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Summary. The phenomenon of stimulated Raman scattering (SRS) can be described
by three coupled PDEs which define the pump electric field, the Stokes electric field,
and the material excitation as functions of distance and time. In the transient limit these
equations are integrable, i.e., they admit a Lax pair formulation. Here we study this
transient limit. The relevant physical problem can be formulated as an initial-boundary
value (IBV) problem where both independent variables are on afinitedomain. A general
method for solving IBV problems for integrable equations has been introduced recently.
Using this method we show that the solution of the equations describing the transient
SRS can be obtained by solving a certain linear integral equation. It is interesting that
this equation is identical to the linear integral equation characterizing the solution of
an IBV problem of the sine-Gordon equation in light-cone coordinates. This integral
equation can be solved uniquely in terms of the values of the pump and Stokes fields
at the entry of the Raman cell. The asymptotic analysis of this solution reveals that
the long-distance behavior of the system is dominated by the underlying self-similar
solution which satisfies a particular case of the third Painlev´e transcendent. This result
is consistent with both numerical simulations and experimental observations. We also
discuss briefly the effect of frequency mismatch between the pump and the Stokes electric
fields.
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1. Introduction

The Raman cell is a tube, typically a meter long and a couple of centimeters wide, that
contains a molecular gas, such asH2 or D2. At the entry of the tube, lasers create two
incoming electric fields denoted byε1 (pump) andε2 (Stokes). Letw1 andw2 be the
frequencies ofε1 andε2, respectively, wherew1 > w2. If ~(w1 − w2) = E , where~
is the Planck constant andE is the energy between two molecular levels of the gas,
then Raman scattering occurs: Either a pump photon is absorbed and a Stokes photon is
emitted, or a Stokes photon is emitted and a pump photon is absorbed. Both processes
are quantum-mechanicially possible. In either case, the molecule is displaced from level
|1> to level|2>, and a photon is created. These photons are characterized by a material
excitation waveQwhich is proportional to the off-diagonal elementρ12 of the associated
quantum-mechanical density matrix. This wave is proportional to the spatial correlation
of the excited molecules, implying that it is proportional to

√
N, whereN is the density

of the excited molecules. The fieldQ is attenuated on the time scaleT2, the so-called
molecular dephasing time. On this time scale,Q is attenuated because collisions destroy
the spatial correlation between excited molecules.

In the model of stimulated Raman scattering considered here, we will neglect a number
of effects that appear to be unimportant in the recent experiments that have investigated
stimulated Raman scattering in gases [1], [2]: (i) We neglect diffraction. This is valid
for the long-focal-length experiments reported in [1] and the references cited therein.
(ii) We ignore level saturation, i.e., we assume that only one excitation field is created.
This is always valid in molecular gases. (iii) We neglect second and higher-order Stokes
generation from spontaneous emission. This assumption is valid only when multipass
cells are used [2].

Letting

εj = Ej e
ikj x−iwj t , j = 1,2; Q = Qeik3x−iw3t ,

and making the further assumption thatE1, E2, Q are slowly varying, it can be shown
that the following PDEs are valid:

1

c

∂E1

∂t
+ ∂E1

∂x
= −i

k1

k2
κ2E2Q, (1.1a)

1

c

∂E2

∂t
+ ∂E2

∂x
= −i κ2E1Q̄, (1.1b)

∂Q

∂t
+ 1

T2
Q = −i κ1E1Ē2. (1.1c)

In equations (1.1),c is the group velocity of light in the Raman medium, andκ1, κ2 are
certain constants depending onw1, w2 and on the quantum properties of the molecular
gas. Also,throughout this paper, bar denotes complex conjugation.

Letting

χ = κ2x, τ = κ2t − κ2

c
x, A1 =

√
k2κ1

k1κ2
E1,

A2 =
√
κ1
κ2

E2, X = i
√

k1
k2

Q,

(1.2)
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and assuming thatT2κ2 → ∞, equations (1.1) become the equations for the transient
stimulated Raman scattering,

∂A1

∂χ
= −A2X,

∂A2

∂χ
= A1X̄,

∂X

∂τ
= A1 Ā2. (1.3)

Equations (1.3) imply that|A1(χ, τ )|2 + |A2(χ, τ )|2 = K 2(τ ), K ∈ R. This suggests
the introduction of the normalized variables

A′j = Aj /K , j = 1,2, X′ = X/τ∞, χ ′ = χτ∞,
τ∞ =

∫ ∞
0

K 2(τ )dτ, τ ′ =
∫ τ

0
K 2(ξ)dξ.

(1.4)

The normalized variables also satisfy equations (1.3) but with|A1|2+ |A2|2 = 1.
The physical problem is specified as follows:x ∈ [0, l ′], wherel ′ is the length of the

propagation through the Raman cell (which, for a multipass cell, may be many times the
cell length),t ∈ [0,∞), Aj , j = 1,2, are given atx = 0 for all t , andX = 0 for all
x ≤ ct. Thus,τ ′ ∈ [0,1], χ ′ ∈ [0, l ], l + κ2τ∞l ′, Aj (0, τ ′), j = 1,2, are given, and
X(χ ′,0) = 0. Hence, dropping the primes, we deduce that:The problem of transient
SRS can be formulated as follows: Determine the complex-valued functions A1(χ, τ ),
A2(χ, τ ), X(χ, τ ) satisfying equations (1.3) with

τ ∈ [0,1], χ ∈ [0, l ], |A1(0, τ )|2+ |A2(0, τ )|2 = 1,

Aj (0, τ ) = Aj0(τ ), j = 1,2, X(χ,0) = 0, (1.5)

whereAj0(τ ) are given.In particular, the interesting physical question is the determina-
tion of A1(l , τ ) and of A2(l , τ ), where l is large.

Let the complex-valued functionY(χ, τ ) and the real-valued functionb(χ, τ ) be
defined in terms ofA1(χ, τ ) andA2(χ, τ ) by

b = |A1|2− |A2|2, Y = 2i A1 Ā2. (1.6)

If A1, A2, X satisfy equations (1.3), thenb,Y, X satisfy the equations

∂b

∂χ
= i (X̄Y− XȲ),

∂Y

∂χ
= 2ibX,

∂X

∂τ
= − i

2
Y. (1.7)

Equations (1.7) are integrable in the sense that they admit a Lax pair formulation. Indeed,
it is straightforward to verify that equations (1.7) are the compatibility condition of

∂ψ

∂χ
=
−ik X

−X̄ ik

ψ, (1.8a)

and

∂ψ

∂τ
= 1

4k

ib −Y

Ȳ −ib

ψ, (1.8b)
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whereψ(χ, τ, k) is a complex-valued 2× 2 matrix andk is a complex constant usually
referred to as the spectral parameter.

The main aim of this paper is to solve an initial-boundary value problem for equations
(1.7), where bothχ andτ are in a finite domain. The usual problem of transient stimulated
Raman scattering corresponds tob(0, τ ) = b0(τ ), Y(0, τ ) = Y0(τ ), X(χ,0) = 0, where
b0(τ ) andY0(τ ) are given functions. Here we shall solve the more general problem of
X(χ,0) = X0(χ), X0(χ) given. This corresponds physically to pre-exciting the Raman
cell.

Given A1 andA2, equations (1.6) determineb andY uniquely. However, the inverse
transformation is not unique. Indeed, if

b = cosβ, Y = i sinβe−i θ , A1 = a1ei θ1, A2 = a2ei θ2, (1.9)

then equations (1.6) imply

cosβ = a2
1 − a2

2, sinβ = 2a1a2, θ = θ2− θ1. (1.10)

This ambiguity is physically insignificant because one is interested in the phase difference
between the pump and the Stokes waves.

We now state the main results of this paper.

Theorem 1.1. Let b(χ, τ ) ∈ R, Y(χ, τ ) ∈ C, X(χ, τ ) ∈ C satisfy equations (1.7),
with χ ∈ [0, l ], l > 0, andτ ∈ [0,1]. Let

b(0, τ ) = b0(τ ), Y(0, τ ) = Y0(τ ), X(χ,0) = X0(χ), (1.11a)

where b0(τ ), Y0(τ ) are differentiable forτ ∈ [0,1], and X0(χ) is differentiable for
χ ∈ [0, l ]. Assume that

b0(τ )
2+ |Y0(τ )|2 = 1. (1.11b)

The unique solution of this IBV problem is given by

X(χ, τ ) = 2i lim
k→∞

(k9+1 (χ, τ, k)),

b(χ, τ ) = −1− 4i
∂

∂τ
lim

k→∞

(
k9+2 (χ, τ, k̄)

)
, k ∈ C, kI 6= 0,

where the scalar functions9+1 (χ, τ, k) and9+2 (χ, τ, k), k ∈ C, can be obtained by
solving the following Riemann-Hilbert problem:


9+1 (χ, τ, k)

8+1 (χ,τ,k)
ρ1(k)

9+2 (χ, τ, k)
8+2 (χ,τ,k)
ρ1(k)

 =

−8+2 (χ,τ,k)

ρ1(k)
9+2 (χ, τ, k)

8+1 (χ,τ,k)
ρ1(k)

−9+1 (χ, τ, k)
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×


1 ρ2(k)

ρ1(k)
e2ikχ+ i τ

2k

− ρ2(k)
ρ1(k)

e−2ikχ− i τ
2k

1
|ρ(k)|2

 , k ∈ R, (1.12a)

8+1 (χ, τ, k) = 1+ O

(
1

k

)
,8+2 (χ, τ, k) = O

(
1

k

)
, 9+1 (χ, τ, k) = O

(
1

k

)
,

9+2 (χ, τ, k) = 1+ O

(
1

k

)
, k→∞, kI 6= 0.

