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We study theoretically the effect of an intracavity etalon on actively mode-locked fiber lasers by solving the
master equation for the laser when nonlinearity in the laser is negligible. The first-order dispersion of the
material inside the etalon can increase the pulse duration by a factor of 10. The minimum pulse duration is
obtained when the relative frequency offset between the free spectral range of the etalon and the modulation
frequency of the active mode locking is of the order of 10−2. The group-velocity dispersion of the material inside
the etalon as well as the finesse of the etalon affect the total cavity dispersion. The etalon helps to suppress
both a simultaneous lasing in several supermodes and lasing in higher-order pulse modes of the master equa-
tion. The etalon also helps lock the central wavelength of the laser to the etalon comb. © 2007 Optical Society
of America
OCIS codes: 140.4050, 140.3510, 060.2310, 050.2230, 140.3410.
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. INTRODUCTION
ctively mode-locked fiber lasers are important pulsed
ources due to their ability to generate a train of short
ulses with a high repetition rate and a very low jitter
1–3]. To improve the performance of fiber lasers, one

ust reduce the noise, stabilize their operation, and
liminate pulse dropout. One of the methods to stabilize
ctively mode-locked fiber lasers is to use an intracavity
abry–Perot etalon [4–7].
The effect of an intracavity etalon on the pulses of an

ctively mode-locked fiber laser has been studied experi-
entally [4–7]. A theoretical study of a laser with an int-

acavity etalon is given in Ref. [7]. However, in this work,
he effect of the cavity dispersion and the dispersion of
he material inside the etalon was not taken into account.
he work was also based on assuming a Gaussian pulse
rofile, rather than obtaining all the possible pulse modes
y solving a master equation. In Ref. [8], the effect of an
ntracavity etalon on a pulse’s duration was theoretically
tudied. However, the assumption in this work was that
he bandwidth of a single etalon mode is large compared
ith both the axial mode spacing of the laser and the
ulse bandwidth. In a fiber laser that generates short
ulses of the order of 10 ps with a repetition rate of a few
igahertz, the mode spacing of the etalon is approxi-
ately equal to mode spacing between the laser modes

4–7] as studied in this paper. We also show that the ma-
erial dispersion inside the etalon that was neglected
lays an important role in determining the pulse duration
n fiber lasers.
0740-3224/07/081793-10/$15.00 © 2
In the present paper, we theoretically study a laser that
ontains an intracavity etalon by deriving and solving an
ppropriate master equation that includes terms that are
ue to the intracavity etalon. The solution of the master
quation gives the dependence of the pulse duration on
he parameters of the etalon assuming that nonlinearity
s negligible. In particular, we show that the first-order
ispersion caused by the etalon material significantly in-
reases the pulse duration. We show that the minimum
ulse duration is obtained when there is a small detuning
f the order of 1% between the free spectral range of the
talon and the frequency difference between the laser
odes. We also show that the group-velocity dispersion of

he material inside the etalon and the etalon finesse
hould be taken into account when calculating the cavity
ispersion. Therefore, the insertion of the etalon may in-
rease or decrease the pulse duration, depending on the
ign of the second-order etalon dispersion. The etalon
elps to suppress a simultaneous lasing in several super-
odes as well as suppressing lasing in higher-order pulse
odes of the master equation. The etalon also helps to

ock the center frequency of the laser. Therefore, the use
f an intracavity etalon eliminates the need to control the
ength of the laser cavity, which is required when the la-
er is locked to an external etalon [9]. The filtering from
he intracavity etalon can be more than three times stron-
er than the filtering from an external etalon with the
ame finesse. By appropriately choosing the cavity disper-
ion, the etalon finesse, and the dispersion of the material
nside the etalon, the minimum pulse duration can be
007 Optical Society of America
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qual to the Kuizenga–Siegman limit of a laser without
ispersion [8].
The paper is organized as follows. In Section 2, we de-

ive the master equation for a laser with an intracavity
talon. The master equation is solved in Section 3. The ef-
ect of the etalon parameters on the pulse duration and on
he suppression of higher-order lasing modes is analyzed
sing numerical examples in Section 4. In Section 5, we
how that the etalon helps to suppress simultaneous las-
ng in several supermodes. We determine the optimal eta-
on finesse and the optimal detuning between the free
pectral range of the etalon and the spacing between laser
odes that are required in order to obtain a large sup-

ression of supermode competition without a significant
ncrease in the pulse duration.

. MATHEMATICAL MODEL FOR THE
ASER
ur mathematical model of the laser is similar to the
aster-equation model developed by Haus [10]. A sche-
atic of an actively mode-locked ring fiber laser is shown

n Fig. 1. The laser uses an erbium-doped fiber amplifier
ith a broad bandwidth and a slow relaxation time, of the
rder of hundreds of microseconds. The laser cavity also
ncludes an optical filter, a sinusoidally varying ampli-
ude modulator at a frequency �M, an isolator for obtain-
ng a unidirectional oscillation, a fiber with a length L,
nd a Fabry–Perot etalon with a free spectral range �e
nd a finesse F. To obtain the optimal performance of the
aser, we assume that the modulation frequency, �M /2�,
s equal to the inverse of the round-trip time of a pulse
nside the cavity multiplied by an integer number. This
ondition can be met in fiber lasers by using a tunable de-
ay line connected to an electro-optic feedback circuit [1].

e denote the gain and the FWHM of the gain profile by
and 2�g, and we denote the loss and the FWHM of the

ptical filter by K and 2�K, respectively. The central fre-
uency of the amplifier is denoted by �g. We also assume
hat the central frequency of the optical filter is equal to
he central frequency of the amplifier, as is required to ob-
ain short pulses.

