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Overview 
• Estimation and testing of parameters has been 

the mainstay of statistical inference 
• Growing interest on applications of prediction. 
• Basing statistical inference on “observables” 

offers many advantages in these applications 
– More direct connection with the decision or objective 

of the analysis 
– More objective basis for model validation 
– Better capability for comparing models  

• Both non-Bayesian and Bayesian methods are 
available and can be utilized 

 
 



Outline 
• Growing interest in prediction 
• Basic elements of models for prediction 
• Predicting observables as a framework 
• Three illustrations 

– Analysis of Variance 
– Random Effects Meta-analysis 
– Classification 

• Concluding Remarks 
 

 



Growing interest in prediction 
• Predictive analytics encompasses a variety of statistical 

techniques from modeling, machine learning, and data 
mining that analyze current and historical facts to make 
predictions about future, or otherwise unknown, events. 

• Predictive modelling leverages statistics to predict 
outcomes. Most often the event one wants to predict is in 
the future, but predictive modelling can be applied to any 
type of unknown event, regardless of when it occurred. 

• Predictive inference:  Statistical inference in which the 
objective is not the estimation of parameters but the 
prediction of future observations from the same, or 
related, random system as generated the data. 

• Other terms:  Predictive biomarker, predictive enrichment, 
predictive probability 
 



Seymour Geisser (October 5, 1929 – March 11, 2004) was a statistician noted for 
emphasizing the role of prediction in statistical inference. He held that 
conventional statistical inference about unobservable population parameters 
amounts to inference about things that do not exist.  He also pioneered the 
theory of cross-validation. 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Cross-validation_(statistics)


Prediction (Geisser, 1993) 
• Most statistical analysis involves inference 

about parameters of statistical distributions 
– Estimation 
– Testing hypotheses 

• Inferences are often the basis of decisions 
• A framework of predictions of future 

observables is often better suited for both 
inferences and decision making 



Geisser’s point of view 
• Most statistical analyses use tests of significance 

about parameters to form conclusions  
• Inference based on either point or interval 

estimates 
• Importance is the effect on the distributions of 

observables 
“The real analysis starts after we have made allowance 

for parameters – known or unknown.” 
• Non-Bayesian and Bayesian approaches have the 

capability for implementing prediction methods 
• Only Bayes is always capable of producing 

probability distributions for predictions 



Leo Brieman’s (2001) ‘Two Cultures’ 

• Two goals in analyzing data 
– Inference 
– Prediction 

• Two cultures for modeling 
– Generative modeling:  develop stochastic models 

which fit the data, and then make inferences about 
the data-generating mechanism (98%) 

– Predictive modeling:  prioritizes prediction.  The 
relatively recent discipline of Machine Learning is the 
“epicenter of the Predictive Modeling culture” (2%) 

 



Validation of predictions or models 
• Validation is based on 𝑥(𝑁)observations divided into a 

model construction sample 𝑥(𝑁−𝑛) and a validation sample 
𝑥(𝑛) 

• Evaluation uses discrepancy 
𝑑𝑗 = (𝑥�𝑗 − 𝑥𝑗) for 𝑗 = 1, … ,𝑛 

 
• Plot the 𝑑𝑗  and summarize  

Mean squared discrepancy 1
𝑛
∑(𝑑𝑗)2 

Mean absolute discrepancy 1
𝑛
∑ 𝑑𝑗  

 
• Several cross-validation and systematic leave out 𝑖 methods 

are available 



Illustration 1 
ANOVA model 

• Have 𝐽 groups or treatments and K 
observations per group, 𝑥𝑘𝑗 

• Usual estimate of 𝜃1, … , 𝜃𝐽 is �̅�𝑗 = 1
𝐾
∑ 𝑥𝑘𝑗𝐾
𝑘=1  

• Stein (1962) showed that from an admissibility 
point of view, a shrunken estimate could yield 
a better set of estimates for 𝐽 ≥ 3 

 
1 − 𝜔 �̅�𝑗 + 𝜔�̅� 



Predictive method 
• Predict each of the 𝑁 = 𝐾𝐽 observations 𝑥𝑘𝑗 

using the remaining N-1  
�̅� 𝑘𝑗 𝑗 = 𝑐𝑘𝑗 = (𝐾�̅�𝑗 − 𝑥𝑘𝑗)/(𝐾 − 1) 
�̅�(𝑘𝑗) = 𝑐�̅�𝑗 = (𝑁�̅� − 𝑥𝑘𝑗)/(𝑁 − 1) 