(1.12b)
This Riemann-Hilbert problem, which is specified through the scalar functionsρ1(k) and
ρ2(k), k ∈ R, has a unique solution. The functionsρ1(k) andρ2(k) are constructed as
follows: Let(µ1(τ, k), µ2(τ, k))T be the unique solution of

∂

∂τ

(
µ1(τ, k)
µ2(τ, k)

)
= 1

4k

(
ib0(τ ) −Y0(τ )

Ȳ0(τ ) −ib0(τ )

)(
µ1(τ, k)
µ2(τ, k)

)
, (1.13a)

µ1(1, k) = 1, µ2(1, k) = 0. (1.13b)

Let (ν1(χ, k), ν2(χ, k))T be the unique solution of

∂

∂χ

(
ν1(χ, k)
ν2(χ, k)

)
=
( −ik X0(χ)

−X̄0(χ) ik

)(
ν1(χ, k)
ν2(χ, k)

)
, (1.14a)

ν1(0, k) = µ1(0, k)e
− i

4k , ν2(0, k) = µ2(0, k)e
− i

4k . (1.14b)

The functionsρ1(k) andρ2(k) are defined by

ρ1(k) = ν1(l , k)e
ikl , ρ2(k) = ν2(l , k)e

−ikl . (1.15)

If ρ1(k) 6= 0 for Im k ≥ 0, the above Riemann-Hilbert problem reduces to solving a
system of linear integral equations. In this case, X(χ, τ ) and b(χ, τ ) are given by

X(χ, τ ) = 1

π

∫ ∞
−∞

ρ̄2(k)

ρ̄1(k)
e−2ikχ− i τ

2k M1(χ, τ, k)dk,

b(χ, τ ) = −1+ 2

π

∂

∂τ

∫ ∞
−∞

ρ2(k)

ρ1(k)
e2ikχ+ i τ

2k M̄2(χ, τ, k)dk, (1.16)

where the functions M1 and M2 are defined as the unique solution of the following system
of linear integral equations:(−M2(χ, τ, k)

M1(χ, τ, k)

)
=
(

0
1

)
+ 1

2iπ

∫ ∞
−∞

ρ2(k′)
ρ1(k′)

e2ik ′χ+ i τ
2k′

(
M̄1(χ, τ, k′)
M̄2(χ, τ, k′)

)
dk′

k′ − (k− i 0)
.

(1.17)
If ρ1(kj ) = 0, j = 1,2, . . . , Im kj ≥ 0, then the above Riemann-Hilbert problem

reduces to solving a system of linear integral equations similar to (1.17) supplemented
by a system of algebraic equations.
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The system of algebraic equations needed ifρ(k) has zeros for Imk ≥ 0 can be found
in [3]. The number of these zeros can be infinite with an accumulation point atk = 0 (see
the discussion in Section 4). However, these zeros playnorole in the leading asymptotic
behavior of the solution asχ → ∞, which is dominated by the underlying similarity
solution. This is to be contrasted with the usual soliton systems where the number of the
zeros is finite and where they dominate the asymptotic behavior of the solution (the finite
number of zeros gives rise to a finite number of solitons which determine the leading
order behavior of the solution).

The interesting physical question is the computation ofA1(l , τ ) andA2(l , τ ) (i.e., of
b(l , τ ) and ofY(l , τ )) asl →∞. This is given by the next theorem. For simplicity we
concentrate on the more important case ofX0(χ) = 0.

Theorem 1.2. Consider the IBV problem defined in Theorem 1.1, but with X0(χ) = 0.
The leading order behavior asχ →∞ of the solution of this problem is given by

X(χ, τ ) = 1

2

τ

ξ
X̃(ξ), b(χ, τ ) = −1+ 1

4

b̃(ξ)

ξ
+ 1

4

d

dξ
b̃(ξ), ξ = √τχ,

(1.18)
where

X̃(ξ) = − i

π

Y0(0)

1− b0(0)

∫ ∞
−∞

e−i ξ(λ+ 1
λ
)N1(ξ, λ)dλ,

b̃(ξ) = 2i

π

Ȳ0(0)

1− b0(0)

∫ ∞
−∞

ei ξ(λ+ 1
λ
) N̄2(ξ, λ)dλ, (1.19)

and the functions N1, N2 are the unique solution of the system of linear integral equations

(−N2(ξ, λ)

N1(ξ, λ)

)
=
(

0
1

)
+ 1

2π

Ȳ0(0)

1− b0(0)

∫ ∞
−∞

ei ξ(λ′+ 1
λ′ )
(

N̄1(ξ, λ
′)

N̄2(ξ, λ
′)

)
dλ′

λ′ − (λ− i 0)
.

(1.20)
This system is a particular case of a more general system of linear integral equations
which characterizes the general solution of Painlevé III equation.

We conclude this introduction with some remarks.

1. The solution defined by equations (1.18)–(1.20) is a similarity solution of equations
(1.7). Indeed, ifX(χ, τ ) = τ X̂(ξ), Y(χ, τ ) = Ŷ(ξ), b(χ, τ ) = b̂(ξ), ξ = √χτ ,
equations (1.7) reduce to a system of three ODEs for the functionsX̂, Ŷ, andb̂.

2. A general method for solving IBV problems for nonlinear integrable equations has
been introduced recently in [3]. The essence of this method is the introduction of
appropriate solutions of both parts of the associated Lax pair that are analytic and
bounded for all values of the complex spectral parameterk. It turns out that such solu-
tions are given by8 = φ exp[ikχσ3+ i

4k (τ−1)σ3] and9 = ψ exp[ikχσ3+ i
4kτσ3],
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whereφ andψ are certain particular solutions of equations (1.8). A significant advan-
tage of this new method is that the spectral dataρ1(k)andρ2(k)are always independent
of χ and ofτ (see equations (1.15)). As a result of this fact, the Riemann-Hilbert
problem characterizing the solution of the given nonlinear equation takes a rather
simple form: Itsχ andτ dependence is determined by the dispersion relationship of
the underlying linearized equation (see equation (1.12a)).

3. The system of linear integral equations (1.20) is the reduction of a certain matrix 2×2
Riemann-Hilbert (RH) problem. The jump for this RH problem occurs on the real axis
of the complexλ-plane and it involves the exponential functions exp(±i ξ(λ+ 1

λ
)). This

RH problem is a particular case of a more general RH problem, which is associated
with the general solution of Painlev´e III (PIII) equation [4]. The more general RH
problem, in addition to having a “jump” along the realλ-axis, also has a jump along
the unit circle of the complexλ-plane. These jumps involve exp(±i ξ(λ+ 1

λ
)) as well

asλ±θ0 andλ±θ∞ , whereθ0 andθ∞ are constants appearing in PIII equation. In the
particular case thatθ0 = θ∞ = 0, and the solution is real, the general RH problem
associated with PIII reduces to one that can be solved by equation (1.20).

4. The case of frequency mismatch corresponds to the case that the functionsb0(τ )and/or
Y0(τ ) are singular atτ = 0. For example, consider the case [5] that in the variables
defined by equations (1.2),A1(0, τ ) =sechτ and A2(0, τ ) = e−iwτsechτ . Then in
the associated normalized variables,A1(0, τ ) = 1/

√
2 andA2(0, τ ) = 1√

2
( τ

1−τ )
−iw/2;

thus,b0(τ ), Y0(τ ) are singular. It turns out that in this case the spectral dataρ1(k)
andρ2(k) are singular atk = 0. This gives rise to the more general solution of PIII
discussed in (3) above, whereθ0 6= 0 andθ∞ = 0. This case is briefly discussed in
Section 3.