. Spectral Transfer Function of the Etalon
he spectral transfer function of an etalon built up from
wo equal mirrors, with an intensity reflection coefficient
, is a periodic function of the frequency [11,12]

ig. 1. Schematic of the laser cavity that is analyzed in this pa-
er. EDFA, an erbium-doped fiber amplifier.
TF��tot� =
�1 − R�exp�i�/2�

1 − R exp�i��
, �1�

here �tot is the angular frequency, �=2�totn��tot�l /c is
he phase accumulated in one round trip, n is the refrac-
ive index of the material inside the etalon, c is the light
elocity, and l is the etalon length. The exponent in the
umerator of Eq. (1) is equivalent to propagation through
dielectric slab with a length l and a refractive index n,

nd it can therefore be omitted from the transfer function
nd put back elsewhere. In this case, the transfer func-
ion of the etalon becomes TE��tot�=TF��tot�exp�−i� /2�.
he optical spectrum of laser pulses is built from modes
t discrete frequencies,

�tot = �0 + �� + N�e + N��, �2�

here ��=�M−�e, N=0, ±1, ±2, . . . is an integer, �e
�c / ln��0� is the free spectral range of the etalon at a fre-
uency �0, and �0 is the resonance frequency of the etalon
hat is closest to the central frequency of the laser ampli-
er, �g. The FWHM of an etalon mode is equal to �e /F
here F=��R / �1−R� is the etalon finesse [12]. The fre-
uency offset �� is the frequency detuning of the laser fre-
uency comb relative to the etalon comb at N=0. Figure 2
llustrates the notation used in Eq. (2).

The width of the etalon modes is significantly greater
han the width of the laser modes. Experimental results
ndicate that the width of the laser modes is of the order
f a few kilohertz [13,14]. On the other hand, the width of

ig. 2. Schematic of the etalon modes (dotted curve) and the
odes of the laser (solid line) when (a) ��=0, (b) ���0. The pa-

ameter N is the mode number. The dashed–dotted curve repre-
ents the etalon filtering.
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he etalon modes is of the order of tens of megahertz.
herefore, we will calculate the transfer function of the
talon only at the frequencies of the laser modes.

To obtain narrow pulses and avoid a significant in-
rease in the cavity loss, the frequency offsets �� and ��
hould both be small compared with the width of the eta-
on modes, so that ��, ����e /F, as shown in Fig. 2. In
ctively mode-locked lasers, the pulse bandwidth is al-
ays smaller than the carrier frequency, and hence

Nmax��M��0. In the numerical example given in Section
, we use 	0=1.55 
m, �0=1.2�1015 rad/s, �M /2�
10 GHz, an etalon finesse F=100, from which we obtain

Nmax��3.2, 2�Nmax��e�4�1011 rad/s, �� /�e�0.01, and
� /�e�10−4. These values correspond to experiments
4–7]. Hence, we may use the ordering,

�tot = �−1�0 + N�e + ���� + N���, �3�

here � is an ordering parameter, which we will eventu-
lly set equal to 1. As usual in this sort of expansion, the
rdering parameter is used to keep track of the relative
agnitude of components. Terms proportional to higher

owers of � are smaller than those at lower power. We will
ake into account in our calculations the effect of the ma-
erial dispersion inside the etalon up to second order in
he frequency difference, �tot−�0. We choose to use a
ingle ordering parameter for the changes in both the re-
ractive index and the frequency. Since �Nmax��M��0, we
btain

n��� = n0 + �21�N�e + ���� + N����

+ �32�N�e + ���� + N����2, �4�

here n��� is the refractive index of the material inside
he etalon, 1= �dn /d�tot��0

, 2= ��1/2�d2n /d�tot
2 ��0

. For
ulk fused silica at 	=1.55 
m, we obtain n0=1.44, 1�0
1.86�10−2, 1�e=9.6�10−7, 2�0�e=−1.22�10−6,
2�e

2=−6.3�10−11, and ��1 /n0� / �2 /1��=0.01.
The accumulated phase in the etalon �, given in Eq. (1),

an be decomposed into successive orders,

� = �−1�−1 + �0 + ��1 + �2�2, �5�

here

�−1 =
2l

c
n0�0 = 2�m, �6a�

�0 =
2l

c
n0N�e = 2�N, �6b�

�1 =
2l

c
n0��� + Nh�, �6c�

�2 =
2l

c
�1�0��� + N��� + �1 + 2�0�

��N� �2�, �6d�
e
h = �� + �e1�0/n0, �6e�

nd m is an integer. The parameter h denotes the differ-
nce between the free spectral range of the etalon and the
requency difference between the laser modes. The second
erm in the parameter h describes the effect of the disper-
ion of the material inside the etalon on the free spectral
ange of the etalon. The result obtained for �−1 and �0
ives the etalon resonance condition.

