
MATH 423/673

1 Curves

Let α : I → R3 be a curve.

• Position: α(t) = (α1(t), α2(t), α3(t))

• Velocity: α′(t) = (α′
1(t), α

′
2(t), α

′
3(t))

• Speed: ‖α′(t)‖

• Acceleration: α′′(t) = (α′′
1(t), α

′′
2(t), α

′′
3(t))

• Length of α: L =
∫

I
‖α′(t)‖ dt from Distance = Speed x Time formula

• Note that α′(t) and α′′(t) are vector fields along α.

Definition 1. A vector field, V , along a curve α assigns to each t ∈ I a tangent vector,
V (t) ∈ Tα(t)R

3, to R3 at α(t). (Read pages 52-54 of O’Neill for more background.)

Example: (Helix)

• Position: α(t) = (cos t, sin t, t)

• Velocity: α′(t) = (− sin t, cos t, 1)

• Speed: ‖α′(t)‖ =
√

2

• Acceleration: α′′(t) = (− cos t,− sin t, 0)

• The helix is a curve on the cylinder x2+y2 = 1. As it goes once around the +z-axis (according
to the right hand rule) it ascends 2π in the z-direction. The acceleration vector always goes
from a point on the helix to the point on the z-axis that is at the same height. Sketch the
cylinder, helix, and vectors α(π/4), α′(π/4), and α′′(π/4) for yourself. Note that α(π/4) starts
at origin but α′(π/4) and α′′(π/4) start at α(π/4).

Problem: Given a curve α from p to q there are an infinite number of curves β with the same
image as α. For example β could have a different speed function than α.

Solution: There is a canonical curve β that has the same image as α. It is the curve from p to q
that has constant speed 1: ‖β′(s)‖ = 1 for all s.

Question: Given any curve α how do we find this unit speed curve β?
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Reparametrizations of α (See O’Neill, 1.4 pp 19-20).

Definition 2. Suppose α : (a, b) → R3 and g : (c, d) → (a, b) is any function. Then β = α ◦ g :
(c, d) → R3 is called a reparametrization of α.

• If α = α(t) and t = g(s) then β(s) = α(g(s))

• t is the parameter of the original curve

• s is the parameter of the reparametrized curve.

• If g(c) = a, g(d) = b, and g is an increasing function, then β traverses the same route as α
but at a different speed.

• In fact, by the Chain Rule, we have

β′(s) = α′(g(s))g′(s)

so if g′ > 0 then the velocity vectors β′ and α′ are both tangent to the curve and point in the
same direction (so no back-tracking can occur).

• So
‖β′(s)‖ = ‖α′(g(s))‖ |g′(s)| (1)

Theorem 1. If α is a regular curve (i.e., α′(t) 6= 0 for all t), then there is a unit speed reparametriza-
tion, β, of α. In this case, the parameter, s, for β is arclength from the starting point.

Note: This makes sense: If the time parameter for a curve is its arclength then the distance traveled
equals time taken and so speed must be one.

Proof: We first define the arclength function along α by

s = L(t) =

∫ t

a

‖α′(u)‖ du

to be the length of α from α(a) to α(t).
By the Fundamental Theorem of Calculus:

L′(t) = ‖α′(t)‖ > 0 (2)

as α is regular.
Therefore L is a strictly increasing function. So it has an inverse function

g : (0, L(b)) → (a, b).
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Properties:

1. Since (L ◦ g)(s) = s we have (L ◦ g)′(s) = 1

2. So by Inverse Function Theorem,

g′(s) =
1

L′(g(s))
> 0 by (2).

Since s is areclength we define
β(s) = α(g(s)).

Let’s check that β really does have unit speed. Well

‖β′(s)‖ = ‖β′(s)‖ |g′(s)| by (1)

= L′(g(s)) g′(s) by (2) and second property above

= (L ◦ g)′(s) by Chain Rule

= 1 by first property above.

Caution: Usually it is impossible to find an explicit formula for the arclength reparametrization of
α, as it is hard/impossible to calculate an explicit formula for the arclength function (it involves the
integral of a square root of a sum of squares) and even if you could it is often then hard/impossible
to find an explicit formula for the inverse of this arclength function.

Cooked-up Example: (Where everything works!)

α(t) = (t cos t, t sin t,
1√
2
t2) 0 < t < 1.

This curve lies on the paraboloid x2 + y2 =
√

2z and spirals up it from the origin.

‖α′(t)‖ =
√

(t + 1)2 = t + 1 Cooked up so no square roots!!

So

s = L(t) =

∫ t

0

u + 1 du =
1

2
t2 + t

Find inverse, g of L, by solving for t = g(s) (Cooked up as can always find roots and hence inverse
of a quadratic):

1

2
t2 + t = s

(t + 1)2 = 2s + 1

t =
√

2s + 1− 1 = g(s)
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So

β(s) = α(
√

2s + 1−1) = ((
√

2s + 1−1) cos(
√

2s + 1−1), (
√

2s + 1−1) sin(
√

2s + 1−1),
1√
2
(
√

2s + 1−1)2)

You can check (!) that ‖β′(s)‖ = 1.
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