5. The iteration of the linear integral equation (1.17) shows that this equation involves
the integral

J(χ, τ ) =
∫ ∞
−∞

e2ikχ+ i τ
2k f (k)dk. (1.21)

The asymptotic evaluation of such integrals is well established (see for example [6]).
There exist two important cases. (a) Ifχ →∞ andτ /χ = O(1), the stationary phase
method implies thatJ ∼ O( 1√

χ
). This is what happens in the usual soliton systems:

The solution of these systems involves a Riemann-Hilbert problem similar to (1.12),
which can be reduced to a system of linear integral equations similar to equations
(1.17) and to a system of algebraic equations containing the solitonic part of the
solution. Asχ → ∞, the contribution from the linear integral equations disperses
away and hence the asymptotic behavior of the system is dominated by solitons. (The
extension of the stationary phase method from integrals to linear integral equations
is given in [7]). (b) Ifχ →∞ andτ /χ = o(1), then there exists a moving stationary

point and one introduces thesimilarity variablesξ = √τχ , k = 1
2

√
τ
χ
λ. Then

J = 1

2

√
τ

χ

∫ ∞
−∞

ei ξ(λ+ 1
λ
) f

(
1

2

√
τ

χ
λ

)
dλ, (1.22)

and the leading behavior of the integral depends on the limit off (k) ask→ 0. This
case is also relevant in the usual soliton systems but it only characterizes a certain
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transition zone. It is important to note that in our caseτ ∈ [0,1] andχ →∞; thus,
τ /χ = o(1) and the asymptotic behavior of the system is dominated by the underlying
similarity solution.

6. The Lax pair of equations (1.7) was found in [8]. Some progress towards the solution
of equations (1.7) withX(χ,0) = 0 was made by Kaup [9] who used the usual inverse
scattering method. He bypassed the difficult problem of determining the evaluation
of the scattering data by using certain indirect asymptotic arguments. The series of
transformations used in [9] makes the relevant analysis rather complicated. As a result,
it is difficult to extract the largeχ behavior. Nevertheless, one of the authors was able
to establish formally that any nonsingular initial data tends towards the similarity
solution, using an indirect approach [5]. The approach used here (see the discussion
in (1) and (2) above) not only allows one to obtain the key result directly and far more
simply, but is also rigorous. Furthermore, it allows one to extend the analysis to the
case of singular data (see the discussion in (3) and (4) above). The case thatb(0, τ )
andY(0, τ ) are constant was studied in [10]. Similarity solutions for equations (1.7)
were first discussed in [11] (see also [10], [12]). The well-posedness of the stimulated
Raman scattering equations is established in [13] using PDE techniques.

7. The inhomogeneously broadened version of equations (1.7) has been solved on the
infinite line in [17]. This solution has been used in [18] for the interpretation of the
experiments of SRS in gas of [19].

This paper is organized as follows: The linearized version of equations (1.7) is dis-
cussed in Section 2. Theorems 1.1 and 1.2 are derived in Section 3. The case of frequency
mismatch is briefly discussed in Section 3. The case thatb(0, τ ) andY(0, τ ) are con-
stant is discussed in Section 4. Numerical simulations and experimental observations are
discussed in Section 5.

2. The Linearized Equations

In this section we solve the linearized version of the IBV problem considered in Theo-
rem 1.1, namely,

Yχ = −2i X, Xτ = − i

2
Y; τ ∈ [0,1], χ ∈ [0, l ], l > 0, (2.1)

Y(0, τ ) = Y0(τ ), X(χ,0) = X0(χ), (2.2)

whereY0(τ ) and X0(χ) are differentiable functions in [0,1] and [0, l ], respectively.
Equations (2.1) imply thatY solves the linearized sine-Gordon equationYχτ + Y = 0.

Equations (2.1) can be obtained from equations (1.7) by assuming thatX = O(ε),
Y = O(ε), and lettingε→ 0. The constraint|Y|2+b2 = 1 implies thatb = ±1+O(ε2);
equations (2.1) correspond tob = −1.

We shall solve the above IBV problem by using a Lax pair formulation [3]. This
has the pedagogical advantage of motivating the formalism used in Section 3. We first
assumethat Y(χ, τ ) and X(χ, τ ) exist. After deriving the relevant formulae, we can
verify directly that they solve equations (2.1), (2.2)without the a priori assumption of
existence.
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Equations (2.1) admit the Lax pair

∂ψ

∂χ
+ ikψ = X, (2.3a)

∂ψ

∂τ
+ i

k
ψ = − Y

2k
, (2.3b)

whereψ(χ, τ, k) is a complex-valued scalar function, andk is a complex parameter.
The essence of the method introduced in [3] is to construct solutions of (2.3) that are
defined in the entire complexk-plane. Such solutions are

ψ−(χ, τ, k) = e−ikχ

2k

∫ 1

τ

e−
i
k (τ−τ ′)Y(0, τ ′)dτ ′

+
∫ χ

0
e−ik(χ−χ ′)X(χ ′, τ )dχ ′, kI ≤ 0, (2.4)

and

ψ+(χ, τ, k) = −e−ik(χ−l )

2k

∫ τ

0
e−

i
k (τ−τ ′)Y(l , τ ′)dτ ′

−
∫ l

χ

e−ik(χ−χ ′)X(χ ′, τ )dχ ′, kI ≥ 0. (2.5)

The functionψ− defined by equation (2.4) solves equations (2.3) and is analytic and
bounded in the lower-half complexk-plane. Indeed,τ ′ − τ ≥ 0 andχ − χ ′ ≥ 0, which
imply that the exponentials under the first and the second integrals decay ask → 0,
kI < 0 andk → ∞, kI < 0, respectively. Also, it is straightforward to verify directly
thatψ− solves equations (2.3). Similarly,ψ+ is analytic and bounded in the upper-half
complexk-plane.

We now indicate how equation (2.4) can be derived: Equation (2.3a) yields

ψ(χ, τ, k) = e−ikχψ(0, τ, k)+
∫ χ

0
e−ik(χ−χ ′)X(χ ′, τ )dχ ′.

The functionψ(χ, τ, k) solves equation (2.3b) iffψ(0, τ, k) solves equation (2.3b)
evaluated atτ = 0; a particular solution of this equation is12k

∫ 1
τ

e−
i
k (τ−τ ′)Y(0, τ ′)dτ ′,

and the above equation becomes (2.4). Similarly for (2.5).
Sinceψ− andψ+ satisfy both parts of the Lax pair (2.3), it follows that they are

related by

ψ+(χ, τ, k)− ψ−(χ, τ, k) = −e−ikχ− i τ
k ρ(k), k ∈ R, (2.6)

whereρ(k) is some complex-valued scalar function ofk. Evaluating equation (2.6) at
τ = 0,χ = l , we find

ρ(k) =
∫ l

0
eikχ X(χ,0)dχ + 1

2k

∫ 1

0
e

i τ
k Y(0, τ )dτ. (2.7)
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Equations (2.4) and (2.5) imply that

ψ±(χ, τ, k) = O

(
1

k

)
, k→∞, kI 6= 0. (2.8)

Equations (2.6) and (2.8) define a Riemann-Hilbert problem [6]. Its unique solution is

ψ(χ, τ, k) = − 1

2iπ

∫ ∞
−∞

e−ik ′χ− i τ
k′ ρ(k′)

k′ − k
dk′, kI 6= 0. (2.9)

Equation (2.9) yieldsψ in terms ofρ(k). Then equations (2.3), which defineX and
Y in terms ofψ , yield X andY in terms ofρ(k). In particular the largek asymptotic of
equations (2.3) imply

X(χ, τ ) = iψ(1)(χ, τ ), Y(χ, τ ) = −2
∂ψ(1)

∂τ
(χ, τ ),

ψ(1)(χ, τ ) + lim
k→∞
kI 6=0

(kψ(χ, τ, k)).
(2.10)

Equations (2.10) yieldX andY in terms ofρ(k), which is uniquely defined in terms of
X0(χ) andY0(τ ). Although these formulae were obtained under the a priori assumption
that X andY exist, it is possible a posteriori to verify directly that the functionsX and
Y defined in the above way satisfy (2.1) and (2.2). This verification can be found in [3].

Theorem 2.1. [3]. Let X0(χ) and Y0(τ ) be differentiable functions ofχ and ofτ for
χ ∈ [0, l ] andτ ∈ [0,1]. Let X(χ, τ ) and Y(χ, τ ) be defined by

X(χ, τ ) = 1

2π

∫ ∞
−∞

e−ikχ− i τ
k ρ(k)dk, Y(χ, τ ) = 2i

∂

∂τ
X(χ, τ ), (2.11)

whereρ(k) is defined by

ρ(k) =
∫ l

0
eikχ X0(χ)dχ + 1

2k

∫ 1

0
e

i τ
k Y0(τ )dτ, (2.12)

and improper Riemann integrals are assumed if needed. Then X and Y solve the IBV
problem specified by equations (2.1) and (2.2).

