laws enacted by Congress
- Regulations are binding interpretations of the law
- Guidance documents are non-binding descriptions of FDA’s current thinking on a topic
 - Often preceded by a public workshop on the topic
 - Initially released as draft for public comment
 - Comments received are discussed internally
 - Final versions are published that reflect comments rec’d
Guidance for Industry

Adaptive Design Clinical Trials for Drugs and Biologics

DRAFT GUIDANCE

This guidance document is being distributed for comment purposes only.

Comments and suggestions regarding this draft document should be submitted within 30 days of publication in the Federal Register. After the notice announcing the availability of the draft guidance, written comments can be submitted to the Center for Devices and Radiological Health, Food and Drug Administration, 10903 New Hampshire Ave, Bldg 5, Room 5625, Silver Spring, MD 20993-0002. All comments should be identified with the docket number listed in the notice of availability that appeared in the Federal Register.

For questions regarding this document contact Walter D. Lee, Center for Devices and Radiological Health, Food and Drug Administration, 10903 New Hampshire Ave, Bldg 5, Room 5625, Silver Spring, MD 20993-0002, at 301-443-9513, or by e-mail at devinfo@cdrh.fda.hhs.gov.

U.S. Department of Health and Human Services
Food and Drug Administration
Center for Devices and Radiological Health (CDRH)
Center for Biologics Evaluation and Research (CBER)
February 2010
Clinical Medical

Adaptive Designs for Medical Device Clinical Studies

Guidance for Industry and Food and Drug Administration Staff

The draft of this document was issued on May 18, 2015.

For questions regarding this document that relate to devices regulated by CDRH, contact Dr. Gerry Gray (CDRH) at 301-796-5756 or by e-mail at Gerry.Gray@fda.hhs.gov.

For questions regarding this document that relate to devices regulated by CBER, contact the Office of Communication, Outreach and Development (CBER) at 1-800-835-4709 or 240-402-0810.

U.S. Department of Health and Human Services
Food and Drug Administration
Center for Devices and Radiological Health
Center for Biologics Evaluation and Research

www.fda.gov
Two Guidances

• Different types of products means different emphasis; difference in statutes.
• Drugs/Biologics: More emphasis on dose finding.
 Product development differs:
 Phase 1, 2 and 3
• Devices: they evolve often
 Greater history of Bayesian methods
• Majority of the studies are similar. Most are for therapeutic indications.
• Relatively few adaptive designs for diagnostics but companion diagnostics has its own guidances. (Will discuss)

Research: Best Practices for Simulating Clinical Trials

• Role of simulation to evaluate clinical trials including:
 Properties of adaptive and/or Bayesian adaptive designs.
• Type 1 error?: usually one sided .025
• Robustness to assumptions
• Bayesian methods:
 borrowing vs noninformative priors?
• Bayesian hierarchical models
Surveys of FDA Adaptive designs

• CBER

• CDRH

Estimands

• Randomized Clinical Trials….the gold standard when they work
• What to do when:
 patients drop out,
 patients use rescue medications,
 patients stay in trial but no longer are on assigned therapy.
How will treatment benefit get captured?
Statisticians Often Focus on the Analysis

- Estimands should come first.
 - Capture the right clinical question
 - Be specific: what is treatment benefit
 - Post-randomization events?
- Estimators come next
- We are revisiting terms like:
 - intent to treat and per protocol
- Given this impacts most therapeutic areas, many research opportunities exist.

References

- ICH documents including concept paper ICH E9(R1): See www.ich.org
 - Look for 2012 articles in NEJM and SIM by the authors.
- Permutt (2015) A taxonomy of estimands for regulatory clinical trials with discontinuations. SIM 35:2865-2875
Personalized Medicine: Oncology

- A cancer Drug or Biologic will be approved by one center (drug/biologic)
- If a lab test is used to say “this drug is for you”, lab test reviewed by another center (device)
- Study design challenges:
 - One center: does the drug work in some?
 - Other center: does the test help identify who?

<table>
<thead>
<tr>
<th>Drug</th>
<th>No Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resp (+)</td>
<td>TP FP</td>
</tr>
<tr>
<td>Resp (-)</td>
<td>FN TN</td>
</tr>
</tbody>
</table>

Can calculate performance estimators:
- Sens = TP/[TP+FN]
- Spec = TN/[TN+FP]
- PPV = TP/[TP+FP]
- NPV = TN/[TN+FN]
• Can calculate – PPV

Which design is preferable?