• Predictor for 𝑥𝑘𝑗  
𝑥�𝑘𝑗 = 1 − 𝜔 𝑐𝑘𝑗 + 𝜔𝑐�̅�𝑗 

• Stein estimate chooses 𝜔 that minimizes the 
mean squared discrepancy 

1
𝑁�� 𝑥�𝑘𝑗 − 𝑥𝑘𝑗 2

𝑘𝑗

 



Example (Geisser, page 39) 
• Samples of size K= 10 were drawn from J = 4 normal 

populations with  means 𝜃1 = 0.35,𝜃2 = 0.1,𝜃3 =
− 0.1,𝜃4 = −0.35 and variance 𝜎2 = 1 

• Considered shrinkage estimates of the form  
1 −ω �̅�𝑗 + ω�̅�  for 0 ≤ 𝜔 ≤ 1 

• ω was chosen to minimize the mean squared 
discrepancy computed by predicting each of the 40 
observations using the remaining 39 

• Two models were evaluated:   
– One way ANOVA 
– Mixed model randomly sampling the row vectors across 

the 4 groups 



Mean squared discrepancy over a 
range of weights 𝝎 
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Illustration 2 
Random Effects Meta-analysis 

• ATLAS:  The Assessment of Treatment with 
Lisinopril and Survival 
– N = 1,545 patients in K = 17 countries 
– Analysis of incremental costs (drug plus CV events) 
– Overall 𝜇�= -154.9 and �̂� = 751.6 
 



Economic Evaluation of Mean Costs in 
Multinational Clinical Trial  

(REMA, Random Effects Meta-Analysis) 

• Heterogeneity among individual country 
estimates (𝜏2) 

• Overall mean net cost measure (�̂�) 
• Country specific mean net costs (𝜃�𝑖) 
• Net cost predictions for countries that did not 

participate in the trial (𝜃�𝑛𝑛𝑛) 



Individual Country Estimates 
• Heterogeneity factor (𝜏2) estimated using 

REMA  
• “Shrinkage” factors based on variance 

components 

   𝜔�𝑖 = 𝜎�𝑖
2

(𝜎�𝑖
2+𝜏�2)

 

 
 𝜃�𝑖 = 1 −𝜔�𝑖 𝜃�𝑖 + 𝜔�𝑖�̂� 

Address uncertainty in 𝜏2 using Bayesian 
analysis and simulation 
 



ATLAS Study:  Estimated Mean Cost for each of 17 
countries for increasing values of 𝝉 
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Prediction 
• Predictive ability is an important feature of economic 

models 
• What exactly is being predicted? 

– Overall mean of a distribution? 
– What would country C have been had they been in the 

trial? 
• There is an extra (within country) component of 

variance for each country that needs to be taken into 
account  

• Using ATLAS the predictive ability of each model can be 
assessed by systematically predicting each country 
based on the data from the remaining countries 
 



Validation/Model Checking for ATLAS 
17 Countries 

• The NREM, jackknife (JK), and Bayes models were 
checked by predicting each country individually 
based on the remaining 16 

• 95% C.I. for NREM and JK covered 16 of 17 
country averages 

• 95% credible interval for Bayes prediction 
covered 16 of 17 country averages 

• 50% internals for all methods covered 9 of 17 
country averages 

• 8 (9) of 17 observed averages were greater (less) 
than predictions 



Predicting ATLAS Individual Country 
Mean Costs (Leave One Out) 

Method Standard 
Prediction Error 

Predicted 
Pr(Average Cost < 0) 

NREM 2888.2 0.56 

Jackknife 2857.5 0.56 

Bayes 2904.8 0.49 

Actual # < 0 was 9/17 = 0.53 

Prediction Error = (∑(𝜃𝑖 − �̂�𝑖)2)/𝑁 



Classification and Prediction 
• Classification and prediction are fundamental components of medical 

practice 
– Diagnosing the presence of disease 
– Patient disease subgroups 
– Predicting prognosis 
– Patient-specific treatments 
– Identifying at-risk subsets 

• Interest in classification and prediction has increased recently in 
biopharmaceutical applications 

• Two step process 

– Discrimination uses a learning data set of labeled observations to 
construct a classifier 

– Classification uses the measurements on a new unlabeled observation 
to predict the class  
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Summary of Existing Methods 
• Pepe (2003) is almost entirely dedicated to ROC analysis for the 

single variable and 2 group case. 
– The single variable may be a function of several predictors e.g., a 

logistic risk score. 
– The application of 2 tests run in parallel or sequentially is discussed. 

• Zhou (2002) considers the Sensitivity and Specificity of multiple 
tests. 