3. The Inverse Spectral Method

In order to derive Theorem 1.1, we first assume thatY(χ, τ ) and X(χ, τ ) exist. This
yields a certain construction ofY(χ, τ ) andX(χ, τ ) in terms of the initial and boundary
data. We then verify directly that this construction gives rise toY(χ, τ ) and X(χ, τ ),
which solve the IBV problem defined in Theorem 1.1without the a priori assumption
that Y(χ, τ ) and X(χ, τ ) exist. A detailed explanation of all the steps needed can be
found in [3].
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Proposition 3.1. Let b(χ, τ ) ∈ R, Y(χ, τ ) ∈ C, X(χ, τ ) ∈ C be differentiable func-
tions ofχ and ofτ for χ ∈ [0, l ], τ ∈ [0,1]. Assume that Y and X solve equations (1.7).
Let the2× 2 matrix complex-valued functions8(χ, τ, k) and9(χ, τ, k) be defined by

8(χ, τ, k) = e
− i

4k

[∫ 1

τ
(b(0,ξ)+1)dξ

]
σ3

+ e−ikχσ̂3

4k

∫ 1

τ

e
− i

4k

(∫ τ ′

τ
b(0,ξ)dξ

)
σ3

V(0, τ ′)8(0, τ ′, k)e−
i

4k (τ
′−τ)σ3dτ ′

+
∫ χ

0
e−ik(χ−χ ′)σ̂3U (χ ′, τ )8(χ ′, τ, k)dχ ′, (3.1)

and

9(χ, τ, k) = e
i

4k

[∫ τ

0
(b(l ,ξ)+1)dξ

]
σ3

− e−ik(χ−l )σ̂3

4k

∫ τ

0
e

i
4k

(∫ τ

τ ′ b(l ,ξ)dξ
)
σ3V(l , τ ′)9(l , τ ′, k)e

i
4k (τ−τ ′)σ3 dτ ′

−
∫ l

χ

e−ik(χ−χ ′)σ̂3U (χ ′, τ )9(χ ′, τ, k)dχ ′. (3.2)

In equations (3.1) and (3.2),

σ3 = diag(1,−1), V(χ, τ ) =
(

0 b(χ, τ )

−b̄(χ, τ ) 0

)
,

U (χ, τ ) =
(

0 X(χ, τ )

−X̄(χ, τ ) 0

)
,

(3.3)

and, if A is a2× 2 matrix,

σ̂3A = [σ3, A], thus eχσ̂3 A = eχσ3 Ae−χσ3. (3.4)

Then the functions8 and9 have the following properties:
(i) The first column of8 is analytic and bounded in the upper-half complex-k plane,

which will be denoted byC+, while the second column of8 is analytic and bounded
in the lower-half complex k-plane, which will be denoted byC−. The function9 has
complimentary analyticity, i.e., if superscripts+ and− denote analyticity inC+ and
C−, then

8 = (8+,8−), 9 = (9−, 9+). (3.5)

(ii) The functions8 and9 are related by

8(χ, τ, k) = 9(χ, τ, k)e−i (kχ+ τ
4k )σ̂3ρ(k), k ∈ R, (3.6)
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where the2× 2 matrix complex-valued functionρ(k) is defined by

ρ(k) = e
− i

4k

[∫ 1

0
(b(0,ξ)+1)dξ

]
σ3

+ 1

4k

∫ 1

0
e−

i
4k

(∫ τ

0
b(0,ξ)dξ

)
σ3V(0, τ )8(0, τ, k)e−

i
4k τσ3 dτ

+
∫ l

0
eikχσ̂3U (χ,0)8(χ,0, k)dχ. (3.7)

(iii) The functions8 and9 satisfy the “symmetry” condition

8−2 (k) = 8+1 (k̄), 8−1 (k) = −8+2 (k̄),
9+2 (k) = 9−1 (k̄), 9+1 (k) = −9−2 (k̄),

(3.8)

where for convenience of notation we have suppressed theχ andτ dependence.
(iv) The asymptotic behavior of8 as k→∞ is given by

8+1 (χ, τ, k) = 1− i

4k

[∫ 1

τ

(b(0, ξ)+ 1)dξ + 2
∫ χ

0
|X(χ ′, τ )|2 dχ ′

]
+ O

(
1

k2

)
, k→∞, (3.9)

8+2 (χ, τ, k) =
X̄(χ, τ )

2ik
− 1

4k

[∫ 1

τ

Ȳ(0, τ ′)dτ ′ − 2i X̄(0, τ )

]
e2ikχ

+ O

(
1

k2

)
, k→∞. (3.10)

(v) The asymptotic behavior of8 as k→ 0 is given by

8+1 (χ, τ, k) = α1(χ, τ )+ β1(χ, τ )e
i

2k (τ−1) + O(k), k→ 0, (3.11)

8+2 (χ, τ, k) = α2(χ, τ )+ β2(χ, τ )e
i

2k (τ−1) + O(k), k→ 0, (3.12)

whereα1, α2, β1, β2 are certain scalar functions ofχ andτ .

Proof. Letφ(χ, τ, k) be a 2×2 matrix complex-valued function satisfying the Lax pair
(1.8), i.e.,

φχ + ikσ3φ = Uφ, (3.13a)

φτ − i

4k
bσ3φ = − 1

4k
Vφ. (3.13b)

Equation(3.13a) implies

φ = e−ikχσ3φ(0, τ, k)+
∫ χ

0
e−ik(χ−χ ′)σ3U (χ ′, τ )φ(χ ′, τ, k)dχ ′.
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The functionφ(χ, τ, k) defined by the above equation will also satisfy equation(3.13b)
iff φ(0, τ, k) satisfies equation(3.13b) evaluated atτ = 0, i.e., iff φ(0, τ, k) satisfies(

e
i

4k b̆(0,τ )σ3φ(0, τ, k)
)
τ
= − 1

4k
e

i
4k b̆(0,τ )σ3V(0, τ )φ(0, τ, k),

b̆(0, τ ) =
∫ 1

τ

b(0, ξ)dξ.

Thus, ifφ(χ, τ, k) is defined by1

φ = e−ikχσ3− i
4k b̆(0,τ )σ3

+ 1

4k
e−ikχσ3

∫ 1

τ

e−
i

4k (b̆(0,τ )−b̆(0,τ ′))σ3U (0, τ ′)φ(0, τ ′, k)dτ ′

+
∫ χ

0
e−ik(χ−χ ′)σ3U (χ ′, τ )φ(χ ′, τ, k)dχ ′, (3.14)

thenφ satisfies equations (3.13). Letting

φ = 8e−ikχσ3+ i
4k (1−τ)σ3, (3.15)

equation (3.14) becomes equation (3.1).
Another solution of equations (3.13) is given by

ψ = e−ik(χ−l )σ3ψ(l , τ, k)−
∫ l

χ

e−ik(χ−χ ′)σ3U (χ ′, τ )ψ(χ ′, τ, k)dχ ′,

whereψ(l , τ, k) satisfies(
e−

i
4k b̃(l ,τ )σ3ψ(l , τ, k)

)
τ
= − 1

4k
e−

i
4k b̃(l ,τ )σ3V(l , τ )ψ(l , τ, k),

b̃(l , τ ) =
∫ τ

0
b(l , ξ)dξ.

Thus, ifψ(χ, τ, k) is defined by

ψ = e−ikχσ3+ i
4k b̃(l ,τ )σ3

− 1

4k
e−ik(χ−l )σ3

∫ τ

0
e

i
4k (b̃(l ,τ )−b̃(l ,τ ′))σ3U (l , τ ′)ψ(l , τ ′, k)dτ ′

−
∫ χ

l
e−ik(χ−χ ′)σ3U (χ ′, τ )ψ(χ ′, τ, k)dχ ′, (3.16)

thenψ satisfies equations (3.13). Letting

ψ = 9e−ikχσ3− i τ
4k σ3, (3.17)

equation (3.16) becomes equation (3.2).

1 We have chosen the constant of integration to be the identity matrix.
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(i) The Relationship betweenφ andψ

Sinceφ andψ satisfy both parts of the Lax pair, it follows thatφ = ψρ(k). Indeed,
sinceφ andψ satisfy equation (3.13a), thenφ = ψ f (k, t), where f is a 2× 2 matrix.
Similarly, sinceφ andψ satisfy equation (3.13b), thenφ = ψg(k, χ); thus,φ = ψρ(k).
Using (3.15) and (3.17), this equation becomes (3.6), whereρ(k) is some 2× 2 matrix.
Evaluating equation (3.6) atχ = l , τ = 0, we find thatρ(k) = eikl σ̂38(l ,0, k), which
yields equation (3.7).

(ii) The Symmetry Properties

Equations (3.8) are a direct consequence ofV̄T = −V , Ū T = −U , whereT denotes
transpose.

(iii) The Analyticity Properties

The functions8 and9 are entire functions ofk for all complexk except possibly 0 and
∞. In what follows we concentrate on8; analogous results for9 can be obtained in a
similar manner.

In order to determine the behavior of8 ask→∞, we note that ifA is a 2×2 matrix,
then

e−ik(χ−χ ′)σ̂3 A =
 A11 A12e−2ik(χ−χ ′)

A21e2ik(χ−χ ′) A22

.
Thus the exponential terms of the first column in the integral

∫ χ
0 decay ask → ∞,

kI > 0 (the exponential terms of the second column decay ask → ∞, kI < 0). Since
χ ≥ 0, similar considerations apply to the terme−ikχσ̂3.