By substituting the Taylor expansion given in Eq. (5)
nto Eq. (1), we obtain

TE��� = 1 + � �P

��
�

�=0

���1 + �2�2� +
1

2� �2P

��2�
�=0

���1 + �2�2�2

	1 + i
�JR

2
���1 + �2�2� − �2J�1 + R�

�1
2

8
+ O��3�, �7�

here J is the finesse coefficient, given by J=4R / �1−R�2.
y substituting Eq. (6) into Eq. (7), we obtain

TE��tot� = P̄0 + P̄1� + P̄2�2, �8�

here

P̄0 = 1,

P̄1 = 
iC2�2ln0

c ��� + 
iC2�2ln0

c �hN,

P̄2 = 
iC2�2ln0

c ��1/n0��0�� + C1�2ln0

c �2

����2
+ 
iC2�2ln0

c ��1/n0��0�� + C1�2ln0

c �2

2h��N

+ 
iC2�2ln0

c ���1 + �02�/n0��e
2

+ C1�2ln0

c �2

h2N2, �9�

ith C1=−J�1+R� /8 and C2=�JR /2.
Equation (8) can be ordered as

TE�N� = P̃0 + P̃1N + P̃2N2, �10�

here

P̃0 = 1 −
J�1 + R�

8
�2ln0/c�2��2 + i

�JR

2

2l

c
��01�� + n0���,

P̃1 = −
J�1 + R�

8
�2ln0/c�22h�� + i

�JR

2

2l

c
�hn0 + �01���,

P̃2 = −
J�1 + R�

8
�2ln0/c�2h2 + i

�JR

2

2l

c
�1 + �02��e

2. �11�

rom here on, we set �=1.
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. Master Equation for Pulse Spectrum
he field in the laser cavity is built from a train of pulses,

E�T,t� = �
m

am�T,t − mTM�, �12�

here TM is repetition rate of the pulses, TM=2� /�M, T is
slow time variable of the order of the cavity round-trip

ime, t is a fast time variable of the order of the pulse du-
ation, and am�T , t� is the field envelope of the mth pulse
efined around a reference frequency that is equal to the
requency of the laser mode at �0+��. Without the etalon,
he master equation is developed for a pulse with a car-
ier frequency that is equal to the central frequency of the
mplifier gain, �g. However, since the bandwidth of the
lter and the amplifier are significantly broader than the
ree spectral range of the etalon and the modulation fre-
uency of the laser, the effect of the frequency difference
g− ��0+��� on the parameters of the master equation
an be neglected. In the example given in Section 4, the
odulation frequency and the free spectral range of the

talon are approximately equal to 2��1010 rad/s, while
he bandwidths of the amplifier gain and the filter are
qual to �g=5.5�1012 and �K=3.9�1012 rad/s, respec-
ively. Therefore, the change in the filter loss due to the
requency difference �g− ��0+��� is less than 6�10−6.

We neglect in our analysis the nonlinear Kerr effect.
his neglect enables us to obtain a simple solution and it

s justified since the pulses that were experimentally ob-
ained in fiber lasers with an intracavity etalon had a
road duration of �10–100 ps [4–7]. The master equation
or the mth pulse of the pulse train is given by

TR

�am�T,t�

�T
= �g − ��am�T,t� + �iD +

g

�g
2 +

K

�K
2 � �2am�T,t�

�t2

− M�1 − cos��Mt��am�T,t� + wm�T,t�, �13�

here � is the laser loss per a single round trip, TR is the
ound-trip time, D is the overall cavity group-velocity dis-
ersion coefficient (D�0 represents the anomalous dis-
ersion region), M is the modulation depth, and �g, �K, g,
nd K are the FWHM and the gain and loss of the ampli-
er and the filter, respectively. We are using the negative
arrier frequency convention. The filter loss that is fre-
uency independent is included in the constant loss �.
he pulse duration is significantly shorter than the period
f the mode locking, TM=2� /�M, and therefore the trans-
ission of the modulator can be approximated by M�1
cos��Mt���M��Mt�2 /2. The function wm�T , t� represents

he response of the etalon. When the dispersion of the ma-
erial inside the etalon can be neglected the change in the
th pulse due to the etalon is given by

wm�T,t� = �1 − R��
j=0

�

Rjam−j�T,t − j�TM − Te�� − am�T,t�,

�14�

here Te=2l / �cn0� is the round-trip time of a pulse in the
talon. Equation (14) shows that in the time domain, the
talon couples neighboring pulses. The number of pulses
hat are coupled is approximately equal to the finesse of
he etalon.
The effect of the etalon on the laser may be analyzed in
he frequency domain, allowing us to include the effect of
ispersion inside the etalon. Assuming that all the laser
ulses are the same, i.e., am�T , t�=a�T , t�, we can calcu-
ate the transfer function of the etalon in the frequency
omain for one of the cavity pulses. To use Eqs. (1) and
10) for calculating the etalon transmission, the lifetime
f a single pulse in the etalon must be smaller than the
ffective round-trip time of the pulse in the laser cavity,
hich will be true as long as the finesse of the intracavity
talon is smaller than the number of pulses that simulta-
eously propagate in the cavity. For example, in a laser
ith a cavity length of �100 m and with a repetition fre-
uency of 10 GHz, approximately 5000 pulses simulta-
eously propagate inside the cavity, while the typical fi-
esse of an intracavity etalon is only of the order of a few
undred. Since the lifetime of a pulse in the etalon is ap-
roximately equal to FTe, we may neglect coupling be-
ween pulses that propagate a different number of round
rips in the cavity. On the other hand, since the etalon
auses coupling among a large number of pulses, the
ulses inside the cavity will be mutually coherent. Hence,
e obtain

w�T,t� = �1 − R��
j=0

�

Rja�T,t − j�TM − Te�� − a�T,t�.

