MATH 423/673

1 Curves

Let $\alpha: I \to \mathbf{R}^3$ be a curve.

- Position: $\alpha(t) = (\alpha_1(t), \alpha_2(t), \alpha_3(t))$
- Velocity: $\alpha'(t) = (\alpha'_1(t), \alpha'_2(t), \alpha'_3(t))$
- Speed: $\|\alpha'(t)\|$
- Acceleration: $\alpha''(t) = (\alpha''_1(t), \alpha''_2(t), \alpha''_3(t))$
- Length of α : $L = \int_{I} \|\alpha'(t)\| dt$ from Distance = Speed x Time formula
- Note that $\alpha'(t)$ and $\alpha''(t)$ are vector fields along α .

Definition 1. A vector field, V, along a curve α assigns to each $t \in I$ a tangent vector, $V(t) \in T_{\alpha(t)} \mathbf{R}^3$, to \mathbf{R}^3 at $\alpha(t)$. (Read pages 52-54 of O'Neill for more background.)

Example: (Helix)

- Position: $\alpha(t) = (\cos t, \sin t, t)$
- Velocity: $\alpha'(t) = (-\sin t, \cos t, 1)$
- Speed: $\|\alpha'(t)\| = \sqrt{2}$
- Acceleration: $\alpha''(t) = (-\cos t, -\sin t, 0)$
- The helix is a curve on the cylinder $x^2 + y^2 = 1$. As it goes once around the +z-axis (according to the right hand rule) it ascends 2π in the z-direction. The acceleration vector always goes from a point on the helix to the point on the z-axis that is at the same height. Sketch the cylinder, helix, and vectors $\alpha(\pi/4)$, $\alpha'(\pi/4)$, and $\alpha''(\pi/4)$ for yourself. Note that $\alpha(\pi/4)$ starts at origin but $\alpha'(\pi/4)$ and $\alpha''(\pi/4)$ start at $\alpha(\pi/4)$.

Problem: Given a curve α from **p** to **q** there are an *infinite* number of curves β with the same image as α . For example β could have a different speed function than α .

Solution: There is a *canonical* curve β that has the same image as α . It is the curve from **p** to **q** that has constant speed 1: $\|\beta'(s)\| = 1$ for all s.

Question: Given any curve α how do we find this unit speed curve β ?

Reparametrizations of α (See O'Neill, 1.4 pp 19-20).

Definition 2. Suppose $\alpha : (a,b) \to \mathbf{R}^3$ and $g : (c,d) \to (a,b)$ is any function. Then $\beta = \alpha \circ g : (c,d) \to \mathbf{R}^3$ is called a reparametrization of α .

- If $\alpha = \alpha(t)$ and t = g(s) then $\beta(s) = \alpha(g(s))$
- t is the parameter of the original curve
- s is the parameter of the reparametrized curve.
- If g(c) = a, g(d) = b, and g is an increasing function, then β traverses the same route as α but at a different speed.
- In fact, by the Chain Rule, we have

$$\beta'(s) = \alpha'(g(s))g'(s)$$

so if g' > 0 then the velocity vectors β' and α' are both tangent to the curve and point in the same direction (so no back-tracking can occur).

• So

$$\|\beta'(s)\| = \|\alpha'(g(s))\| |g'(s)|$$
(1)

Theorem 1. If α is a regular curve (i.e., $\alpha'(t) \neq 0$ for all t), then there is a unit speed reparametrization, β , of α . In this case, the parameter, s, for β is arclength from the starting point.

Note: This makes sense: If the time parameter for a curve is its arclength then the distance traveled equals time taken and so speed must be one.

Proof: We first define the **arclength function** along α by

$$s = L(t) = \int_{a}^{t} \|\alpha'(u)\| \, du$$

to be the length of α from $\alpha(a)$ to $\alpha(t)$. By the Fundamental Theorem of Calculus:

$$L'(t) = \|\alpha'(t)\| > 0$$
 (2)

as α is regular. Therefore L is a strictly increasing function. So it has an inverse function

$$g: (0, L(b)) \to (a, b).$$

Properties:

- 1. Since $(L \circ g)(s) = s$ we have $(L \circ g)'(s) = 1$
- 2. So by Inverse Function Theorem,

$$g'(s) = \frac{1}{L'(g(s))} > 0$$
 by (2).

Since s is areclength we define

$$\beta(s) = \alpha(g(s)).$$

Let's check that β really does have unit speed. Well

$$\begin{aligned} \|\beta'(s)\| &= \|\beta'(s)\| \, |g'(s)| & \text{by (1)} \\ &= L'(g(s)) \, g'(s) & \text{by (2) and second property above} \\ &= (L \circ g)'(s) & \text{by Chain Rule} \\ &= 1 & \text{by first property above.} \quad \Box \end{aligned}$$

Caution: Usually it is impossible to find an explicit formula for the arclength reparametrization of α , as it is hard/impossible to calculate an explicit formula for the arclength function (it involves the integral of a square root of a sum of squares) and even if you could it is often then hard/impossible to find an explicit formula for the inverse of this arclength function.

Cooked-up Example: (Where everything works!)

$$\alpha(t) = (t \cos t, t \sin t, \frac{1}{\sqrt{2}}t^2) \qquad 0 < t < 1.$$

This curve lies on the paraboloid $x^2 + y^2 = \sqrt{2}z$ and spirals up it from the origin.

 $\|\alpha'(t)\| = \sqrt{(t+1)^2} = t+1$ Cooked up so no square roots!!

So

$$s = L(t) = \int_0^t u + 1 \, du = \frac{1}{2}t^2 + t$$

Find inverse, g of L, by solving for t = g(s) (Cooked up as can always find roots and hence inverse of a quadratic):

$$\frac{1}{2}t^{2} + t = s$$

(t+1)² = 2s + 1
$$t = \sqrt{2s+1} - 1 = g(s)$$

$$\beta(s) = \alpha(\sqrt{2s+1}-1) = ((\sqrt{2s+1}-1)\cos(\sqrt{2s+1}-1), (\sqrt{2s+1}-1)\sin(\sqrt{2s+1}-1), \frac{1}{\sqrt{2}}(\sqrt{2s+1}-1)^2)$$

You can check (!) that $\|\beta'(s)\| = 1$.

 So