In order to determine the behavior of8 ask→ 0, we note that

e
− i

4k

(∫ τ ′

τ
b(0,ξ)dξ

)
σ3

Ae−
i

4k (τ
′−τ)σ3

=

 e−
i

4k

∫ τ ′

τ
(b(0,ξ)+1)dξ A11 e

i
4k

∫ τ ′

τ
(1−b(0,ξ))dξ A12

e−
i

4k

∫ τ ′

τ
(1−b(0,ξ))dξ A21 e

i
4k

∫ τ ′

τ
(b(0,ξ)+1)dξ A22

.

Since|b(0, ξ)| < 1, it follows that
∫ τ ′
τ
(1± b(0, ξ))dξ > 0 for τ ′ > τ , and hence the

exponential terms of the first column in the integral
∫ 1
τ

decay ask→ 0, kI > 0. Since

τ ≤ 1, similar considerations apply to the terme−
i

4k [
∫ 1

τ
(b(0,ξ)+1)dξ ] .

The leading behavior of8 for k→∞ andk→ 0 is determined below.
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(iv) The Large k Behavior

The easiest way to determine the behavior of8 whenk → ∞ andkI 6= 0 is to use
equations (3.13) and equation (3.15). These equations imply that

8χ + ik[σ3,8] −U8 = 0, (3.18a)

8τ − i

4k
8σ3− i

4k
bσ38+ 1

4k
V8 = 0. (3.18b)

Substituting8 = I +8(1)(χ, τ )/k+ O(k−2) into these equations, we find

8
(1)
12 =

X

2i
, 8

(1)
21 =

X̄

2i
, 8

(1)
11χ =

|X|2
2i

,

8
(1)
11τ =

i

4
(b+ 1), 8

(1)
22 = −8(1)

11 .

Using equations (1.7a) and (1.7c), it follows that the equations for811 are compatible.
Also the above equations are consistent with equations (3.9) and (3.10) (forkI 6= 0, the
term involvinge2ikχ is exponentially small).

To determine the precise behavior of8 for all largek, we use equation (3.1). Substi-
tuting

8+1 = 1+ α̃1(χ, τ )

k
+ O

(
1

k2

)
, 8+2 =

α̃2(χ, τ )

k
+ β̃2(χ, τ )

k
e2ikχ + O

(
1

k2

)
,

into (3.1) and using integration by parts, equations (3.9), (3.10) follow.

(v) The Small k Behavior

The easiest way to determine the behavior of8 whenk → 0 andkI 6= 0 is to use
equations (3.18). Substituting

8(χ, τ, k) = 8(0)(χ, τ )+ k8(1)(χ, τ )+ O(k2)

in equations (3.18), it follows that8(0)
χ = U8(0) and

8(0)(χ, τ )σ3
(
8(0)(χ, τ )

)−1 =
−b(χ, τ ) −iY(χ, τ )

i Ȳ(χ, τ ) b(χ, τ )

.
This equation can be solved for8(0) since the determinant of the lhs is−1, while the
determinant of the rhs is−b2− |Y|2 = −1. Actually, using the above equation together
with det8(0) = 1, it follows that

8
(0)
11 =

1− b

28(0)
22

, 8
(0)
12 =

iY

1− b
8
(0)
22 , 8

(0)
21 =

i Ȳ

28(0)
22

. (3.19)

To determine the precise behavior of8 for all small k, we use equation (3.1); see
Appendix A.
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Derivation of Theorem 1.1

(i) Definition of ρ(k)

Proposition 3.1 suggests that the spectral dataρ(k) should be defined by equation (3.7),
which involves the known functionsb(0, τ ), V(0, τ ), andU (χ,0), as well as8(0, τ, k)
and8(χ,0, k).

We define the function8(0, τ, k) by

8(0, τ, k) = e
− i

4k

[∫ 1

τ
(b(0,ξ)+1)dξ

]
σ3

(3.20)

+ 1

4k

∫ 1

τ

e
− i

4k

(∫ τ ′

τ
b(0,ξ)dξ

)
σ3

V(0, τ ′)8(0, τ ′, k)e−
i

4k (τ
′−τ)σ3 dτ ′.

This function is the unique solution of

8τ − i

4k
8σ3− i

4k
b(0, τ )σ38 = − 1

4k
V(0, τ )8, (3.21a)

8(0,1, k) = I . (3.21b)

Letting

8(0, τ, k) = µ(τ, k)e i
4k (τ−1)σ3, (3.22)

it follows thatµ(τ, k) is the unique solution of

µτ − i

4k
b(0, τ )σ3µ = − 1

4k
V(0, τ )µ, (3.23a)

µ(1, k) = I . (3.23b)

We define the function8(χ,0, k) by the equation

8(χ,0, k) = e
− i

4k

[∫ 1

0
(b(0,ξ)+1)dξ

]
σ3

+ e−ikχσ̂3

4k

∫ 1

0
e−

i
4k

(∫ τ

0
b(0,ξ)dξ

)
σ3V(0, τ )8(0, τ, k)e−

i
4k τσ3 dτ

+
∫ χ

0
e−ik(χ−χ ′)σ̂3U (χ ′,0)8(χ ′,0, k)dχ ′. (3.24)

This function is the unique solution of

8χ + ik[σ3,8] = U (χ,0)8, (3.25a)

8(0,0, k) = µ(0, k)e− i
4k σ3. (3.25b)

Letting

8(χ,0, k) = ν(χ, k)eikχσ3, (3.26)
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it follows thatν(χ, k) is the unique solution of

νχ + ikσ3ν = U (χ,0)ν, (3.27a)

ν(0, k) = µ(0, k)e− i
4k σ3. (3.27b)

Having obtainedν(χ, k), ρ(k) follows from

ρ(k) = eikl σ̂38(l ,0, k) = eiklσ3ν(l , k). (3.28)

Using the symmetries ofV andU , it follows that

µ(τ, k) =
µ1(τ, k) −µ2(τ, k̄)

µ2(τ, k) µ1(τ, k̄)

, ν(χ, k) =
ν1(χ, k) −ν2(χ, k̄)

ν2(χ, k) ν2(χ, k̄)

,

ρ(k) =
ρ1(k) −ρ2(k̄)

ρ2(k) ρ2(k̄)

.
Thus,

ρ1(k) = eiklν1(l , k), ρ2(k) = e−iklν2(l , k),

which are equations (1.15).
Using equations (3.20), (3.24) and integration by parts, it is straightforward to obtain

the largek and smallk behavior ofρ(k). The derivation is similar to the one used to
derive equations (3.9)–(3.12); see Appendix B.

ρ2(k) = 1− i

4k

[∫ 1

0
(b(0, ξ)+ 1)dξ + 2

∫ l

0
|X(χ,0)|2 dξ

]
+O

(
1

k2

)
, k→∞, (3.29a)

ρ2(k) = X̄(l ,0)

2ik
e−2ikl − 1

4k

[∫ 1

0
Ȳ(0, τ )dτ − 2i X̄(0,0)

]
+ O

(
1

k2

)
, k→∞.

(3.29b)

ρ1(k) = α1+ β1e−
i

2k + O(k), k→ 0 (3.30a)

ρ2(k) = α2+ β2e−
i

2k + O(k), k→ 0, (3.30b)

whereα1, α2, β1, β2 are certain constants.
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(ii) The RH Problem

Equations (3.6) suggest that the functions8 and9 should be defined as the unique
solution of the following Riemann-Hilbert (RH) problem:

(8+(χ, τ, k),8−(χ, τ, k))

= (9−(χ, τ, k),9+(χ, τ, k))

×
 ρ1(k) −ρ̄2(k)e−2ikχ− i τ

2k

ρ2(k)e2ikχ+ i τ
2k ρ̄1(k)

 , k ∈ R (3.31a)

8 = I + O

(
1

k

)
, 9 = I + O

(
1

k

)
, k→∞ with kI 6= 0. (3.31b)

This RH problem is identical to the one associated with the sine-Gordon equation in
light-cone coordinates (see equations (4.16) of [3] withx and t replaced byχ andτ ,
respectively). Details of the analysis of this RH problem can be found in [3]. Here we
only summarize the main points.

(a) Equation (3.31a) can be rewritten as

(
9+,

8+

ρ1

)
=
(
8−

ρ̄1
, 9−

) 1 ρ2

ρ1
E

− ρ̄2

ρ̄1
Ē 1

|ρ1|2

 , E = e2ikχ+ i τ
2k , k ∈ R.

(3.32)
Assuming thatρ1(k) 6= 0 for k ∈ C+, the first vector of the above equation implies
(taking the complex conjugate and the plus projection)

9+(χ, τ, k)

=
(

0
1

)
+ 1

2iπ

∫ ∞
−∞

ρ2(k′)
ρ1(k′)

E(χ, τ, k′)9−(χ, τ, k′)
dk′

k′ − (k− i 0)
, k ∈ R. (3.33)

Using the symmetry conditions9−2 = −9+1 , 9−1 = 9+2 , equation (3.33) becomes
equation (1.17) (we have calledM1 = 9−1 , M2 = 9−2 ).

