## MATH 423/673

## 1 Curves

Let $\alpha: I \rightarrow \mathbf{R}^{3}$ be a curve.

- Position: $\alpha(t)=\left(\alpha_{1}(t), \alpha_{2}(t), \alpha_{3}(t)\right)$
- Velocity: $\alpha^{\prime}(t)=\left(\alpha_{1}^{\prime}(t), \alpha_{2}^{\prime}(t), \alpha_{3}^{\prime}(t)\right)$
- Speed: $\left\|\alpha^{\prime}(t)\right\|$
- Acceleration: $\alpha^{\prime \prime}(t)=\left(\alpha_{1}^{\prime \prime}(t), \alpha_{2}^{\prime \prime}(t), \alpha_{3}^{\prime \prime}(t)\right)$
- Length of $\alpha: L=\int_{I}\left\|\alpha^{\prime}(t)\right\| d t$ from Distance $=$ Speed x Time formula
- Note that $\alpha^{\prime}(t)$ and $\alpha^{\prime \prime}(t)$ are vector fields along $\alpha$.

Definition 1. A vector field, $V$, along a curve $\alpha$ assigns to each $t \in I$ a tangent vector, $V(t) \in T_{\alpha(t)} \mathbf{R}^{3}$, to $\mathbf{R}^{3}$ at $\alpha(t)$. (Read pages 52-54 of O'Neill for more background.)

Example: (Helix)

- Position: $\alpha(t)=(\cos t, \sin t, t)$
- Velocity: $\alpha^{\prime}(t)=(-\sin t, \cos t, 1)$
- Speed: $\left\|\alpha^{\prime}(t)\right\|=\sqrt{2}$
- Acceleration: $\alpha^{\prime \prime}(t)=(-\cos t,-\sin t, 0)$
- The helix is a curve on the cylinder $x^{2}+y^{2}=1$. As it goes once around the $+z$-axis (according to the right hand rule) it ascends $2 \pi$ in the $z$-direction. The acceleration vector always goes from a point on the helix to the point on the $z$-axis that is at the same height. Sketch the cylinder, helix, and vectors $\alpha(\pi / 4), \alpha^{\prime}(\pi / 4)$, and $\alpha^{\prime \prime}(\pi / 4)$ for yourself. Note that $\alpha(\pi / 4)$ starts at origin but $\alpha^{\prime}(\pi / 4)$ and $\alpha^{\prime \prime}(\pi / 4)$ start at $\alpha(\pi / 4)$.

Problem: Given a curve $\alpha$ from $\mathbf{p}$ to $\mathbf{q}$ there are an infinite number of curves $\beta$ with the same image as $\alpha$. For example $\beta$ could have a different speed function than $\alpha$.

Solution: There is a canonical curve $\beta$ that has the same image as $\alpha$. It is the curve from $\mathbf{p}$ to $\mathbf{q}$ that has constant speed 1 : $\left\|\beta^{\prime}(s)\right\|=1$ for all $s$.
Question: Given any curve $\alpha$ how do we find this unit speed curve $\beta$ ?

Reparametrizations of $\alpha$ (See O'Neill, 1.4 pp 19-20).
Definition 2. Suppose $\alpha:(a, b) \rightarrow \mathbf{R}^{3}$ and $g:(c, d) \rightarrow(a, b)$ is any function. Then $\beta=\alpha \circ g:$ $(c, d) \rightarrow \mathbf{R}^{3}$ is called a reparametrization of $\alpha$.

- If $\alpha=\alpha(t)$ and $t=g(s)$ then $\beta(s)=\alpha(g(s))$
- $t$ is the parameter of the original curve
- $s$ is the parameter of the reparametrized curve.
- If $g(c)=a, g(d)=b$, and $g$ is an increasing function, then $\beta$ traverses the same route as $\alpha$ but at a different speed.
- In fact, by the Chain Rule, we have

$$
\beta^{\prime}(s)=\alpha^{\prime}(g(s)) g^{\prime}(s)
$$

so if $g^{\prime}>0$ then the velocity vectors $\beta^{\prime}$ and $\alpha^{\prime}$ are both tangent to the curve and point in the same direction (so no back-tracking can occur).