• Krzanowski and Hand (2009) consider K classes and recommend 
either using K ROC curves for each class contrasted with all others, 
or using all K(K-1) pairwise ROC curves. 

• The problem seems to be that ROC methodology does not lend 
itself easily to these expanded situations. 

• Statistical learning approaches have addressed the problem of 
classification using parametric, nonparametric, and Bayesian 
methods. 

22 



Focus for Today 
• General case for K > 2 class predictions based 

on M > 1 biomarkers 
• Measures of distribution separation for 

multivariate densities 
• Interpreting posterior probabilities of 

classification based on the Bayes classifier 
• Strength of evidence method over M 

candidate biomarkers 

23 



Measuring Multiple Distribution Similarity 
• Lachenbruch et al (2004) proposed a measure of similarity between 

distributions for evaluating vaccine lot consistency 
• For 𝐾 groups 
 

𝛾 = 1
𝐾 ∫𝑀𝑀𝑥 𝑓𝑗(𝑥) 𝑑𝑥  over 𝑗 = 1, … ,𝐾 

 
• 𝛾 is the probability that a random observation is assigned to the 

correct group 
• 𝛾 ranges from 1 𝐾⁄  when all distributions are identical to 1 if 

they are distinct 
• 𝜸 is not the AUROC when K = 2! 
• Estimation can assume normality or use NPKD (estimates 

can also be derived using the empirical distribution function) 
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Three Normal Distributions 
(μ1 = -1, μ2 = 0, μ3 = 1, σ2 = 1) 

ϒ = 0.59 
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Illustrative Values of ϒ when K = 3 
Variance = 1 

𝝁𝟏,𝝁𝟕,𝝁𝟑 ϒ OVL 

𝜇1 = 0, 𝜇2 = 0, 𝜇3 = 0 0.33 1.00 

𝜇1 = −0.5, 𝜇2 = 0, 𝜇3 = 0.5 0.46 0.86 

𝜇1 = −1, 𝜇2 = 0, 𝜇3 =1 0.59 0.72 

𝜇1 = −2, 𝜇2 = 0, 𝜇3 =2 0.74 0.41 

𝜇1 = −3, 𝜇2 = 0, 𝜇3 =3 0.91 0.18 

𝜇1 = −4, 𝜇2 = 0, 𝜇3 =4 0.97 0.06 
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Lachenbruch’s ϒ for Multivariate Densities 

• For K multivariate densities of dimension M 

𝛾 =
1
𝐾
�…�𝑀𝑀𝑥{𝑓𝑘 𝑥1, … , 𝑥𝑀 }𝑑𝑥1 …𝑑𝑥𝑀 

 over j = 1, …, K 
• 𝛾 is the probability that a random M-dimensional 

observation is assigned to the correct group 
• 𝛾 ranges from 1 𝐾⁄  when all distributions are identical 

to 1 if they are distinct 
• Estimation can use normality, MV NPKD, or empirical 

distribution functions 
• 𝜸 is not the AUROC when K = 2 and M = 1! 𝜸 is 

potentially useful as an AUROC type measure. 
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Three Bivariate Normal Distributions 
Means {(-1.5, -1.5), (0, 0), (1.5, 1.5)} 

Variances 1 and Correlation 0.5 
𝜸 = 0.74 
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Illustrations of 𝜸 for 3 densities and 
varying means  (variance = 1 and 

correlation = 0.5) 

Mean vectors 
{ −𝝁,−𝝁 , 𝟎,𝟎 , 𝝁,𝝁 } 

𝜸 

𝜇 = 0 0.33 

𝜇 = 0.25 .41 

𝜇 = 0.5 .48 

𝜇 =1.0 .62 

𝜇 =1.5 .74 

𝜇 =2.0 .83 
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For M > 1 Biomarkers and K > 2 Classes 

• Most methods construct a single summary using 
a linear combination over the M > 1 variables 
– Linear/Quadratic discriminant analysis 
– Multiple regression 
– Principle components analysis 
– Logistic regression 

• For K > 2 classes analysis uses sets of pairwise 
classifications 
– Each class compared to all others 
– All pairwise classifications 

• Bayes classifier can handle K > 2 and M > 1 
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Bayesian Framework 
• For a given value of 𝑥 define  

 𝑝𝑘 𝑥 = 𝜋𝑘𝑓𝑘(𝑥)
∑ 𝜋𝑗𝑓𝑗(𝑥)𝑗

 for 𝑘 = 1, … ,𝐾 

where 𝑓𝑘 𝑥  is the value of the density 
function for group k and may be multivariate 