The equations

8
(1)
12 =

X

2i
, 8

(1)
11τ
= i

4
(b+ 1)

imply

X = 2i lim
k→∞

(k9+1 ), b = −1− 4i
∂

∂τ
lim

k→∞
(k9̄+2 ).

(b) Equation (1.17) can be solved uniquelywithout having to assume thatρ2/ρ1 is
small. This is a consequence of the fact that the jump matrixG appearing in equation
(3.32) satisfiesḠT = −G. This can be used to show that the homogeneous version of
the RH problem with the jump (3.32) has only the trivial solution [14].
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(c) The case thatρ1(k) = 0 for k = kj , j = 1,2, . . . , Im kj > 0, can be reduced
to solving a regular RH problem (i.e., a RH problem withρ1(k) 6= 0) and a system of
algebraic equations. This system of algebraic equations can be found in [3].

(iii) The Inverse Problem Solves the Direct

We must show that the solution of the above RH problem satisfies the Lax pair (3.18).
Furthermore, we must show that the functionsb(χ, τ ), Y(χ, τ ), X(χ, τ ) defined by
equations (1.16) solve the IBV problem defined in Theorem 1.1. This involves the use of
the so-called dressing method (see [15] for the rigorous implementation of this method):
Let L18 andL28 denote the lhs’s of equations (3.18a) and (3.18b), respectively. The
main idea of the dressing method is the following: (a) Defineb,Y, X in terms of8 in
such a way that theO(k), O(1), O( 1

k ) terms ofL18 and ofL28 are zero. (b) Show that
bothL18 andL28 satisfy the jump condition (3.31a). Since the homogeneous version of
the RH problem (3.31) admits only the zero solution, this implies thatL18 = L28 = 0.

Details of (a) are given in Appendix C. It is shown there thatX = 2i (9+1 )
(1), b =

−1−4i (9̄+2 )
(1)
τ , where(9+1 )

1, (9̄+2 )
1 are theO( 1

k ) terms of9+1 and9̄+2 . These equations,
together with equation (3.33), yield equations (1.16).

Derivation of Theorem 1.2

Let

k = 1

2

√
τ

χ
λ, ξ = √τχ.

Then the kernel of equation (3.33) becomes

ρ2

(
1
2

√
τ
χ
λ′
)

ρ1

(
1
2

√
τ
χ
λ′
)ei ξ

(
λ′+ 1

λ′
)

dλ′

λ′ − (λ− i 0)
.

Thus the leading order behavior of equation (3.33) asχ → ∞ depends on the limit of
ρ2(k)/ρ1(k) ask→ 0. Equations (3.30) yield

ρ2(k)

ρ1(k)
∼ α2+ β2e−

i
2k

α1+ β1e−
i

2k

, k→ 0,

whereα1, β1, α2, β2 are certain constants. It is interesting that the terms involving
exp(−i /2k) give no contribution. Indeed,

ρ2(k)

ρ1(k)
e2ikχ+ i τ

2k ∼ α2

α1

e2ikχ+ i τ
2k +

(
β2

α2
− β1

α1

)
e2ikχ− i

2k (1−τ)

1+ β1

α1
e−

i
2k

, k→ 0.

If α1 + β1e−
i

2k 6= 0 for Imk ≥ 0, then because of analyticity inC+ (sinceτ ≤ 1, the
exponential terms decay inC+), these terms give zero contribution to equation (3.33)
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(9− and [k′ − (k− i 0)]−1 are also analytic inC+). If α1+ β1e−
i

2k = 0, the extra terms
due to the poles give a contribution that is exponentially small asχ →∞.

The above analysis implies that the leading behavior of equation (3.33) asχ → ∞
is characterized by

9+(ξ, λ) =
(

0
1

)
+ 1

2iπ

α2

α1

∫ ∞
−∞

ei ξ
(
λ′+ 1

λ′
)
9−(ξ, λ′)

dλ′

λ′ − (λ− i 0)
. (3.34)

We emphasize that even ifρ(k) has zeros forIm k> 0, these zeros do not contribute
to the leading behavior of the solution of the Riemann-Hilbert problem (1.12). Indeed,
if there exist zeros, equation (3.33) has to be supplemented by certain additional terms.
However, these terms vanish exponentially asχ →∞. Consider for simplicity the case
of one zero,ρ(k1) = 0; the extension to any number of zeros is straightforward. If
ρ(k1) = 0, Imk1 > 0, the rhs of equation (3.33) also contains the term

−ρ2(k1)e
2ik1χ+ i τ

2k19−(k1)

ρ̇(k1)(k− k1)
, ρ̇(k1) = dρ

dk

∣∣∣∣
k=k1

,

where9−(k1) is given in terms of a certain linear integral equation whose kernel involves
(k′ − k1)

−1. Since the terme2ik1χ , Im k1 > 0 is exponentially small, it follows that the
zeros give an exponentially small contribution asχ →∞.

The above analysis is valid even ifX(χ,0) 6= 0. In the particular case thatX(χ,0) =
0, equations (B.10) and (B.11) yield

α2 = i Ȳ(0,0)

1− b(0,0)
α1. (3.35)

Equations (3.34), (3.35), together with the symmetry conditions9−2 = −9+1 ,9−1 = 9+2 ,
yield equation (1.20) (we have calledN1 = 9−1 , N2 = 9−2 ). Equations (1.16) imply

X = 1

2

√
τ

χ
X̃(ξ), b = −1+ ∂

∂τ

(
1

2

√
τ

χ
b̃(ξ)

)
, (3.36)

whereX̃(ξ) andb̃(ξ) are defined by (1.19) (sinceρ2/ρ1 ∼ α2/α1 = i Ȳ/(1− b)). Using√
τ

χ
= τ

ξ
,

∂

∂τ
= 1

2

√
χ

τ

∂

∂ξ
,

equations (3.36) become equations (1.18).

The Case of Frequency Mismatch

When there exists a frequency mismatch between the physical quantitiesA1 and A2,
then the transformation (1.4) induces a singularity on the transformed quantitiesA′1 and
A′2. For example, if

A1 = sech(τ + τ0), A2 = e−iωτsech(τ + τ0),
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then, with an appropriate choice ofτ0,

A′1 =
1

2
, A′2 =

1

2

(
τ ′

1− τ ′
)−iωτ ′

.

The mismatch betweenA1 and A2 occurs in physical systems because the frequency
difference between the pump and Stokes waves does not precisely match the frequency
difference between the Raman levels (to minimize this effect, the experimentalists phys-
ically connect the two cells but this effect can never be completely eliminated).

The rigorous analysis for the case of singular data is rather technical, so here we only
present a brief summary of the main ideas.

Consider first the linear equations (2.1) with the initial and boundary conditions

X0(χ) = 0, Y0(τ ) = cτ γ+o(τ γ ) asτ → 0+, γ ∈ R, γ > −1, (3.37)

wherec is a constant. Using the analogue of Watson’s lemma for Fourier-type integrals,
it can be shown (see for example [6]) that

ρ(k) = 1

2k

∫ 1

0
e

i τ
k Y0(τ )dτ = ckγ

0(γ + 1)

2
e

iπ
2 (γ+1)[1+ o(kγ+1)], k→ 0,

(3.38)
where0 denotes the gamma function. Furthermore, equations (2.4) and (2.5) indicate
thatψ− andψ+ are also singular atk = 0.

Similarly, regarding the nonlinear equation (1.7), the eigenfunctions8 and9, as well
as the matrixρ(k) containing the spectral data, are singular atk = 0. Since8 and9 are
well defined away fromk = 0, it is convenient to define8 and9 for k such that|k| ≥ 1,
and to introduce two new eigenfunctions80 and90 that are defined for|k| ≤ 1. This
gives rise to a new RH problem whose “jumps” in the complexk-plane occur along the
real axis and along the unit circle.

The largeχ behavior of the above RH problem can be obtained by using the following
substitutions:

k = 1

2

√
τ

χ
λ, ξ = √τχ, 8(χ, τ, k) = 8̂(ξ, λ),

80(χ, τ, k) = 8̂0(ξ, λ)

(
1

2

√
τ

χ

)−γ σ3

.

(3.39)

Using equations (3.39), together with the fact that

ρ(k) ∼ kγ σ3, k→ 0,

the above RH problem reduces to a RH problem with the following jump condition:

8+(ξ, λ) = 8−(ξ, λ)ei ξ(λ+ 1
λ
)σ3V(λ)e−i ξ(λ+ 1

λ
)σ3, λ ∈ R ∪ {|λ| = 1}.

The matrixV(λ) is given by (see Figure 1)

V∞A = (G∞1 )−1, Vy
AB
= λγσ3 E, V∞B = (G∞2 )−1,

VAB
x
= λγσ3(G0

1)
−1EG∞1 ,
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Fig. 1.The Riemann-Hilbert problem for the case of frequency mismatch.

