
MATH 423/673

1 Curves

Definition: The velocity vector of a curve α : I → R3 at time t is the tangent vector to R3 at α(t),

α′(t) ∈ Tα(t)R
3

defined by

α′(t) := lim
h→0

α(t + h)− α(t)

h
.

Note that the algebraic operations on the right hand side are vector subtraction and scalar multi-
plication of a vector.

Physics meaning: α′(t) is the rate of change of the position of a particle, ie the velocity vec-
tor of the particle. The speed is ‖α′(t)‖.

Geometric meaning: α(t + h)− α(t) is a secant vector which goes from the point α(t) to the
point α(t + h) on the curve. If you scale it by 1/h the resulting vector converges to the tangent
vector α′(t) as h → 0.

Algebraically: It’s not hard to show that if α(t) = (α1(t), α2(t), α3(t)) then α′(t) = (α′1(t), α
′
2(t), α

′
3(t)).

Example: “Accelerating circular motion”. The curve α(t) = (cos(t2), sin(t2)) parametrizes the
circle x2 + y2 = 1. The velocity vector at time t is α′(t) = (−2t sin(t2), 2t cos(t2)), and so the speed
is ‖α′(t)‖ = 2|t|, which increases linearly with t (for t > 0).

Parametrization of tangent line to α at α(t): A parametrization of the line through p in
direction v is `(s) = p + sv. Since the tangent line to α at α(t) goes through p = α(t) in direction
v = α′(t), we conclude that this tangent line has parametrization

`(s) = α(t) + sα′(t).

Note that this is linear in s, as is expected for a line. Here

• t is the parameter on α. It tells us which tangent line we are on.

• s is the parameter on the tangent line. It tells us where we are on that tangent line.

It would be nice if ` passed through p at the same time as α did. This can be done by shifting the
time s on `, i.e., we can instead use the parametrization

`(s) = α(t) + (s− t)α′(t),



which is still linear in s. We think of t as being fixed in this equation. Now `(t) = α(t) and
`′(t) = α′(t). So if one particle travels with parametrization α and another with `, then they both
pass through the point α(t) at same time and with same velocity. In this sense ` is a linearization
of the motion α at α(t).

Example: Standard Circle:

(t) = (cos t, sin t)

α′(t) = (− sin t, cos t)

`(s) = (cos t− (s− t) sin t, sin t + (s− t) cos t)

So at t = π/4 we have (x, y) = α(π/4) = 1√
2
(1, 1) and

`(s) =
1√
2
(1− (s− π/4), 1 + (s− π/4))

which parametrizes the line x + y =
√

2. Draw a picture!

Recall: vp[f ] = d
dt

(f ◦ β)(0), where β(t) = p + tv is a line. More generally we have:

Lemma 1. Let α be any curve with α(0) = p and α′(0) = v. Then

vp[f ] =
d

dt
(f ◦ α)(0).

Moral: You can calculate directional derivatives using any curve with correct values for zero-th
and first derivatives, not just using a straight line.
Proof: The is a homework problem 1.4.6. Hint: Chain rule for functions on curves.

2 Mappings between Euclidean Spaces

Here we study functions F : Rn → Rm.

Definition 1. Given F : Rn → Rm, let f1, · · · fm be the coordinate functions of F defined by

F (p) = (f1(p), · · · , fm(p))

where fj : Rn → R. If all the functions fj are differentiable we call F a mapping from Rn to Rm.

Main Idea: We study mappings using curves.

Examples:
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1. α : R → R3, curves

2. f : R3 → R, scalar-valued functions

3. F : R2 → R2, transformations of the plane.

(u, v) = F (x, y) = (f1(x, y), f2(x, y))

To visualize F we work out where the grid curves x = x0 and y = y0 (ie horizontal and
vertical lines in domain plane) get mapped to. The grid curve x = x0 gets mapped to the
curve α(t) = F (x0, t) in the range plane. The grid curve y = y0 gets mapped to the curve
β(t) = F (t, y0) in the range plane. If F is nice (see later) these curves in the range plane can
be used to define a coordinate system.