�15�

he first term in the right-hand side of Eq. (15) is equal to
he transfer function of etalon in the time domain when
ispersion is neglected. The effect of dispersion on the
talon can be added in the frequency domain after mak-
ng a Fourier transformation of Eq. (15). The detuning be-
ween the etalon and the laser cavities TM−Te is con-
erted in the frequency domain to a linear phase shift
hat accumulates in one round trip. The effect of the first-
nd second-order dispersion at �0+�� can then be added.
he result reproduces Eq. (1), as expected. Using the ap-
roximate transmission of the etalon for the laser modes,
e substitute N= ��tot− ��0+���� /�M�� /�M into Eq. (10)
nd obtain

TE��� = P0 + P1� + P2�2,

w�T,�� = ã�T,���TE��� − 1�, �16�

here

Pi =
P̃i

��M�i �i = 0, . . . ,2�. �17�

e note that � is the frequency difference, calculated
ith respect to a reference frequency that is equal to the

aser mode at �0+��, and the pulse spectrum, ã�T ,��, is
he Fourier transform of the pulse profile a�T , t�

ã�T,�� =�
−�

�

dt exp�i�t�a�T,t�. �18�

The master equation, written in the frequency domain,
ecomes
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TR

�ã�T,��

�T
=

M

2
�M

2
�2ã�T,��

��2 − �iD +
g

�g
2 +

K

�K
2 − P2�

��2ã�T,�� + �g − � + Re�P0 − 1��ã�T,��

+ � Re�P1�ã�T,��. �19�

he parameters of the etalon, Pi, i=0,1,2, are defined in
qs. (11) and (17). The term Im�P0� gives the change in

he accumulated phase of the pulses, and, therefore, it
nly slightly changes the effective cavity length. The
erms proportional to Re�P0� and Re�P1� describe the con-
tant and the linear frequency-dependent loss due to the
talon. The real and the imaginary part of the term pro-
ortional to P2 describe the second-order loss and the dis-
ersion caused by the etalon, respectively. We note that
he time TR is determined by the group velocity Vg of all
he cavity elements including the etalon. Hence, the con-
ribution from Im�P1� is included in TR and does not ap-
ear separately.

. SOLUTION OF THE MASTER EQUATION
n a practical fiber laser, the frequency difference between
he cavity modes is significantly smaller than the band-
idth of the etalon modes. For example, in a ring laser
ith a length of 100 m, the frequency difference between

wo neighboring modes is 2 MHz. Assuming an etalon
ith a free spectral range of 10 GHz and a finesse of F
100, there should be �50 laser modes inside a single
talon mode. Therefore, in such a laser, we may set ��
0 and hence Re�P1��0. A solution of Eq. (19) when ��
0 will be given in Section 5. In the case when Re�P1�
0, the solution of Eq. (19) can be represented as a series

f Hermite–Gaussian modes,

ã�T,�� = �
m=0

�

cm exp�−
�2

2
�m

2 �Hm���m�exp� T

TR
�m� ,

�20�

here Hm�x� are Hermite polynomials of the order of m,
m is the mode amplitude, and the parameters �m and �m
re obtained from the relations

�m
4 = W/s, �21a�

�m = gm − � − �2m + 1��Ws, �21b�

here

s =
M

2
�M

2 , W =
gm

�g
2 +

K

�K
2 + iD − P2. �22�

he inverse Fourier transform of the pulse spectrum is
qual to

a�T,t� = �
m=0

�

cm exp�−
t2

2�m
2 �Hm�t/�m�exp� T

TR
�m� .

�23�

Above the laser threshold, the net gain of the mth
ode, Re��m�, should be equal to zero. If the laser ampli-
er is homogeneously broadened, only the mode with the
owest net gain will be generated. In actively mode-locked
ber lasers, based on an erbium-doped fiber amplifier, the
andwidth of the amplifier is significantly broader than
he bandwidth of the pulses. Therefore, the amplifier gain
n our laser is mainly determined by the constant loss �
nd by the etalon, as we show in the numerical example
resented in Section 4. Hence, the parameter W does not
trongly depend on the mode number. In this case, Eq.
21b) shows that the minimum threshold gain is obtained
or the fundamental mode with m=0. The pulse param-
ter �0 obtained for this mode is given by

�0 =� 1

2�g
2 + 
� 1

2�g
2�2

+
P̂ − iD̂

s 1/2�1/2

, �24�

here

P̂ =
�

�g
2 +

K

�K
2 −

J�1 + R�

8
�2ln0/c�2h2

1

�M
2 , �25�

D̂ = − D + �JR
l

c
�1�e

2 + �02�e
2�

1

�M
2 −

Im��0�

�g
2 .

�26�

quation (25) implies that the etalon adds an effective fil-
er to the laser cavity that is represented by the last term
n Eq. (25). The etalon also adds an additional group-
elocity dispersion to the laser cavity that is represented
y the two final terms in Eq. (26). We note that the term
1+�02 is equal to ��2/c�d2���� /d�2��0

, where ���� is the
ropagation wavenumber in the etalon.