VAO = λγσ3(G0
1)
−1λ−γ σ3, VBO = (λγσ3)+(G0

2)
−1(λ−γ σ3)+,

where the subscript+ in VBO indicates thatλγσ3 is evaluated by considering the limit
from the+ region, i.e.,(λ)+ = |λ|e2iπ . The constant matricesG∞1 , G∞2 , G0

1, G0
2 are

defined by

G0
1 =

(
1 a0

0 1

)
, G0

2 =
(

1 0

b0 1

)
, G∞1 =

(
1 a∞

0 1

)
, G∞2 =

(
1 0

b∞ 1

)
,

andE satisfiesG∞1 G∞2 e−2iπγσ3 = E−1G0
1G0

2E2iπγσ3 E. The constant scalarsa0, b0, a∞,
b∞ can be evaluated in terms ofY0(τ ) andb0(τ ).

Having obtained8(ξ, λ), the leading behavior ofX andb follows from

X(χ, τ ) = 1

2

τ

ξ
X̃(ξ), b(χ, τ ) = −1+ 1

4

b̃(ξ)

ξ
+ 1

4

d

dξ
b̃(ξ),

whereX̃(ξ) andb̃(ξ) can be obtained from the largeλ behavior of8(ξ, λ).
The above RH problem gives rise to a solution of Painlev´e III

d2u

dt2
= 1

u

(
du

dt

)2

− 1

t

du

dt
+ 1

t
(α1u2+ α2)+ α3u3+ α4

u
,

with the following particular values of the constantsαj , j = 1, . . . ,4:

α1 = 2γ, α2 = α3 = −α4 = 4.

4. A Particular Example

In this section we consider the particular example,

X(χ,0) = 0, b(0, τ ) = β ∈ R, Y(0, τ ) = γ ∈ C, β2+ |γ |2 = 1,
(4.1)

whereβ andγ are constants. This example corresponds to data which are initially self-
similar. Thus, it plays a role somewhat analogous to the hyperbolic secant solution in
the usual soliton systems.
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Equations (1.13) yield

µ1(τ, k) = cos

(
τ − 1

4k

)
+ iβ sin

(
τ − 1

4k

)
, (4.2a)

µ2(τ, k) = γ̄ sin

(
τ − 1

4k

)
. (4.2b)

Equations (1.14) yield

ν1(χ, k) = µ1(0, k)e
− i

4k−ikχ , ν2(χ, k) = µ2(0, k)e
− i

4k+ikχ .

Equations (1.15) yield

ρ1(k) = µ1(0, k)e
− i

4k , ρ2(k) = µ2(0, k)e
− i

4k ,

or, using (4.2),

ρ1(k) = 1− β
2
+ 1+ β

2
e−

i
2k , (4.3)

ρ2(k) = − γ̄
2i
+ γ̄

2i
e−

i
2k . (4.4)

The terms involvinge−
i

2k give no contribution to the linear integral equation (1.7) (see
the discussion in Section 3). It will be shown below that, ifβ < 0, thenρ1(k) 6= 0
for Im k ≥ 0. Thus, the functionsM1 and M2 satisfy equation (1.17) whereρ2/ρ1 =
i γ̄ /(1− β). Lettingk = 1

2

√
τ
χ
λ, ξ = √τχ , equation (1.17) becomes

(−N2(ξ, λ)

N1(ξ, λ)

)
=
(

0
1

)
+ 1

2π

γ̄

1− β
∫ ∞
−∞

ei ξ
(
λ′+ 1

λ′
) (

N̄1(ξ, λ
′)

N̄2(ξ, λ
′)

)
dλ′

λ′ − (λ− i 0)
. (4.5)

Noting that in this case

Ȳ0(0)

1− b0(0)
= γ̄

1− β ,

and comparing equation (4.5) with equation (1.20), it follows thatin this particular case,
the general solution is given by the similarity solution, (1.18)–(1.20), where Y0(0) and
b0(0) are replaced byγ andβ, respectively.

We now investigate the zeros ofρ1(k). Using equation (4.3), it follows thatρ1(k) = 0
implies

2k =
(2n− 1)π − i ln

(
1−β
1+β

)
[(2n− 1)π ]2+

[
ln
(

1−β
1+β

)]2 , n = 0,±1,±2, . . . . (4.6)

Thus,ρ1(k) has zeros with Imk > 0 iff (1 − β)/(1 + β) < 0, i.e., iff β > 0. It is
interesting to note that in this case there exist infinitely many such zeros. This property
was first discussed in [10] (see also [5]).
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Fig. 2. A similarity solution. This type of solu-
tion is often called an accordion solution. The
squeezing of the accordion from the right asξ
increases is visible. (Reprinted from [1].)

5. Numerical and Experimental Results

For completeness, we now discuss numerical solutions of equation (1.1). We also discuss
the experiments performed to date as well as describe an experiment that could verify
the predicted analytical behavior. A more elaborate discussion of these issues is given
in [1] and [5].

In the examples presented here we assume that

b = cos[β(χ, τ)], Y = i sin[β(χ, τ)], (5.1)

and thus it is sufficient to study the evolution ofβ(χ, τ).2 In the first example, we let
β(0, τ ) = 0.2 (see Figure 2). In this case, as discussed in Section 4, the exact solution is
given precisely by the similarity solution characterized by Painlev´e III. Figure 2 depicts
the numerical evaluation of|A1(ξ)|2 = cos2[(β(ξ))] and of |A2(ξ)|2 = sin2[β(ξ)],
which are designated as the “pump” and the “Stokes,” respectively. The self-similar

2 In general,b = cosβ, Y = e−i θ sinβ; equations (5.1) correspond toθ(0, τ ) = 0, which then implies
θ(χ, τ ) = 0. An example whereθ(0, τ ) 6= 0 is discussed in [5].
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Fig. 3. The solution of the transient stimulated
Raman scattering equations (1.1) are compared
to the corresponding similarity solution atχ =
200. The soliton leads to significant differences.
(Reprinted from [1].)

nature of the solution is readily apparent. Actually, these solutions are often referred to
in the physics literature as “accordions,” because like an accordion squeezed from the
right, the interesting ripples of the solutions are squeezed towardτ = 0. In the second
example, we letβ(0, τ ) = 0.2− 2πτ . Figures 3 and 4 compare the numerical solution
of the full PDEs (1.1) (labeled TSRS for transient stimulated Raman scattering) with the
numerical solution of the similarity ODE settingβ(ξ = 0) = βs = 0.2, whereξ = √χτ
is the similarity variable. It was shown in [5] that this comparison is best when the offset
is given by

χoff = 1

sinβ0(τ )

d

dτ
β0(τ )

∣∣∣∣
τ=0

, β0(τ ) = β(0, τ ),

which, in this case, is approximately−32. This offset can be inferred from equations
(1.18). For this reason the solution of the full TSRS equations (1.1) atχ = 200 and
χ = 800 are compared with the similarity solutions in the range [0,168] and the range
[0,768], respectively. A soliton is generated initially atτ = 0.2/2π , due to the fact that
there is a phase flip at this value ofτ . This soliton propagates toward the right, and by
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Fig. 4. The same comparison as in Fig. 3 is made
at χ = 800. The soliton has propagated to the
back of the pulses and the agreement at times
preceding the soliton is excellent. (Reprinted
from [1].)

the pointχ = 1000, has “dropped off the edge.” Beyondχ ∼ 400, there is excellent
agreement between the TSRS solution at times preceeding the soliton and the similarity
solution. Beyondχ = 1000, there is an excellent agreement at all times.

In order to observe experimentally the predicted behavior in gases (such asH2 or D2),
one must generate pulses that are short compared to the molecular de-excitation time
or that have a rapid initial rise [1]. Indeed, self-similar oscillations have already been
observed in the experiments of Duncan et al. [16] where 40ps pulses were used. In order
to carry out a careful comparison of theory and experiments, one must use a multipass
cell, like the one described by MacPherson et al. [2]. This type of cell filters out the
higher-order Stokes and anti-Stokes radiation and also corresponds to a long length (for
this, one needs 10 to 20 passes through the cell [1], [5]).

We conclude this section with two remarks.

1. The SRS system reduces to the sine-Gordon equation in the case that the optical fields
are in phase. However, even in this case, the SRS system behaves very differently from
the solutions of the Cauchy problem on the infinite line for the sine-Gordon equation.
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The mathematical difference that reflects the physical difference is in the initial and
boundary conditions. Because of these differences, the asymptotic behavior of the
SRS system is characterized by the similarity solution.

2. If one wants to compare the solution of the SRS system with some particular solution
of Painlevé III, one must choose some initial conditions for the Painlev´e III equation
(see the discussion above about the offset). An important advantage of the analysis
presented here is that we have characterizeduniquelythe particular solution of the
Painlevé III corresponding to any initial-boundary conditions of the SRS system.
Indeed, equation (1.20) uniquely specifies the corresponding monodromy data that
in principle characterizes the associated initial data (see [4]).

