## MATH 423/673

## 1 Curves

Definition: The velocity vector of a curve $\alpha: I \rightarrow \mathbf{R}^{3}$ at time $t$ is the tangent vector to $\mathbf{R}^{3}$ at $\alpha(t)$,

$$
\alpha^{\prime}(t) \in T_{\alpha(t)} \mathbf{R}^{3}
$$

defined by

$$
\alpha^{\prime}(t):=\lim _{h \rightarrow 0} \frac{\alpha(t+h)-\alpha(t)}{h}
$$

Note that the algebraic operations on the right hand side are vector subtraction and scalar multiplication of a vector.

Physics meaning: $\alpha^{\prime}(t)$ is the rate of change of the position of a particle, ie the velocity vector of the particle. The speed is $\left\|\alpha^{\prime}(t)\right\|$.

Geometric meaning: $\alpha(t+h)-\alpha(t)$ is a secant vector which goes from the point $\alpha(t)$ to the point $\alpha(t+h)$ on the curve. If you scale it by $1 / h$ the resulting vector converges to the tangent vector $\alpha^{\prime}(t)$ as $h \rightarrow 0$.

Algebraically: It's not hard to show that if $\alpha(t)=\left(\alpha_{1}(t), \alpha_{2}(t), \alpha_{3}(t)\right)$ then $\alpha^{\prime}(t)=\left(\alpha_{1}^{\prime}(t), \alpha_{2}^{\prime}(t), \alpha_{3}^{\prime}(t)\right)$.
Example: "Accelerating circular motion". The curve $\alpha(t)=\left(\cos \left(t^{2}\right), \sin \left(t^{2}\right)\right)$ parametrizes the circle $x^{2}+y^{2}=1$. The velocity vector at time $t$ is $\alpha^{\prime}(t)=\left(-2 t \sin \left(t^{2}\right), 2 t \cos \left(t^{2}\right)\right)$, and so the speed is $\left\|\alpha^{\prime}(t)\right\|=2|t|$, which increases linearly with $t$ (for $t>0$ ).

Parametrization of tangent line to $\alpha$ at $\alpha(t)$ : A parametrization of the line through $\mathbf{p}$ in direction $\mathbf{v}$ is $\ell(s)=\mathbf{p}+s \mathbf{v}$. Since the tangent line to $\alpha$ at $\alpha(t)$ goes through $\mathbf{p}=\alpha(t)$ in direction $\mathbf{v}=\alpha^{\prime}(t)$, we conclude that this tangent line has parametrization

$$
\ell(s)=\alpha(t)+s \alpha^{\prime}(t) .
$$

Note that this is linear in $s$, as is expected for a line. Here

- $t$ is the parameter on $\alpha$. It tells us which tangent line we are on.
- $s$ is the parameter on the tangent line. It tells us where we are on that tangent line.

It would be nice if $\ell$ passed through $\mathbf{p}$ at the same time as $\alpha$ did. This can be done by shifting the time $s$ on $\ell$, i.e., we can instead use the parametrization

$$
\ell(s)=\alpha(t)+(s-t) \alpha^{\prime}(t),
$$

which is still linear in $s$. We think of $t$ as being fixed in this equation. Now $\ell(t)=\alpha(t)$ and $\ell^{\prime}(t)=\alpha^{\prime}(t)$. So if one particle travels with parametrization $\alpha$ and another with $\ell$, then they both pass through the point $\alpha(t)$ at same time and with same velocity. In this sense $\ell$ is a linearization of the motion $\alpha$ at $\alpha(t)$.

Example: Standard Circle:

$$
\begin{aligned}
(t) & =(\cos t, \sin t) \\
\alpha^{\prime}(t) & =(-\sin t, \cos t) \\
\ell(s) & =(\cos t-(s-t) \sin t, \sin t+(s-t) \cos t)
\end{aligned}
$$

So at $t=\pi / 4$ we have $(x, y)=\alpha(\pi / 4)=\frac{1}{\sqrt{2}}(1,1)$ and

$$
\ell(s)=\frac{1}{\sqrt{2}}(1-(s-\pi / 4), 1+(s-\pi / 4))
$$

which parametrizes the line $x+y=\sqrt{2}$. Draw a picture!

Recall: $\mathbf{v}_{p}[f]=\frac{d}{d t}(f \circ \beta)(0)$, where $\beta(t)=\mathbf{p}+t \mathbf{v}$ is a line. More generally we have:
Lemma 1. Let $\alpha$ be any curve with $\alpha(0)=\mathbf{p}$ and $\alpha^{\prime}(0)=\mathbf{v}$. Then

$$
\mathbf{v}_{p}[f]=\frac{d}{d t}(f \circ \alpha)(0)
$$

Moral: You can calculate directional derivatives using any curve with correct values for zero-th and first derivatives, not just using a straight line.
Proof: The is a homework problem 1.4.6. Hint: Chain rule for functions on curves.