. NUMERICAL EXAMPLE
n our numerical example, we will consider a laser with a
onfiguration as described in Fig. 1 and with a modula-
ion frequency �M /2�=10 GHz, a modulation index M
0.2, an accumulated group-velocity dispersion per round

rip D=0.13 ps2, and a constant loss �=0.1. The amplifier
nd the filter had a FWHM bandwidth of 2�g=2�5.5
1012 rad/s �20 nm� and 2�K=2�0.7�g �14 nm�, respec-

ively. We consider an etalon that is made of fused silica,
o that the dispersion parameters are given by [12] 1�0
0.0186, 2�0�M=−1.22�10−6. The length of the etalon

s l=1 cm. We neglect the dispersion of the etalon mirrors.
We will present the chirped Gaussian pulses that are

enerated by the laser using the notation [15]

a�t� = a0 exp
−
�1 + iC�

2

t2

T0
2 , �27�

here T0= ��0�2 / ��R
2 −�1

2�1/2, 2T0 is the pulse duration at 1/e
ntensity points, C=−2�R�I / ��R

2 −�I
2� is the chirp param-

ter, �R=Re��0�, �I=Im��0�, and �0 is the pulse parameter
btained from Eq. (24). Figure 3(a) shows the dependence
f the chirp parameter C and the normalized pulse dura-
ion 2T0 /2�s, where 2�s is the Kuizenga–Siegman limit
8], on the detuning between the etalon and the laser

odes, ��, for an etalon with a finesse F=100. The figure
hows that a minimum pulse duration is obtained when
he detuning �� between the etalon and the laser modes
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oes not equal to zero. When substituting the parameters
sed to calculate Fig. 3 into Eqs. (25) and (26), we find
hat when ��=0, the first-order dispersion of the etalon
aterial, 1, increases the parameters P̂ and D̂ by a factor

f approximately 104 and 1.1, respectively, with respect to
he case 1=0. The increase in the parameter P̂ yields an
ncrease in the pulse duration by a factor of approxi-

ately 10. It is possible to compensate for the increase in
he parameter P̂ due to the etalon material dispersion by
dding a detuning ��min. Since in our example the gain
nd the filter dispersion make a small contribution to the
arameter P̂, the detuning parameter that gives a mini-
um pulse duration can be approximately calculated by

equiring that h=0 and hence ��min/�e	−1�0 /n0.
It is necessary to detune the free spectral range of the

talon relative to the frequency spacing between the laser
odes in order to obtain an optimal overlap between the

aser modes and the etalon modes. The frequency spacing
etween the laser modes is almost independent of the fre-
uency. On the other hand, the frequency spacing be-
ween the etalon modes depends on the frequency due to
he dispersion of the material inside the etalon. The de-
uning between the etalon and the laser modes is needed

ig. 3. (a) Pulse duration 2T0, normalized to the Kuizenga–
iegman limit 2�s and (b) the chirp parameter C, as a function of
he normalized frequency detuning between the etalon and the
aser modes, �� /�M, for a laser with a modulation frequency

M /2�=10 GHz, a modulation depth M=0.2, a total cavity dis-
ersion D=0.13 ps2, a constant loss �=0.1, and an intracavity
talon with a finesse F=100 and with material dispersion coeffi-
ients 1�0=0.0186, 2�M�0=−1.22�10−6.
o compensate for the first-order dispersion of the mate-
ial inside the etalon.

The minimum pulse duration of 2T0=9.4 ps obtained in
ig. 3 is longer than the 6 ps Kuizenga–Siegman limit [8]
ecause the dispersion parameter of the laser D̂ does not
qual zero. Equation (26) shows that the dispersion pa-
ameter D̂ depends on the total cavity dispersion D as
ell as on the dispersion added by the etalon. The etalon
ispersion is affected by the dispersion of the material in-
ide the etalon and it increases as the finesse of the etalon
ncreases. Therefore, in a laser with an etalon, the total
ispersion is determined by the parameter D̂ instead of
otal cavity dispersion D in a laser without an etalon. Fig-
re 3(b) shows the chirp parameter C. The figure shows
hat a chirp is added when the pulse duration becomes
inimum. The chirp decreases to zero as the detuning pa-

ameter deviates more from the point where a minimum
ulse duration is obtained.
Figures 4 and 5 shows the dependence of the minimum

ulse duration and the corresponding pulse chirp on the
nesse of the etalon for two different signs of the total
avity dispersion D. In Fig. 4, the etalon adds a second-
rder dispersion with the same sign as the cavity disper-
ion (anomalous dispersion). In this case, the pulse dura-
ion increases as the etalon finesse increases as well as
he pulse chirp. In the results shown in Fig. 5, the total
avity dispersion is normal and the etalon adds a second-
rder dispersion with an opposite sign to the cavity dis-
ersion. In this case, when the etalon finesse increases,

ig. 4. Dependence of (a) the minimum pulse duration normal-
zed to the Kuizenga–Siegman limit and (b) the chirp parameter
n the etalon finesse calculated using the parameters in Fig. 3
nd a normalized detuning, �� /� =−0.012858.
M