• The densities can be estimated using a Gaussian 
assumption, multivariate nonparametric kernel 
density estimation, or K-nearest neighbor 

• Recognize that the 𝑝𝑘(𝑥) are posterior 
probabilities 
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Bayes Classification Methods 

• Method 1:  Compute single multivariate density 
estimate 𝑃�𝑘(𝑥) 

•  Method 2: 
– Compute 𝑃�𝑘(𝑥𝑚) for each of the k= 1, …, K classes 

and each of the m = 1, …, M  variables in 𝑥 =
(𝑥1, … , 𝑥𝑀) 

– Synthesize the 𝑃�𝑘(𝑥𝑚)  using Fisher’s or Stouffer’s 
method into a single 𝑃�𝑘(𝑥) 

• Classify observation 𝑥 to group 𝐽 
𝐽 = 𝑀𝑀𝑥 𝑃�𝑘 𝑥 ,𝑘 = 1, … ,𝐾 

 
 
 



Synthesis of Evidence:  Method II 

1. Compute 𝑝�𝑘 𝑥𝑚 = 𝜋𝑘𝑓𝑘(𝑥𝑚)
∑ 𝜋𝑗𝑓𝑗(𝑥𝑚)𝑗

 for each of the 

k= 1, …, K classes and each of the m = 1, …, M  
variables in 𝑥 = (𝑥1, … , 𝑥𝑀) 

2. Compute 𝑍�𝑗 = 1
𝑀
∑ Φ−1(𝑝�𝑘 𝑥𝑚 )𝑚  for each of 

the classes.  Φ−1   is the inverse normal 
function. 

3. Compute 𝑃�𝑘 =  Φ(𝑍�𝑘) 
4. Method II:  Classify observation 𝑥 to the group J 

where 𝐽 = 𝑀𝑀𝑥 𝑃�𝑘  over 𝑘 = 1, … ,𝐾 
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Example:  Wisconsin Diagnostic Breast 
Cancer (Woberg et al., 1994) 

• Breast cancer features for 569 women with benign (N = 357) or 
malignant (N=212) diagnosis 

• Ten real-valued features are computed for each cell nucleus:  
1. radius (mean of distances from center to points on the perimeter)  
2. texture (standard deviation of gray-scale values)  
3. perimeter  
4. area  
5. smoothness (local variation in radius lengths)  
6. compactness (perimeter^2 / area - 1.0)  
7. concavity (severity of concave portions of the contour)  
8. concave points (number of concave portions of the contour) 
9. symmetry  
10. fractal dimension ("coastline approximation" - 1) 
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Methods 
• Individual classification of 569 subjects to Π1= Benign or Π2 = 

Malignant based on the remaining 568 subjects 
• Four variables 

– Radius 
– Texture 
– SQRT(Perimeter) 
– CBRT(Area) 

• Prevalence estimates 𝜋1 = 0.627 and 𝜋2 = 0.373 
• Bayes posterior probability classification (Method I) 

– Assuming Gaussian sampling 
– Multivariate NPKD 

• Individual variable classification (Method II) 
– Assuming Gaussian sampling 
– Multivariate NPKD 
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WDBC Study Data 
Benign (N = 357) and Malignant (N=212) 

5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

0.25

5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

0.25

10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

0.25

10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

0.25

6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5

0.6

6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5

0.6

6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5

0.6

6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Benign Malignant 

Radius 
OVL = 0.30 
𝛾 = .85 
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OVL = .57 
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   OVL = .28 
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Performance of Classifier 
• The classification is summarized in the form of 

an M x M confusion matrix 
𝐶 = {𝑐𝑖𝑗} 

where 𝑐𝑖𝑗  is the number of validation samples 
assigned to class 𝑖 which were actually class 𝑗 

• Proportion of Correct Classification 

1
𝑁
� 𝑐𝑚𝑚

𝑀

𝑚=1
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Probability of Correct Classification 
WDBC Data  MV NPKD 
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Probability of Correct Classification 
WDBC Data Using 4 Variables MV NPKD 
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Concluding Remarks 
• Prediction methods are quickly becoming the mainstay of 

precision medicine applications 
• Basing statistical inference on “observables” offers many 

advantages in these applications 
– More direct connection with the decision or objective of the 

analysis 
– More objective basis for model validation 
– Better capability for comparing models  

• Methods and software exist to address problems of 
prediction, and to use prediction based estimation for 
inference 

• While the gold standard methods involve using separate 
training and test/validation data sets, cross-validation and 
leave out k methods can be applied 
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