## 2 Mappings between Euclidean Spaces

Here we study functions $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$.
Definition 1. Given $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, let $f_{1}, \cdots f_{m}$ be the coordinate functions of $F$ defined by

$$
F(\mathbf{p})=\left(f_{1}(\mathbf{p}), \cdots, f_{m}(\mathbf{p})\right)
$$

where $f_{j}: \mathbf{R}^{n} \rightarrow \mathbf{R}$. If all the functions $f_{j}$ are differentiable we call $F$ a mapping from $\mathbf{R}^{n}$ to $\mathbf{R}^{m}$.
Main Idea: We study mappings using curves.

## Examples:

1. $\alpha: \mathbf{R} \rightarrow \mathbf{R}^{3}$, curves
2. $f: \mathbf{R}^{3} \rightarrow \mathbf{R}$, scalar-valued functions
3. $F: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$, transformations of the plane.

$$
(u, v)=F(x, y)=\left(f_{1}(x, y), f_{2}(x, y)\right)
$$

To visualize $F$ we work out where the grid curves $x=x_{0}$ and $y=y_{0}$ (ie horizontal and vertical lines in domain plane) get mapped to. The grid curve $x=x_{0}$ gets mapped to the curve $\alpha(t)=F\left(x_{0}, t\right)$ in the range plane. The grid curve $y=y_{0}$ gets mapped to the curve $\beta(t)=F\left(t, y_{0}\right)$ in the range plane. If $F$ is nice (see later) these curves in the range plane can be used to define a coordinate system.
(a) Linear transformations. Recall that $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is linear if

$$
F(\lambda \mathbf{x}+\mathbf{y})=\lambda F(\mathbf{x})+F(\mathbf{y}) \quad \text { for all } \mathbf{x}, \mathbf{y} \in \mathbf{R}^{n} \text { and all } \lambda \in \mathbf{R}
$$

Fact: Linear transformations map lines to lines.
Example: $F(\mathbf{x})=A \mathbf{x}$, where $A$ is an $m \times n$ matrix.
(b) Linear transformations $F: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$.

$$
\binom{u}{v}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y} .
$$

So $u=a x+b y=f_{1}(x, y)$ and $v=c x+d y=f_{2}(x, y)$. Two important examples are
i. Rotations: Fix an angle $\theta$. Clockwise rotation through $\theta$ is given by the linear transformation

$$
\binom{u}{v}=F\binom{x}{y}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y} .
$$

The point $(1,1)$ gets mapped to $F(1,1)=(\cos \theta+\sin \theta,-\sin \theta+\cos \theta)=(\sqrt{2}, 0)$, if $\theta=\pi / 4$. The grid curve $x=1$ gets mapped to the line $\cos (\theta) u-\sin (\theta) v=1$, which is the line $u-v=\sqrt{2}$ if $\theta=\pi / 4$. To see this invert the matrix to solve for $\binom{x}{y}$ in terms of $\binom{u}{v}$ and then set $x=1$. Try it! What line does the grid curve $y=1$ get mapped to?
ii. Scalings: $F(x, y)=(a x, d y)$ (ie a diagonal matrix). This transformation maps horizontal lines to horizontal lines, vertical lines to vertical lines, squares to rectangles, circles to ellipses. Check for yourself!
(c) Change of variables: (Not linear in general.) The most useful and simplest is that from polar to rectangular coordinates.

$$
(x, y)=F(r, \theta)=(r \cos \theta, r \sin \theta) .
$$

The grid curves $\theta=\theta_{0}$ get mapped to rays $y=\tan \left(\theta_{0}\right) x$ and the grid curves $r=r_{0}$ get mapped to circles $x^{2}+y^{2}=r_{0}^{2}$.
4. $F: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$, transformations of space.

Example: Change of variables from spherical to rectangular coordinates

$$
(x, y, z)=F(\rho, \phi, \theta)=(\rho \cos \phi \cos \theta, \rho \cos \phi \sin \theta, \rho \sin \phi)
$$

Here $\rho$ is radial distance from origin, $\phi$ is the "drop" angle from the north pole, and $\theta$ is the angle in the $x y$-plane from the $x$-axis (as for polar coordinates). We have $\rho>0,0<\theta<2 \pi$, $0<\phi<\pi$. See Stewart 13.7.
5. $\mathbf{x}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$, parametrizations of surfaces in $\mathbf{R}^{3}$. See Stewart 13.7, 17.6. We will study these more later on.
Example: Parametrization of unit sphere using longitude and latitude.

$$
(x, y, z)=\mathbf{x}(\phi, \theta)=(\cos \phi \cos \theta, \cos \phi \sin \theta, \sin \phi)
$$

Goal: Given $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ we want to define the tangent map of $F$ at $\mathbf{p}$ :

$$
F_{*}: T_{p} \mathbf{R}^{n} \rightarrow T_{F(p)} \mathbf{R}^{m}
$$

and show that

1. $F_{*}$ is a linear transformation (and hence a matrix transformation)
2. The matrix of $F_{*}$ with respect to the standard bases for $T_{p} \mathbf{R}^{n}$ and $T_{F(p)} \mathbf{R}^{m}$ is the matrix of partial derivatives of $F$.