(a) Linear transformations. Recall that F : Rn → Rm is linear if

F (λx + y) = λF (x) + F (y) for allx,y ∈ Rn and all λ ∈ R.

Fact: Linear transformations map lines to lines.
Example: F (x) = Ax, where A is an m× n matrix.

(b) Linear transformations F : R2 → R2.(
u
v

)
=

(
a b
c d

) (
x
y

)
.

So u = ax + by = f1(x, y) and v = cx + dy = f2(x, y). Two important examples are

i. Rotations: Fix an angle θ. Clockwise rotation through θ is given by the linear
transformation (

u
v

)
= F

(
x
y

)
=

(
cos θ sin θ
− sin θ cos θ

) (
x
y

)
.

The point (1, 1) gets mapped to F (1, 1) = (cos θ + sin θ,− sin θ + cos θ) = (
√

2, 0), if
θ = π/4. The grid curve x = 1 gets mapped to the line cos(θ)u− sin(θ)v = 1, which

is the line u− v =
√

2 if θ = π/4. To see this invert the matrix to solve for

(
x
y

)
in

terms of

(
u
v

)
and then set x = 1. Try it! What line does the grid curve y = 1 get

mapped to?

ii. Scalings: F (x, y) = (ax, dy) (ie a diagonal matrix). This transformation maps hor-
izontal lines to horizontal lines, vertical lines to vertical lines, squares to rectangles,
circles to ellipses. Check for yourself!
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(c) Change of variables: (Not linear in general.) The most useful and simplest is that
from polar to rectangular coordinates.

(x, y) = F (r, θ) = (r cos θ, r sin θ).

The grid curves θ = θ0 get mapped to rays y = tan(θ0)x and the grid curves r = r0 get
mapped to circles x2 + y2 = r2

0.

4. F : R3 → R3, transformations of space.
Example: Change of variables from spherical to rectangular coordinates

(x, y, z) = F (ρ, φ, θ) = (ρ cos φ cos θ, ρ cos φ sin θ, ρ sin φ).

Here ρ is radial distance from origin, φ is the “drop”angle from the north pole, and θ is the
angle in the xy-plane from the x-axis (as for polar coordinates). We have ρ > 0, 0 < θ < 2π,
0 < φ < π. See Stewart 13.7.

5. x : R2 → R3, parametrizations of surfaces in R3. See Stewart 13.7, 17.6. We will study
these more later on.
Example: Parametrization of unit sphere using longitude and latitude.

(x, y, z) = x(φ, θ) = (cos φ cos θ, cos φ sin θ, sin φ).

Goal: Given F : Rn → Rm we want to define the tangent map of F at p:

F∗ : TpR
n → TF (p)R

m

and show that

1. F∗ is a linear transformation (and hence a matrix transformation)

2. The matrix of F∗ with respect to the standard bases for TpR
n and TF (p)R

m is the matrix of
partial derivatives of F .

Definition 2. If α : I → Rn is a curve, the image of α under a mapping F : Rn → Rm is the
curve β : I → Rm defined by β = F ◦ α, i.e., β(t) = F (α(t)).

Example: If x is the parametrization of unit sphere given above and (φ, θ) = α(t) = (t, π/4) is the
grid curve θ = π/4 in the domain space R2 of x, i.e. in (φ, θ)-space, then the image of α under x
is the line of longitude

β(t) = x(α(t)) = x(t, π/4) = (
1√
2

cos t,
1√
2

cos t, sin t).
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Definition 3. The tangent map, F∗ : TpR
n → TF (p)R

m, of a mapping F : Rn → Rm is defined
as follows. Let v ∈ TpR

n. Define α(t) = p + tv, which is a curve (line!) in Rn with α(0) = p and
α′(0) = v. Set β = F ◦ α to be the image of α under F . So β(t) = F (α(t)) = F (p + tv). Then we
define

F∗(v) = β′(0) ∈ TF (p)R
m.

