MATH 423/673

1 Inverse Function Theorem and Regular Mappings

Definition 1. 1. A function $f: X \rightarrow Y$ is invertible if there is a function $g: Y \rightarrow X$ so that $f \circ g=\operatorname{Id}_{Y}$ (i.e. $f\left(g(y)=y\right.$ for all $y \in Y$) and $g \circ f=\operatorname{Id}_{X}$.
2. If f is invertible, then the inverse g is unique and is denoted by f^{-1}.
3. When f is a mapping (ie is differentiable) we augment the definition of the invertibility of f to include the condition that f^{-1} is also differentiable.
4. A mapping that has a (differentiable) inverse mapping is called a diffeomorphism.

Fact: f is invertible if and only if f is $1-1$ and onto.
Question: When does a mapping $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ have an inverse?
The answer is given by the Inverse Function Theorem. Let's start with two special cases.

Special case I: Linear Transformations

1. If a linear transformation $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is invertible then the dimensions of the domain and range vector spaces must be equal: $n=m$.
2. An invertible linear transformation is sometimes called a linear isomorphism.
3. There are (at least) 24 equivalent criteria that each gaurantee that a linear transformation $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is invertible, including:
(a) F is $1-1$
(b) F is onto
(c) Null space $(F)=\{\mathbf{0}\}$
(d) $\operatorname{Rank}(F)=n$.
(e) The matrix A of F in any basis for \mathbf{R}^{n} is invertible
(f) $\operatorname{det}(A) \neq 0$
4. It turns out that the condition $n=m$ is necessary for an arbitrary mapping F to be invertible.

Special case II: Differentiable functions $F: \mathbf{R} \rightarrow \mathbf{R}$.

1. In order for F to be invertible we need that either $F^{\prime}(x)>0$ for all x (F strictly increasing) or $F^{\prime}(x)<0$ for all x (F strictly decreasing).
2. Equivalently: If F^{\prime} is continuous, we just need that $F^{\prime}(x) \neq 0$ for all x, i.e., that the tangent $\operatorname{map} F_{*}: T_{x} \mathbf{R} \rightarrow T_{F(x)} \mathbf{R}$ is an invertible linear map (see Special Case I!).
3. This suggests that the invertibility of a general mapping F is determined by the invertibility of all of its linearizations (ie of its tangent mappings).
4. The condition that F be strictly monotonic is too restrictive. Instead it is better to ask when a mapping is locally invertible.

Definition 2. A mapping $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is locally invertible at $\mathbf{p} \in \mathbf{R}^{n}$ if there is an open set \mathcal{U} containing p and an open set \mathcal{V} containing $F(p)$ so that the restriction of F to $\mathcal{U},\left.F\right|_{\mathcal{U}}: \mathcal{U} \rightarrow \mathcal{V}$, is an invertible mapping.

Example: $F(x)=x^{2}$ is not invertible on \mathbf{R} but it is locally invertible at all points x_{0} except for $x_{0}=0$.
A picture suggests that if $F^{\prime}\left(x_{0}\right) \neq 0$ then F is indeed locally invertible at x_{0}, ie, if the tangent mapping $F_{*}: T_{x_{0}} \mathbf{R} \rightarrow T_{F\left(x_{0}\right)} \mathbf{R}$ at x_{0} is an invertible linear transformation then $F: \mathbf{R} \rightarrow \mathbf{R}$ is locally invertible at x_{0}.
More generally we have
Theorem 1 (The Inverse Function Theorem). Let $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$. If F_{*} is invertible at \mathbf{p} then F is locally invertible at \mathbf{p}. Furthermore, in this case the matrix of partial derivatives of the inverse mapping is the inverse of the matrix of partial derivatives of the original mapping, ie,

$$
D\left(F^{-1}\right)=(D F)^{-1}
$$

Notes:

1. The point is that we can use linear algebra (ie any of the 24 criteria alluded to above) to easily check whether or not F_{*} is invertible at \mathbf{p}.
2. The proof of the Inverse Function Theorem is sometimes done in Math 302. It uses the Contraction Mapping Theorem.
3. The Inverse Function Theorem says: If F_{*} is a linear isomorphism at \mathbf{p} then F is a local diffeomorphism at \mathbf{p}.

If $n \neq m$ the Inverse Function Theorem does not apply. However it is still useful to know if F_{*} is 1-1.

Definition 3. A mapping $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is regular if for all $\mathbf{p} \in \mathbf{R}^{n}, F_{*}: T_{\mathbf{p}} \mathbf{R}^{n} \rightarrow T_{F(\mathbf{p})} \mathbf{R}^{m}$ is 1-1.

Example: If a curve $\alpha: I \rightarrow \mathbf{R}^{3}$ is regular then α has a tangent line at each point $\alpha(t) \in \mathbf{R}^{3}$. In fact this tangent line is the one-dimensional vector subspace $\alpha_{*}\left(T_{t} \mathbf{R}\right) \subset T_{\alpha(t)} \mathbf{R}^{3}$. i
Note: The image of the curve $\alpha(t)=\left(t^{3}, t^{2}\right)$ has a cusp at the origin. α fails to be regular at $t=0$ and has no tangent line at $(0,0)$.