Definition 2. If $\alpha: I \rightarrow \mathbf{R}^{n}$ is a curve, the image of $\alpha$ under a mapping $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is the curve $\beta: I \rightarrow \mathbf{R}^{m}$ defined by $\beta=F \circ \alpha$, i.e., $\beta(t)=F(\alpha(t))$.

Example: If $\mathbf{x}$ is the parametrization of unit sphere given above and $(\phi, \theta)=\alpha(t)=(t, \pi / 4)$ is the grid curve $\theta=\pi / 4$ in the domain space $\mathbf{R}^{2}$ of $\mathbf{x}$, i.e. in $(\phi, \theta)$-space, then the image of $\alpha$ under $\mathbf{x}$ is the line of longitude

$$
\beta(t)=\mathbf{x}(\alpha(t))=\mathbf{x}(t, \pi / 4)=\left(\frac{1}{\sqrt{2}} \cos t, \frac{1}{\sqrt{2}} \cos t, \sin t\right)
$$

Definition 3. The tangent map, $F_{*}: T_{p} \mathbf{R}^{n} \rightarrow T_{F(p)} \mathbf{R}^{m}$, of a mapping $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is defined as follows. Let $\mathbf{v} \in T_{p} \mathbf{R}^{n}$. Define $\alpha(t)=\mathbf{p}+t \mathbf{v}$, which is a curve (line!) in $\mathbf{R}^{n}$ with $\alpha(0)=\mathbf{p}$ and $\alpha^{\prime}(0)=\mathbf{v}$. Set $\beta=F \circ \alpha$ to be the image of $\alpha$ under $F$. So $\beta(t)=F(\alpha(t))=F(\mathbf{p}+t \mathbf{v})$. Then we define

$$
F_{*}(\mathbf{v})=\beta^{\prime}(0) \quad \in T_{F(p)} \mathbf{R}^{m}
$$

Proposition 1. "The tangent map of $F$ is given by the directional derivatives of the coordinate functions of $F$."Specifically: Let $F=\left(f_{1}, \cdots, f_{m}\right): \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $\mathbf{v}_{p} \in T_{p} \mathbf{R}^{n}$. Then

$$
F_{*}(\mathbf{v})=\left(\mathbf{v}\left[f_{1}\right], \cdots, \mathbf{v}\left[f_{m}\right]\right) \quad \text { at } F(\mathbf{p})
$$

Proof: See proof of Proposition 1.7.5 on page 37-38 of O'Neill.
Example: Let $(x, y)=F(r, \theta)=(r \cos \theta, r \sin \theta)$ and $\mathbf{v}=(1,2)$ at $\mathbf{p}=(1, \pi / 4)$. Then

$$
\begin{aligned}
F_{*}(\mathbf{v}) & =(\mathbf{v}[r \cos \theta], \mathbf{v}[r \sin \theta]) \\
& =\left(\mathbf{v} \cdot \nabla f_{1}, \mathbf{v} \cdot \nabla f_{2}\right) \\
& =(\mathbf{v} \cdot(\cos \theta,-r \sin \theta), \mathbf{v} \cdot(\sin \theta, r \cos \theta)) \\
& =\left((1,2) \cdot\left(\frac{1}{\sqrt{2}},-1 \frac{1}{\sqrt{2}}\right),(1,2) \cdot\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\right)=\left(\frac{-1}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right) .
\end{aligned}
$$

Corollary 1. $F_{*}: T_{p} \mathbf{R}^{n} \rightarrow T_{F(p)} \mathbf{R}^{m}$ is a linear transformation.
Proof: See proof of Corollary 1.7.6 on page 38 of O'Neill.
Meaning: (See UMBC's yet-to-exist Advanced Calculus course, or Math 302 if you are lucky.) The tangent map $F_{*}$ at $\mathbf{p}$ is the linear transformation that "best approximates" $F$ near $\mathbf{p}$. We also say that the tangent map is the "linearization "of $F$ at $\mathbf{p}$.