Proposition 1. “The tangent map of F is given by the directional derivatives of the coordinate
functions of F .”Specifically: Let F = (f1, · · · , fm) : Rn → Rm and vp ∈ TpR

n. Then

F∗(v) = (v[f1], · · · ,v[fm]) at F (p).

Proof: See proof of Proposition 1.7.5 on page 37-38 of O’Neill.

Example: Let (x, y) = F (r, θ) = (r cos θ, r sin θ) and v = (1, 2) at p = (1, π/4). Then

F∗(v) = (v[r cos θ],v[r sin θ])

= (v · ∇f1,v · ∇f2)

= (v · (cos θ,−r sin θ),v · (sin θ, r cos θ))

=

(
(1, 2) · ( 1√

2
,−1

1√
2
), (1, 2) · ( 1√

2
,

1√
2
)

)
= (

−1√
2
,

3√
2
).

Corollary 1. F∗ : TpR
n → TF (p)R

m is a linear transformation.

Proof: See proof of Corollary 1.7.6 on page 38 of O’Neill.

Meaning: (See UMBC’s yet-to-exist Advanced Calculus course, or Math 302 if you are lucky.)
The tangent map F∗ at p is the linear transformation that “best approximates”F near p. We also
say that the tangent map is the “linearization ”of F at p.

Example: If F : R → R then F : TpR → TF (p)R is a linear transformation between one-
dimensional vector spaces. So it is given by a 1× 1 matrix, ie, it is of the form F∗(v) = av for some
real number a. You can check using the Proposition above that

F∗(v) = F ′(p)v

is scalar multiplication by F ′(p). [Hint: Choose the vector v to be v = 1 and use linearity.]

Corollary 2. Let U1, · · ·Un be the natural frame field on Rn and U1, · · ·Um be the natural frame
field on Rm. If F = (f1, · · · , fm) : Rn → Rm, then

F∗(Uj(p)) =
m∑

i=1

∂fi

∂xj

(p)U i(F (p)), j = 1, · · · , n.
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Meaning: Let DF be the m× n matrix with

(DF )ij =
∂fi

∂xj

So the i-th row of DF is the vector given by the gradient of fi:

DF =

∇f1
...

∇fm

 .

DF is the matrix of partial derivatives of F , otherwise known as the Jacobian matrix of F .

Recall: If W is a vector space with basis C = {w1, · · · ,wm}, then the coordinate vector of w is
the vector [w]C ∈ Rm given by

[w]C = (λ1, · · · , λm)

where

w =
m∑

i=1

λiwi.

Also, if T : V → W is a linear transformation from an n-dimensional vector space V with basis
B = {v1, · · · ,vn} to an m-dimensional vector space W with basis C = {w1, · · · ,wm}, then the
matrix of T with respect to the bases B and C is given by

[T ]BC = ([T (v1)]C, · · · [T (vn)]C) ,

i.e., the j-th column of the matrix of T is the coordinate vector in the basis for W of the image
under T of the basis vector vj of V .

In this language, the Jacobian matrix, DF , is the matrix of the linear transformation F∗ with
respect to the standard bases U1(p), · · ·Un(p) for TpR

n and U1(F (p)), · · ·Um(F (p)) for TF (p)R
m.

Check:

[F∗] = [F∗(U1), · · ·F∗(Un)] =

(
∂F

∂x1

, · · · ,
∂F

∂xn

)
where ∂F

∂xj
is the column vector whose i-th row is ∂fi

∂xj
.

Example: (x, y) = F (r, θ) = (r cos θ, r sin θ).

DF =

(
∂f1

∂r
∂f1

∂θ
∂f2

∂r
∂f2

∂θ

)
=

(
cos θ −r sin θ
sin θ r cos θ

)
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Proof of Corollary 2:

F∗(Uj(p)) = (Uj[f1], · · · , Uj[fm]) =
m∑

i=1

Uj[fi]U i(F (p))

and

Uj[fi] = Uj · ∇fi = (0, ..., 1, ..., 0) ·
(

∂fi

∂x1

, · · · ,
∂fi

∂xn

)
=

∂fi

∂xj

.
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