Appendix A. Small k Behavior of8(χ, τ, k)

Substituting equations (3.11) and (3.12) into equation (3.1), we find that the smallk
behavior of the(11) and(21) terms of the first integral in equation (3.1) are given by

iY(0,1)

[
α2(0,1)

1+ b(0,1)
− β2(0,1)

1− b(0,1)

]
E(τ, k)

+ iY(0, τ )β2(0, τ )

1− b(0, τ )
e

i
2k (τ−1) − iY(0, τ )α2(0, τ )

1+ b(0, τ )
, (A.1)

and

i Ȳ(0,1)

[
β1(0,1)

1+ b(0,1)
− α1(0,1)

1− b(0,1)

]
E(τ, k)

− i Ȳ(0, τ )β1(0, τ )

1+ b(0, τ )
e

i
2k (τ−1) + i Ȳ(0, τ )α1(0, τ )

1− b(0, τ )
, (A.2)

whereE(τ ′, τ, k) = exp{− i
4k [
∫ τ ′
τ

b(0, ξ)dξ + 1− τ ]}. Indeed, the leading behavior of
the(11) term is given by

1

4k

∫ 1

τ

Y(0, τ ′)α2(0, τ
′)e
− i

4k

[∫ τ ′

τ
b(0,ξ)dξ+τ ′−τ

]
dτ ′

+ 1

4k

∫ 1

τ

Y(0, τ ′)β2(0, τ
′)e
− i

4k

[∫ τ ′

τ
b(0,ξ)dξ+2−τ−τ ′

]
dτ ′.

Integration by parts yields

i
Y(0, τ ′)α2(0, τ ′)

1+b(0, τ ′)
e
− i

4k

[∫ τ ′

τ
b(0,ξ)dξ+τ ′−τ

]∣∣∣∣∣
1

τ

+ iY(0, τ ′)β2(0, τ ′)
−1+b(0, τ ′)

e
− i

4k

[∫ τ ′

τ
b(0,ξ)dξ+2−τ−τ ′

]∣∣∣∣∣
1

τ

,

which upon simplification becomes (A.1).
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Using (A.1), it follows that the leading order behavior of the(11) term of equation (3.1)
implies

α1(χ, τ )+ β1(χ, τ )e
i

2k (τ−1) = E(1, τ, k)

+ iY(0,1)

[
α2(0,1)

1+ b(0,1)
− β2(0,1)

1− b(0,1)

]
E(1, τ, k)

+ iY(0, τ )β2(0, τ )

1− b(0, τ )
e

i
2k (τ−1) − iY(0, τ )α2(0, τ )

1+ b(0, τ )

+
∫ χ

0
X(χ ′, τ )α2(χ

′, τ )dχ ′

+
(∫ χ

0
X(χ ′, τ )β2(χ

′, τ )dχ ′
)

e
i

2k (τ−1).

Thus,

α1(χ, τ ) = − iY(0, τ )α2(0, τ )

1+ b(0, τ )
+
∫ χ

0
X(χ ′, τ )α2(χ

′, τ )dχ ′, (A.3a)

β1(χ, τ ) = iY(0, τ )β2(0, τ )

1− b(0, τ )
+
∫ χ

0
X(χ ′, τ )β2(χ

′, τ )dχ ′, (A.3b)

1+ iY(0,1)

[
α2(0,1)

1+ b(0,1)
− β2(0,1)

1− b(0,1)

]
= 0. (A.3c)

Similarly, using (A.2), the(21) term of equation (3.1) implies

α2(χ, τ ) = Ȳ(0, τ )α1(0, τ )

1− b(0, τ )
−
∫ χ

0
X̄(χ ′, τ )α1(χ

′, τ )dχ ′, (A.4a)

β2(χ, τ ) = − i Ȳ(0, τ )β1(0, τ )

1+ b(0, τ )
−
∫ χ

0
X̄(χ ′, τ )α2(χ

′, τ )dχ ′, (A.4b)

β1(0,1)

1+ b(0,1)
= α1(0,1)

1− b(0,1)
. (A.4c)

Appendix B. Small k Behavior of the Spectral Data

Using an approach similar to the one used in Appendix A, it can be shown that the small
k behavior of equation (3.20) yields

81(0, τ, k) = A1(τ )+ B1(τ )e
i

2k (τ−1), (B.1)

82(0, τ, k) = i Ȳ(0, τ )

1− b(0, τ )
A1(τ )− i Ȳ(0, τ )

1+ b(0, τ )
B1(τ )e

i
2k (τ−1), (B.2)
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with

A1(1) = 1− b(0,1)

2
, B1(1) = 1+ b(0,1)

2
. (B.3)

Similarly, the smallk behavior of equation (3.24) yields

81(χ,0, k) = α1(χ)+ β1(χ)e
− i

2k , (B.4)

82(χ,0, k) = α2(χ)+ β2(χ)e
− i

2k , (B.5)

where

α1(χ) = A1(0)+
∫ χ

0
X(χ ′,0)α2(χ

′)dχ ′, (B.6a)

α2(χ) = i Ȳ(0,0)

1− b(0,0)
A1(0)−

∫ χ

0
X̄(χ ′,0)α1(χ

′)dχ ′, (B.6b)

β1(χ) = B1(0)+
∫ χ

0
X(χ ′,0)β2(χ

′)dχ ′, (B.7a)

β2(χ) = −i Ȳ(0,0)

1+ b(0,0)
B1(0)−

∫ χ

0
X̄(χ ′,0)β1(χ

′)dχ ′. (B.7b)

Equations (3.28) imply

ρ1(k) ∼ α1(l )+ β1(l )e
− i

2k , k→ 0, (B.8)

ρ2(k) ∼ α2(l )+ β2(l )e
− i

2k , k→ 0. (B.9)

Thus, if X(χ,0) = 0,

ρ1(k) ∼ A1(0)+ B1(0)e
− i

2k , k→ 0 (B.10)

ρ2(k) ∼ i Ȳ(0,0)

1− b(0,0)
A1(0)− i Ȳ(0,0)

1+ b(0,0)
B1(0)e

− i
2k , k→ 0. (B.11)

Appendix C. The Dressing Method

We will show that it is possible to defineb(χ, τ ), Y(χ, τ ), andX(χ, τ ) in terms of the
asymptotic properties of8(χ, τ, k) in such a way that: (a) TheO(k), O(1), andO( 1

k )

terms of the lhs of equations (3.18) vanish. (b) The functionsb,Y, X satisfy equations
(1.7).

We assume that822 = 8̄11,812 = −8̄11. Substituting

8 = I + 8
(1)

k
+ 8

(2)

k2
+ O

(
1

k3

)
, k→∞, kI 6= 0, (C.1)
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in equations (3.18) we find

U = i [σ3,8
(1)], (C.2)

8(1)
χ + i [σ3,8

(2)] = U8(1), (C.3)

8(2)
χ + i [σ3,8

(3)] = U8(2), (C.4)

...

and

8(1)
τ − i (1+ b)σ3 = −V, (C.5)

8(2)
τ − i (8(1)σ3+ bσ38

(1)) = −V8(1), (C.6)

8(3)
τ − i (8(2)σ3+ bσ38

(2)) = −V8(2), (C.7)

...

Equation (C.2) yields

U =
 0 X

−X̄ 0

 , X = 2i8(1)
12 . (C.8)

Equation (C.3) yields

8
(1)
11χ
= |X|

2

2i
, (C.9)

Xχ = 48(2)
12 − 2i8(1)

11 X. (C.10)

The diagonal part of (C.4) implies

8
(2)
11χ
= −X8̄(2)

12 . (C.11)

Equation (C.5) yields

8
(1)
11τ
= i (1+ b), (C.12)

Xτ = −2iY. (C.13)

Equation (C.13) is equation (1.7c). Also, the compatibility of equations (C.9) and (C.12)
implies equation (1.7a).

Equation (C.6) yields

8
(2)
11τ
= i (1+ b)8(1)

11 −
YX̄

2i
, (C.14)

8
(1)
12τ
= (−1+ b)

2
X + Y8(1)

11 . (C.15)
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The compatibility of the equations for8(2)
11χ

(equation (C.11)) and for8(2)
11τ

(equation
(C.14)) imply equation (1.7b). Similarly the compatibility of the equations forXχ (equa-
tion (C.10)) and forXτ (equation (C.13)) also imply equation (1.7b).

In summary: Let the complex-valued function8 satisfy822 = 8̄11, 812 = −8̄11.
DefineX,b,Y by

X = 2i8(1)
12 , b = −1− i8(1)

11τ
, Y = i

2
Xτ . (C.16)

Then if8 satisfies (C.1), theO(k), O(1) andO( 1
k ) terms of equations (3.18) vanish iff

X,b,Y satisfy equations (1.7).
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