t
c
t
F
a
n
d
d
m
i
m
s

R
s
r
c

F
z
f
m
g
e

c
p
s
p
l
p
w
b
m
r
l
i
e
b
t
i
p
t
a
a
E
p
m

h
t
e
t
�

F
i
o
=
o

F
m
(
m
t

Parkhomenko et al. Vol. 24, No. 8 /August 2007 /J. Opt. Soc. Am. B 1799
he pulse duration decreases until the pulse duration be-
omes equal to Kuizenga–Siegman limit of 2T0=6 ps for
he laser. This limit is reached when the finesse is about
=1500. At this point, the total cavity dispersion, D̂, is
pproximately equal to zero. A further increase in the fi-
esse increases the pulse duration since the total cavity
ispersion begins to increase. Therefore, when the cavity
ispersion, the etalon finesse, and the dispersion of the
aterial inside the etalon are appropriately chosen, the

nsertion of the intracavity etalon will not increase the
inimum pulse duration that can be generated by the la-

er.
Figure 6 shows dependence of the minimum gain

e�gm� that is needed for different laser modes in a
teady-state condition as a function of the detuning pa-
ameter, ��. The steady-state gain parameter gm was cal-
ulated by solving the equation, obtained from Eq. (21),

gm = � + �2m + 1�Re
M�M
2

2 �gm

�g
2 +

K

�K
2 + iD − P2�1/2

.

�28�

igure 6 shows that the minimum gain is obtained for the
ero-order mode �m=0�. The minimum gain is obtained
or the detuning frequency ��=��min that gives the
inimum pulse duration. The difference between the

ain of different modes increases as the absolute differ-
nce between the detuning frequencies ���−�� �, in-

ig. 5. Dependence of (a) the minimum pulse duration normal-
zed to the Kuizenga–Siegman limit and (b) the chirp parameter
n the etalon finesse calculated for a total cavity dispersion D
−0.13 ps2 and a normalized detuning, �� /�M=−0.012858. The
ther laser parameters are as used in Fig. 3.
min
reases. Therefore, the laser becomes more stable as the
ulse duration increases. In the general case, it is not
traightforward to solve Eq. (28) since the gain gm ap-
ears on both sides of the equation. However, in a fiber
aser, the constant loss � that does not depend on the
ulse, can be as high as 10 dB [3]. Moreover, the band-
idths of the filter and the amplifier are significantly
roader than the bandwidth of the pulse. Therefore, the
ain contribution to the gain is caused by the etalon, rep-

esented by the term P2 in Eq. (28) and by the constant
oss �. Hence, Eq. (28) indicates that the minimum gain
ncreases as the mode number m increases, due to the
talon filtering effect. As the mode number increases, the
andwidth of the generated pulses increases and hence
he loss of the pulses in the laser cavity increases, which
ncreases the gain. Therefore, the etalon helps to sup-
ress higher mode pulses with m�1. Figure 6 also shows
hat the dependence of the gain on the detuning ��
round the point where the pulse duration is minimal is
pproximately linear. This result can be obtained from
q. (6), since when the detuning �� becomes large, the
arameter h and hence the parameter P2 become approxi-
ately linear on the detuning difference ���−��min�.
We note that at the threshold, the parameter � may

ave an imaginary part. The imaginary part corresponds
o a small detuning of the laser frequency. The detuning is
qual to ��0=Im��� /TR, where TR is the round-trip dura-
ion. In the example given in Fig. 6, the imaginary part of

was significantly smaller than the threshold gain,

ig. 6. (a) Dependence of threshold gain, gm, for different pulse
odes: m=0 (solid line), 1 (dashed line), 2 (dashed-dotted line), 3

dotted line). (b) A close-up view near the point where the mini-
um pulse duration is obtained. The parameters of the laser are

he same as used in Fig. 3.
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m����4�10−3 and therefore ��0 / �2���1.6 KHz, as-
uming that the cavity length Lc=100 m. We also note
hat the term Im��� almost does not affect the parameter
ˆ in Eq. (26) since D=0.13�10−24 s2 while Im��� /�g

2

0.13�10−27 s2.

. SELECTION OF SUPERMODES
Y THE ETALON
mplitude noise in actively mode-locked lasers can be
epresented in the frequency domain as a simultaneous
asing of several supermodes [4]. Each supermode con-
ists of a group of coupled cavity modes that are spaced
part by the modulation frequency. The beating between
everal supermodes that simultaneously lase causes am-
litude noise in the laser pulses and even dropout of
ulses. For the laser to operate stably, only a single su-
ermode should lase. In the present section, we will show
hat the etalon suppresses undesired supermodes in the
aser as well as locking the central wavelength of the la-
er pulses. We will also show that the filtering of the int-
acavity etalon can be approximately three times stronger
han the filtering of the same etalon that is connected to
he output of the laser.

In Section 3, we assumed that the frequency offset ��
quals 0. This assumption is only accurate when the laser
enerates a single supermode and when the spectrum of
he supermode optimally overlaps the etalon modes and
he gain profile of the amplifier. In this section, we will
ot assume that the frequency offset �� is equal to zero.
e will show that the minimum gain that is required for

asing strongly depends on ��, and therefore, the genera-
ion of several supermodes in the laser will be strongly
uppressed by the etalon.

