MATH 423/673

1 Curves

Definition: The velocity vector of a curve o : I — R? at time ¢ is the tangent vector to R? at (),
a(t) e Ta(t)Rg

defined by
. aft+h)—alt)
"(t) =1 .
o(t) B h
Note that the algebraic operations on the right hand side are vector subtraction and scalar multi-
plication of a vector.

Physics meaning: «(t) is the rate of change of the position of a particle, ie the velocity vec-
tor of the particle. The speed is ||o/(t)]|.

Geometric meaning: «a(t + h) — «a(t) is a secant vector which goes from the point a(t) to the
point a(t + h) on the curve. If you scale it by 1/h the resulting vector converges to the tangent
vector o/(t) as h — 0.

Algebraically: It’s not hard to show that if a(t) = (a1(t), aa(t), as(t)) then o/ (t) = () (2), b(t), as(t)).

Example: “Accelerating circular motion”. The curve a(t) = (cos(t?),sin(t?)) parametrizes the
circle 22 + y? = 1. The velocity vector at time ¢ is o/(t) = (=2t sin(t?), 2t cos(t?)), and so the speed
is ||/ (t)|| = 2|t|, which increases linearly with ¢ (for ¢ > 0).

Parametrization of tangent line to a at «a(t): A parametrization of the line through p in
direction v is £(s) = p + sv. Since the tangent line to « at «(t) goes through p = a(t) in direction
v = a/(t), we conclude that this tangent line has parametrization

U(s) = aft) + s (t).
Note that this is linear in s, as is expected for a line. Here
e ¢ is the parameter on «. It tells us which tangent line we are on.
e s is the parameter on the tangent line. It tells us where we are on that tangent line.

It would be nice if ¢ passed through p at the same time as « did. This can be done by shifting the
time s on /, i.e., we can instead use the parametrization

U(s) = alt) + (s —t)a'(1),



which is still linear in s. We think of ¢ as being fixed in this equation. Now /¢(t) = «(t) and
U'(t) = o/(t). So if one particle travels with parametrization « and another with ¢, then they both
pass through the point «(t) at same time and with same velocity. In this sense /£ is a linearization
of the motion « at «(t).

Example: Standard Circle:

(t) = (cost,sint)
o(t) (—sint, cost)
0(s) = (cost— (s—t)sint,sint + (s —t)cost)

So at t = w/4 we have (z,y) = a(n/4) = %(1, 1) and

o(s) = \%(1 (s — /4,1 + (s — 7/4))

which parametrizes the line z + y = /2. Draw a picture!

Recall: v,[f] = £4(fof)(0), where 3(t) = p + tv is a line. More generally we have:
Lemma 1. Let a be any curve with a(0) = p and o/(0) =v. Then

d

wlfl = =(foa)0)

Moral: You can calculate directional derivatives using any curve with correct values for zero-th
and first derivatives, not just using a straight line.
Proof: The is a homework problem 1.4.6. Hint: Chain rule for functions on curves.

2 Mappings between Euclidean Spaces

Here we study functions F' : R* — R™.

Definition 1. Given F': R" — R™, let f1,--- f,n be the coordinate functions of I’ defined by
F(p) = (fi(p),--+, fm(p))

where f; : R" — R. If all the functions f; are differentiable we call F' @ mapping from R" to R™.

Main Idea: We study mappings using curves.

Examples:



1. o: R — R?, curves

2. f:R3? — R, scalar-valued functions

3. F': R? — R?, transformations of the plane.

<u7v) = F(l’,y) = (fl(xvy)7f2(xvy))

To visualize F' we work out where the grid curves © = xy and y = yo (ie horizontal and
vertical lines in domain plane) get mapped to. The grid curve x = 7 gets mapped to the
curve «o(t) = F(xg,t) in the range plane. The grid curve y = yo gets mapped to the curve
B(t) = F(t,yo) in the range plane. If F' is nice (see later) these curves in the range plane can
be used to define a coordinate system.

(a) Linear transformations. Recall that F': R" — R™ is linear if

F(Ax+y)=AF(x)+ F(y) for allx,y € R" and all A € R.

Fact: Linear transformations map lines to lines.
Example: F(x) = Ax, where A is an m X n matrix.

(b) Linear transformations F: R? — R?.

(£) = 9 6)

So u=ax+ by = fi(x,y) and v = cx + dy = fo(x,y). Two important examples are

1.

ii.

Rotations: Fix an angle 6. Clockwise rotation through 6 is given by the linear

transformation
U T cosf@ sinf T
= F = . .
v Y —sinf cosf Y

The point (1,1) gets mapped to F'(1,1) = (cos @ + sin 0, — sin 6 + cos 9) (V2,
0 = m/4. The grid curve z = 1 gets mapped to the line cos(&)u —sin(f)v = 1,

f

0), i
whic
is the line u — v = V2 if = 7/4. To see this invert the matrix to solve for < )

terms of (Z) and then set x = 1. Try it! What line does the grid curve y = 1 get

mapped to?

Scalings: F(z,y) = (ax,dy) (ie a diagonal matrix). This transformation maps hor-
izontal lines to horizontal lines, vertical lines to vertical lines, squares to rectangles,
circles to ellipses. Check for yourself!



(c) Change of variables: (Not linear in general.) The most useful and simplest is that
from polar to rectangular coordinates.

(x,y) = F(r,0) = (rcosf,rsinf).

The grid curves 6§ = 6, get mapped to rays y = tan(fy)x and the grid curves r = ry get
mapped to circles 22 + y* = 2.