• Which provides information on the ability of the biomarker to predict which patients will do well?
• Which is most efficient in evaluating the drug if the biomarker really selects the right patients?
References

References

- FDA (2016) Principles for Codevelopment of an In Vitro Companion Diagnostic Device with a Therapeutic Product Draft Guidance for Industry and FDA Staff
Postmarket and Big Data

• Seek info on safety that cannot be fully assessed in premarket
• Rarer adverse events
• Unanticipated events
 (incl: off-label use, drug interactions, etc)
• Very different studies than in premarket….also varies by data source.

Vaccines versus Drugs

• Vaccines:
 Fewer possible confounders with vaccines
 Limited exposures (eg 1, 2 or 3 shots)
 Often larger premarket studies
• Drugs: indications and duration can vary
• Larger premarket studies imply:
 Looking for very rare A.E.s in postmarket
Self controlled case series

- Often used to study one product, one AE.
- Tutorial in Stat in Med (see references)
- Developed methods for vaccine safety
- Each subject serves as own control
- Efficient signal detection
- Commonly used in postmarket
- Doesn’t formally address who is at risk

Self-Controls

Vaccination

\[
\begin{array}{c}
\text{Days} \\
\hline
-56 & -15 & 0 & 42 & 84 \\
\end{array}
\]

- Comparison window (pre)
- Risk window
- Comparison window (post-post)
Research

- Self Controlled methods control for confounders like sex, genetics, etc
- Concern over changes in very young children (time-varying confounders)

Vaccine Adverse Event Reporting (VAERS)

Passive Surveillance
Events with no denominators
Passive Surveillance: VAERS

- Voluntary reports
- Patients, physicians, others
- Most fields are publicly available
- Case of no denominators...
 how many are exposed to product?
- CBER review: Division of Epidemiology
- Use Empirica Signal Detection Software

Passive Surveillance: AERS and VAERS

- **STRENGTHS:**
 - Open-ended for hypothesis generation
 - Potential detection of new or rare adverse events
 - Timeliness
 - Geographic diversity
 - Capability to monitor production lots

- **LIMITATIONS:**
 - Missing and inaccurate data
 - Under-reporting/Stimulated reporting
 - Absence of controls and denominators
 - Inability to assess causation
 - Low likelihood of detection for long latency events
CBER research initiative

- Text mining of narratives in VAERS
- 2 stage process:
 - using natural language processing to extract features from text
 - use supervised learning methods to develop classification rule.

Can evaluation of narratives improve yield rate of anaphylaxis?

Review by Medical Officers

- Manual search and review of case reports for H1N1 anaphylaxis (10/12/2009-06/30/2010).

 A Search by PT term and/or keyword
 B Case categorization by reviewing MR
 C

 All flu reports N=6034
 Manual search N=237
 Confirmed N=100

- Important to automate:
 - the whole process, but step 2 requires MR (pdf files) review.
 - at least step 1 and provide MOs with the low number of reports for further review in step 2.
Training set: Classification Results

<table>
<thead>
<tr>
<th></th>
<th>MOs’ review</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pos</td>
<td>Neg</td>
<td>Totals</td>
</tr>
<tr>
<td>Text Miner</td>
<td>Pos</td>
<td>183</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>Neg</td>
<td>54</td>
<td>5445</td>
</tr>
<tr>
<td>Totals</td>
<td>237</td>
<td>5797</td>
<td>6034</td>
</tr>
</tbody>
</table>

Sensitivity: 77.2% PPV: 34.2%
Specificity: 94.0% NPV: 99.0%

Independent validation

Independent validation of algorithm, truth determined by manual review (N=689):

PPV=30% NPV=99%

PPV hurt by low prevalence, but NPV suggests text miner can be used to enrich the dataset.
Other research in passive surveillance

- Papers by DuMouchel et al on Empirical Bayes methods
- Numerous papers by Ram Tiwari et al (CDER) Using likelihood methods
 Extensions considering covariate info (CBER)
- Detecting association rule mining for symptom clusters (CBER)

Vaccine Safety DataLink
CDC and FDA
CDC Vaccine Safety Datalink (1991)

- Eight geographically diverse health maintenance organizations that participate in a large linked database representing approximately 3% of U.S. population
- Surveillance and “Hypothesis testing” studies can be conducted
 - Vaccination (exposure)
 - Outpatient, emergency department, hospital and laboratory coding data (health outcomes)
 - Demographic variables (confounders)
 - Accessible medical chart review

VSD Rapid Cycle Analysis

- Method motivated by Wald SPRT:
 - Wald: Simple vs Simple Hypotheses
- Near continuous monitoring (weekly)
- Extension to composite alternative
- Two variants:
 - Poisson: #events vs expected counts
 - Binomial: event rates exposed vs not exp
Max SPRT
Kulldorff et al (2011)

• Likelihood ratio statistic
 Poisson or binomial

• Length of surveillance fixed (e.g. 2 yrs)
• Time is expected counts not calendar time
• Rapid detection important
• A number of signals were identified, most are false alarms.