Example: If $F: \mathbf{R} \rightarrow \mathbf{R}$ then $F: T_{p} \mathbf{R} \rightarrow T_{F(p)} \mathbf{R}$ is a linear transformation between onedimensional vector spaces. So it is given by a $1 \times 1$ matrix, ie, it is of the form $F_{*}(\mathbf{v})=a \mathbf{v}$ for some real number $a$. You can check using the Proposition above that

$$
F_{*}(\mathbf{v})=F^{\prime}(p) \mathbf{v}
$$

is scalar multiplication by $F^{\prime}(p)$. [Hint: Choose the vector $\mathbf{v}$ to be $\mathbf{v}=1$ and use linearity.]
Corollary 2. Let $U_{1}, \cdots U_{n}$ be the natural frame field on $\mathbf{R}^{n}$ and $\bar{U}_{1}, \cdots \bar{U}_{m}$ be the natural frame field on $\mathbf{R}^{m}$. If $F=\left(f_{1}, \cdots, f_{m}\right): \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, then

$$
F_{*}\left(U_{j}(\mathbf{p})\right)=\sum_{i=1}^{m} \frac{\partial f_{i}}{\partial x_{j}}(\mathbf{p}) \bar{U}_{i}(F(\mathbf{p})), \quad j=1, \cdots, n
$$

Meaning: Let $D F$ be the $m \times n$ matrix with

$$
(D F)_{i j}=\frac{\partial f_{i}}{\partial x_{j}}
$$

So the $i$-th row of $D F$ is the vector given by the gradient of $f_{i}$ :

$$
D F=\left(\begin{array}{c}
\nabla f_{1} \\
\vdots \\
\nabla f_{m}
\end{array}\right)
$$

$D F$ is the matrix of partial derivatives of $F$, otherwise known as the Jacobian matrix of $F$.
Recall: If $W$ is a vector space with basis $\mathcal{C}=\left\{\mathbf{w}_{1}, \cdots, \mathbf{w}_{m}\right\}$, then the coordinate vector of $w$ is the vector $[w]_{\mathcal{C}} \in \mathbf{R}^{m}$ given by

$$
[w]_{\mathcal{C}}=\left(\lambda_{1}, \cdots, \lambda_{m}\right)
$$

where

$$
w=\sum_{i=1}^{m} \lambda_{i} w_{i} .
$$

Also, if $T: V \rightarrow W$ is a linear transformation from an $n$-dimensional vector space $V$ with basis $\mathcal{B}=\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ to an $m$-dimensional vector space $W$ with basis $\mathcal{C}=\left\{\mathbf{w}_{1}, \cdots, \mathbf{w}_{m}\right\}$, then the matrix of $T$ with respect to the bases $\mathcal{B}$ and $\mathcal{C}$ is given by

$$
[T]_{\mathcal{B} C}=\left(\left[T\left(\mathbf{v}_{1}\right)\right]_{\mathcal{C}}, \cdots\left[T\left(\mathbf{v}_{n}\right)\right]_{\mathcal{C}}\right)
$$

i.e., the $j$-th column of the matrix of $T$ is the coordinate vector in the basis for $W$ of the image under $T$ of the basis vector $\mathbf{v}_{j}$ of $V$.

In this language, the Jacobian matrix, $D F$, is the matrix of the linear transformation $F_{*}$ with respect to the standard bases $U_{1}(\mathbf{p}), \cdots U_{n}(\mathbf{p})$ for $T_{p} \mathbf{R}^{n}$ and $\bar{U}_{1}(F(\mathbf{p})), \cdots \bar{U}_{m}(F(\mathbf{p}))$ for $T_{F(p)} \mathbf{R}^{m}$. Check:

$$
\left[F_{*}\right]=\left[F_{*}\left(U_{1}\right), \cdots F_{*}\left(U_{n}\right)\right]=\left(\frac{\partial F}{\partial x_{1}}, \cdots, \frac{\partial F}{\partial x_{n}}\right)
$$

where $\frac{\partial F}{\partial x_{j}}$ is the column vector whose $i$-th row is $\frac{\partial f_{i}}{\partial x_{j}}$.
Example: $(x, y)=F(r, \theta)=(r \cos \theta, r \sin \theta)$.

$$
D F=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial r} & \frac{\partial f_{1}}{\partial \theta} \\
\frac{\partial f_{2}}{\partial r} & \frac{\partial f_{2}}{\partial \theta}
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right)
$$

## Proof of Corollary 2:

$$
F_{*}\left(U_{j}(\mathbf{p})\right)=\left(U_{j}\left[f_{1}\right], \cdots, U_{j}\left[f_{m}\right]\right)=\sum_{i=1}^{m} U_{j}\left[f_{i}\right] \bar{U}_{i}(F(\mathbf{p}))
$$

and

$$
U_{j}\left[f_{i}\right]=U_{j} \cdot \nabla f_{i}=(0, \ldots, 1, \ldots, 0) \cdot\left(\frac{\partial f_{i}}{\partial x_{1}}, \cdots, \frac{\partial f_{i}}{\partial x_{n}}\right)=\frac{\partial f_{i}}{\partial x_{j}}
$$