4. F:R? — R?, transformations of space.
Example: Change of variables from spherical to rectangular coordinates

(x,y,2) = F(p,¢,0) = (pcos¢cosh, pcospsinb, psing).

Here p is radial distance from origin, ¢ is the “drop”angle from the north pole, and 6 is the
angle in the zy-plane from the x-axis (as for polar coordinates). We have p > 0, 0 < 6 < 2,
0 < ¢ <m. See Stewart 13.7.

5. x : R?> — R3, parametrizations of surfaces in R3. See Stewart 13.7, 17.6. We will study
these more later on.
Example: Parametrization of unit sphere using longitude and latitude.

(x,y,2) = x(¢,0) = (cos¢cosb,cospsinb, sin ).

Goal: Given F': R" — R™ we want to define the tangent map of F' at p:
F.:T,R" — Tp(p)Rm
and show that
1. F, is a linear transformation (and hence a matrix transformation)

2. The matrix of F, with respect to the standard bases for T,R" and T, R™ is the matrix of
partial derivatives of F.

Definition 2. If a: I — R" is a curve, the image of a under a mapping F': R" — R™ is the
curve 3 : 1 — R™ defined by = F o «, i.e., B(t) = F(a(t)).

Example: If x is the parametrization of unit sphere given above and (¢, 0) = a(t) = (¢t,7/4) is the
grid curve § = 7/4 in the domain space R? of x, i.e. in (¢,6)-space, then the image of o under x
is the line of longitude

1 1 )
B(t) = x(a(t)) = x(t,n/4) = (—=cost, —= cost,sint).

V2 V2



Definition 3. The tangent map, F, : T,R" — Try ) R™, of a mapping F' : R" — R™ is defined
as follows. Let v € T,R™. Define a(t) = p + tv, which is a curve (line!) in R™ with (0) = p and
a'(0) =v. Set §=F o« to be the image of a under F. So 3(t) = F(a(t)) = F(p +tv). Then we
define

F, (V) = ﬁ/(O) S TF(p)Rm.

Proposition 1. “The tangent map of F is given by the directional derivatives of the coordinate
functions of F.”Specifically: Let F' = (f1,---, fm) : R = R™ and v, € T,R". Then

Fo(v) = (vl vfml) at F(p).
Proof: See proof of Proposition 1.7.5 on page 37-38 of O’Neill.
Example: Let (z,y) = F(r,0) = (rcosf,rsinf) and v = (1,2) at p = (1,7/4). Then

F.(v) = (v[rcosf],v[rsinf])
(V . Vfl, V- Vfg)
= (v-(cosl,—rsinf),v - (sinf,rcosh))
1 1 1 1 -1 3
- (12 (G510 () = (o

Corollary 1. F, : T,R" — Tpy,)R™ is a linear transformation.

).

Proof: See proof of Corollary 1.7.6 on page 38 of O’Neill.

Meaning: (See UMBC’s yet-to-exist Advanced Calculus course, or Math 302 if you are lucky.)
The tangent map F\, at p is the linear transformation that “best approximates” F' near p. We also
say that the tangent map is the “linearization "of I’ at p.

Example: If ' : R — R then ' : T,R — Tp;) R is a linear transformation between one-
dimensional vector spaces. So it is given by a 1 x 1 matrix, ie, it is of the form F,(v) = av for some
real number a. You can check using the Proposition above that

is scalar multiplication by F’(p). [Hint: Choose the vector v to be v = 1 and use linearity.]

Corollary 2. Let Uy, ---U, be the natural frame field on R™ and Uy, ---U,, be the natural frame
field on R™. If F' = (f1,-+, fm) : R® = R™, then

é‘fz .
Z@x] (p)), j=1,.,n.

(S8



Meaning: Let DF be the m x n matrix with

dfi
8.17]'

(DF)i; =

So the i-th row of DF is the vector given by the gradient of f;:
Vi

DF = :
V fm

DF is the matrix of partial derivatives of F', otherwise known as the Jacobian matrix of F'

Recall: If W is a vector space with basis C = {wy, -+ ,w,,}, then the coordinate vector of w is
the vector [w]c € R™ given by

[w]C = ()‘1’ T v)‘M>

=1

where

Also, if T : V — W is a linear transformation from an n-dimensional vector space V with basis
B = {vy,---,v,} to an m-dimensional vector space W with basis C = {wy,---,w,,}, then the
matrix of T" with respect to the bases B and C is given by

[Tz = ([T(vi)le, - [T(va)le)

i.e., the j-th column of the matrix of T is the coordinate vector in the basis for W of the image
under 7" of the basis vector v; of V.

In this language, the Jacobian matrix, DF', is the matrix of the linear transformation F, with

respect to the standard bases U;(p), - - U,(p) for T,R" and U;(F(p)), - U, (F(p)) for TryR™.
Check:

OF OF
F|=[F.(U), - F.(U)] = —, -, =—
Rl = R0, E0) = (g o)
where % is the column vector whose i-th row is gg]: L.

Example: (z,y) = F(r,0) = (rcosf,rsin0).

9h  oh cosf) —rsind
DF:<& ﬁ) - <Sin9 rcos@)

or 00



Proof of Corollary 2:

m

E(U;(p)) = (Uilh], Uilful) = Y UlfIUAF(p))

i=1

and

Uj[fz] = Uijz: (0,,1,,0) <afZ . afl) = 0fi
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