PRISM Basics

• Mini-Sentinel Pilot & Sentinel program dedicated to vaccine safety (see www.sentinel.org)
• Claims based system with data from 4 national health plans
 – Aetna, HealthCore (Wellpoint), Humana, Optum (United Healthcare)
 – Data linked to 8 vaccine registries in USA

• Access to medical records and pharmacy data

Prespecified event: Some methods

1. Self-controlled design
 - Useful for single or short-term exposures or when no independent comparator group is available
 - When between-person confounding is large but within-person confounding is modest

2. Exposure match cohort
 - Uses propensity or disease risk scores in fixed or variable ratio
 - Provides flexible choices of effect measures, multiple endpoints and broad range of alerting rules

3. Full cohort design with regression
 - Permits a high degree of analytic flexibility (e.g., the ability to simultaneously evaluate interactions, multiple comparison groups, and subgroups)

Data Mining Development

- Test whether it is possible to detect adverse events without pre-specifying them a priori
- Develop statistical approach to simultaneously evaluate hundreds of different adverse events
 - Advantage: detect unexpected adverse events
 - Disadvantages: not possible to adjust for all possible confounders, as they vary by disease outcomes
 - Finding optimum risk window for all events is hard
 - Hierarchy of events imperfect.
 - Pilot phase: emphasis on detecting known signals.
Mining: 3 Methods Being Evaluated

- Project led by Martin Kulldorff
 - DuMouchel’s Gamma Poisson Shrinker
 - Tree-based scan statistic with population based controls
 - Tree-based scan statistic with self-controls

- Basics of Tree Scan algorithm
 - Use a hierarchical tree
 - Evaluate cuts on the tree (assess observed vs. expected at each leaf)
 - Control for multiple testing

Example of a Small Tree

Myocardial Infarction Cardiac Arrhythmia Cardiomyopathy Acute Renal Failure Kidney Infection
Tree-based SCAN Statistic

1. Scan the tree by considering all possible cuts on any branch
2. For each cut, calculate the likelihood
3. Denote the cut with the maximum likelihood as the most likely cut (cluster)
4. Generate 9999 Monte Carlo replications under H₀.
5. Compare the most likely cut from the real data set with the most likely cuts from the random data sets
6. If the rank of the most likely cut from the real data set is R, then the p-value for that cut is R/(9999+1).

Helps answer, “Has FDA observed any new safety issues?” without pre-specifying a particular outcome
References

- Text mining for the Vaccine Adverse Event Reporting System: medical text classification using informative feature selection
 Botsis T, Nguyen MD, Woo EJ, Markatou M, Ball R (on line June 2011)
- Tutorial in Biostatistics: The self controlled case series method SIM 2006
 25: 1768-1797
 Whitaker, HJ, Farrington CP, Spiessens B, Musonda, P.
- Post-Licensure Rapid Immunization Safety Monitoring AJE (2012)
- Bayesian Data Mining in Large Frequency Tables with an Application to FDA Spontaneous Reporting System. Am. Stat. 1999 53:177-190
 DuMouchel, W. Often used at FDA with passive surveillance data.
- M. Kulldorff et al. Tree Scan 1.3 Software with User Guide
 http://www.treescan.org

Statisticians want data:

Transparency

- Clinical Trial data submitted to FDA: Belongs to the sponsor of the trial
- Some companies participating in programs to make de-identified data available (GSK;YODA)
- Possible concerns over re-analysis New insights or data dredging?
- We need to find ways to overcome this.
Most sources of big data at FDA

• Sentinel and federal agencies:
 Data is behind firewalls
 Patient privacy is protected
• VSD, and VAERs have de-identified public datasets.

Research Funding

• CERSI
 Centers for Excellence in Regulatory Science &
 Innovation
 Includes UM, Stanford, Hopkins, Georgetown
• BAA
 Broad Agency Announcements
• Summer internships in CDER (ORISE)
• Some faculty have come on sabbatical leave
Training for a Career at FDA

- Foundation in statistical theory essential
- Course in clinical trials helpful
- Written and oral communications are important
- Critical thinking skills essential too….get practical experience while in school!
- Useful skills: computation and simulations, bayesian methods, data mining,
- **Expect to keep learning to survive at FDA**

Conclusions

- FDA Statisticians have made many contributions to statistics, to the profession and to the mission of the agency
- New challenges keep coming
- Several UMBC and UMCP graduates at FDA...
 ...we would also welcome Stanford graduates
- We think it is a great place to have a career.