When the frequency offset �� does not equal zero, the
teady-state fundamental solution �m=0� of the master
quation, given in Eq. (19), can be written as

ã�T,�� = A0 exp
−
�� + B�2

2
�2exp� T

TR
�� . �29�

ubstituting Eq. (29) into Eq. (19) and requiring that the
quation is satisfied at each of the powers of the fre-
uency �, we obtain

B = −
��

h/�M

Re�P2�

W
,

s�4 = W. �30�

t threshold we obtain

g = � − Re
� ��

h/�M
�2H Re�P2�

W
− �sW , �31�

here H=W+Re�P2�, while s and W are parameters de-
ned in Eq. (22). Equation (30) determines the pulse du-
ation 2T0, the chirp C, and the shift of the laser spec-
rum B, as a function of the frequency shift ��.

Figure 7 shows the dependence of the threshold gain g0
n the normalized frequency offset �� /��0 for an etalon
ith a finesse of F=200 and for several values of the fre-
uency detuning between the etalon and the laser modes.
he frequency offset �� was normalized to half of the
WHM of the etalon mode, ��0, where ��0 /�e=2� /F [12].
igure 8 shows the threshold gain as a function of the
ormalized frequency offset �� for several values of the
talon finesse F. The frequency offset �� was normalized
n this figure to half of the FWHM of an etalon mode with
finesse F=100, ��100/�e=2� /100. The frequency detun-

ng parameter was equal to h /�M=0.5�10−4. Since the
ulse with a minimum duration is obtained when h�0,
q. (6) indicates that h is approximately equal to the de-

uning ��−��min.
Several conclusions can be deduced from Figs. 7 and 8.

he figures show that the etalon causes a dependence of
he threshold gain on the frequency offset ��. Since each
upermode has its own frequency offset, the etalon helps
o suppress supermode competition. As the threshold gain
or a supermode increases, it becomes more difficult for
he supermode to lase. Therefore, when the dependence of

ig. 7. Dependence of the threshold gain, g0, on the frequency
ffset ��, normalized to half of the FWHM of the etalon modes,
�0, for an etalon with a finesse of F=200 with a frequency de-
uning parameter given by h /�M=2�10−4 (dotted curve), 10−4

dashed-dotted curve), 0.5�10−4 (dashed curve), 10−5 (solid
urve).

ig. 8. Dependence of the threshold gain, g0, on the normalized
requency offset �� /��100, where ��100 is half of the FWHM of an
talon with a finesse F=100. The values of the etalon finesse are
=100 (solid curve), 200 (dashed curve), 400 (dashed-dotted

urve). The detuning parameter is given by h /� =0.5�10−4.
M
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he threshold gain on the frequency offset �� is stronger,
he supermode with the lowest gain becomes more stable
hile the other supermodes are suppressed. Figures 7
nd 8 show that the suppression of all but one supermode
ecomes stronger as the absolute value of the detuning
arameter �h� decreases. Therefore, the maximum sup-
ression of the unwanted supermodes is obtained at h
0, where a pulse with a minimum duration is generated.
nwanted supermodes are more strongly suppressed as

he etalon finesse increases, for a fixed detuning param-
ter ��. However, Fig. 4 shows that the minimum pulse
uration also increases as the etalon finesse increases.
herefore, the best combination of strong suppression of
ll but one supermode with a short pulse duration is ob-
ained for a moderate finesse of the order of several hun-
reds.
Suppression of unwanted supermodes is obtained even

hen their frequency offset �� is significantly smaller
han the FWHM of the etalon modes. Therefore, the eta-
on filtering is significantly stronger than the filtering
rom the same etalon connected to the output of the laser.
his result is obtained since a pulse that propagates in
he cavity passes through the etalon on each round trip,
nd therefore, the effect of the etalon accumulates. For
xample, when h=0 the filtering of etalon at a frequency
ffset ��=��0 is approximately three times stronger than
he filtering of the same etalon connected to the output of
he laser. The strong dependence of the threshold laser
ain on the frequency detuning �� also indicates that the
talon helps to lock the central wavelength of the laser to
he etalon modes since it promotes the generation of a
pecific supermode. The supermode that will lase will
ave the minimum frequency detuning ����.
Figure 9 shows the dependence of the carrier frequency

ffset B on the frequency detuning ��. The carrier fre-
uency offset B minimizes the cavity loss due to the fre-
uency detuning ��. The carrier frequency offset linearly
ncreases as a function of the frequency detuning ��, as
hown in Eq. (30). The carrier frequency offset also de-
ends on the parameter h. When the parameter h is equal

ig. 9. Dependence of the central frequency offset Re�B�, nor-
alized to the modulation frequency �M, as a function of the fre-

uency offset ��, normalized to half of the FWHM of an etalon
ode with a finesse F=200, for h /�M=2�10−4 (solid line) 10−4

dashed line), 5�10−5 (dashed–dotted line), and 10−5 (dashed–
ouble-dotted line).
o zero, the etalon does not filter the laser pulses since
e�P2�=0, and hence, B=0. When the parameter h does
ot equal to zero the bandwidth and the central frequency
f the effective filter created by the etalon depends on the
arameter h and the frequency detuning ��. When the
arameter h increases �h�0�, both the bandwidth and
he frequency offset of the effective etalon filter decrease.
herefore, the maximum frequency offset is obtained
hen h /�M�7.5�10−5.