- So

$$
\begin{equation*}
\left\|\beta^{\prime}(s)\right\|=\left\|\alpha^{\prime}(g(s))\right\|\left|g^{\prime}(s)\right| \tag{1}
\end{equation*}
$$

Theorem 1. If $\alpha$ is a regular curve (i.e., $\alpha^{\prime}(t) \neq 0$ for all $t$ ), then there is a unit speed reparametrization, $\beta$, of $\alpha$. In this case, the parameter, $s$, for $\beta$ is arclength from the starting point.

Note: This makes sense: If the time parameter for a curve is its arclength then the distance traveled equals time taken and so speed must be one.

Proof: We first define the arclength function along $\alpha$ by

$$
s=L(t)=\int_{a}^{t}\left\|\alpha^{\prime}(u)\right\| d u
$$

to be the length of $\alpha$ from $\alpha(a)$ to $\alpha(t)$.
By the Fundamental Theorem of Calculus:

$$
\begin{equation*}
L^{\prime}(t)=\left\|\alpha^{\prime}(t)\right\|>0 \tag{2}
\end{equation*}
$$

as $\alpha$ is regular.
Therefore $L$ is a strictly increasing function. So it has an inverse function

$$
g:(0, L(b)) \rightarrow(a, b)
$$

## Properties:

1. Since $(L \circ g)(s)=s$ we have $(L \circ g)^{\prime}(s)=1$
2. So by Inverse Function Theorem,

$$
g^{\prime}(s)=\frac{1}{L^{\prime}(g(s))}>0 \quad \text { by }(2)
$$

Since $s$ is areclength we define

$$
\beta(s)=\alpha(g(s))
$$

Let's check that $\beta$ really does have unit speed. Well

$$
\begin{aligned}
\left\|\beta^{\prime}(s)\right\| & =\left\|\beta^{\prime}(s)\right\|\left|g^{\prime}(s)\right| \quad \text { by }(1) \\
& =L^{\prime}(g(s)) g^{\prime}(s) \quad \text { by }(2) \text { and second property above } \\
& =(L \circ g)^{\prime}(s) \quad \text { by Chain Rule } \\
& =1 \quad \text { by first property above. }
\end{aligned}
$$

Caution: Usually it is impossible to find an explicit formula for the arclength reparametrization of $\alpha$, as it is hard/impossible to calculate an explicit formula for the arclength function (it involves the integral of a square root of a sum of squares) and even if you could it is often then hard/impossible to find an explicit formula for the inverse of this arclength function.

Cooked-up Example: (Where everything works!)

$$
\alpha(t)=\left(t \cos t, t \sin t, \frac{1}{\sqrt{2}} t^{2}\right) \quad 0<t<1
$$

This curve lies on the paraboloid $x^{2}+y^{2}=\sqrt{2} z$ and spirals up it from the origin.

$$
\left\|\alpha^{\prime}(t)\right\|=\sqrt{(t+1)^{2}}=t+1 \quad \text { Cooked up so no square roots!! }
$$

So

$$
s=L(t)=\int_{0}^{t} u+1 d u=\frac{1}{2} t^{2}+t
$$

Find inverse, $g$ of $L$, by solving for $t=g(s)$ (Cooked up as can always find roots and hence inverse of a quadratic):

$$
\begin{aligned}
\frac{1}{2} t^{2}+t & =s \\
(t+1)^{2} & =2 s+1 \\
t & =\sqrt{2 s+1}-1=g(s)
\end{aligned}
$$

So
$\beta(s)=\alpha(\sqrt{2 s+1}-1)=\left((\sqrt{2 s+1}-1) \cos (\sqrt{2 s+1}-1),(\sqrt{2 s+1}-1) \sin (\sqrt{2 s+1}-1), \frac{1}{\sqrt{2}}(\sqrt{2 s+1}-1)^{2}\right)$
You can check (!) that $\left\|\beta^{\prime}(s)\right\|=1$.