. CONCLUSION
e have theoretically analyzed an actively mode-locked

ber laser with an intracavity etalon by solving the mas-
er equation for the laser for the case when nonlinearity
an be neglected. We have taken into account the linear
ispersion of the material inside the etalon, and we have
hown that this dispersion can lead to an increase of the
ulse duration by a factor of �10. The large increase in
he pulse duration may be avoided by adding a small fre-
uency detuning between the repetition rate of the laser
ulses and the free spectral range of the etalon. The first-
nd second-order dispersion of the material inside the
talon, as well as the etalon finesse, should be taken into
ccount when calculating the cavity dispersion.
The etalon helps to suppress a simultaneous lasing in

everal supermodes as well to suppress lasing in higher-
rder pulse modes of the master equation. The etalon also
elps lock the central wavelength of the laser to the eta-

on comb. Therefore, the use of an intracavity etalon
liminates the need to control the laser cavity as required
hen the laser is locked to an external etalon [9]. The fil-

ering effect of the etalon can be three times stronger
han the effect of the same etalon connected to the output
f the laser. By appropriately choosing the cavity disper-
ion, the etalon finesse, and the dispersion of the material
nside the etalon, the minimum pulse duration can be
qual to the Kuizenga–Siegman limit of a laser without
ispersion. While our work was motivated by the experi-
ental work reported in Refs. [4–7], a detailed compari-

on of our theory with these experiments was not possible
ecause the cavity dispersion was not exactly reported.
e cannot emphasize too strongly that our work shows

he importance of both the cavity and the etalon disper-
ion in determining the pulse duration and hence the im-
ortance of carefully determining and optimizing their
alues in experimental studies.

Nonlinearity in the laser cavity was neglected in this
aper. We are currently developing a comprehensive nu-
erical model that will take into account nonlinearity in
laser with an intracavity etalon. Since the intensity in-

ide the etalon is high, it is expected that the etalon will
lay a significant role in the laser operation. Preliminary
esults indicate that a small detuning between the etalon
nd the cavity modes may cause a time shift of the pulses
nd sometimes even instability in the laser operation.

CKNOWLEDGMENTS
ork at the Technion was supported in part by a joint

rant from the Center for Absorption in Science of the
inistry of Immigrant Absorption of Israel and by the Is-



r
S
C
L

m
v

R

1

1

1

1

1

1

1802 J. Opt. Soc. Am. B/Vol. 24, No. 8 /August 2007 Parkhomenko et al.
ael Science Foundation (ISF) of the Israeli Academy of
ciences. Work at the University of Maryland Baltimore
ounty was supported in part by the Naval Research
aboratory.

C. R. Menyuk can be reached via e-mail at
enyuk@umbc.edu, and T. F. Carruthers can be reached

ia e-mail at tcarruth@nsf.gov.

EFERENCES
1. T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N.

Duling III, “Phase noise measurements of ultrafast 10 GHz
harmonically modelocked fibre laser,” Electron. Lett. 35,
720–721 (1999).

2. M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen,
“Quantum-limited timing jitter in actively mode-
locked lasers,” IEEE J. Quantum Electron. 40, 1458–1470
(2004).

3. M. Horowitz, C. R. Menyuk, T. F. Carruthers, and I. N.
Dulling III, “Theoretical and experimental study
modelocked fiber laser for optical communication systems,”
J. Lightwave Technol. 18, 1565–1574 (2000).

4. G. T. Harvey and L. F. Mollenauer, “Harmonically mode-
locked fiber ring laser with an internal Fabry–Perot
stabilizer for soliton transmission,” Opt. Lett. 18, 107–109
(1993).

5. J. E. Malowicki, M. L. Fanto, M. J. Hayduk, and P. J.
Delfyett, Jr., “Harmonically mode-locked glass waveguide
laser with 21-fs timing jitter,” IEEE Photon. Technol. Lett.
17, 40–42 (2005).
6. S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, Jr.,
“Simultaneous optical comb frequency stabilization and
super-mode noise suppression of harmonically mode-locked
semiconductor ring laser using an intracavity etalon,”
IEEE Photon. Technol. Lett. 17, 199–201 (2005).

7. J. S. Way, J. Goldhar, and G. L. Burdge, “Active harmonic
modelocking of an erbium fiber laser with intracavity
Fabry–Perot filters,” J. Lightwave Technol. 15, 1171–1180
(1997).

8. D. J. Kuizenga and A. E. Siegman, “FM and AM mode
locking of the homogeneous laser—Part I: theory,” IEEE J.
Quantum Electron. QE-6, 694–708 (1970).

9. R. J. Jones and Jean-Claude Diels, “Stabilization of
femtosecond lasers for optical frequency metrology and
direct optical to radio frequency,” Phys. Rev. Lett. 86,
3288–3291 (2001).

0. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top.
Quantum Electron. 6, 1173–1184 (2000).

1. Ch. Fabry and A. Perot, “Thérie et applications d’une
nouvelle méthode interférentielle,” Ann. Chim. Phys. 16,
115–144 (1899).

2. M. Bass, ed., Handbook of Optics (McGraw-Hill, 1995), Vol.
1.

3. S. Choi, M. Yoshida, and M. Nakazawa, “Measurements of
longitudinal linewidths of 10 GHz, picosecond mode-locked
erbium-doped fiber lasers using a heterodyne detection
method,” Trans. Inst. Electron. Commun. Eng. Jpn., Part C
J86-C, 1054–1062 (2003).

4. F. K. Fatemi, J. W. Lou, and T. F. Carruthers, “Frequency
comb linewidth of an actively mode-locked fiber laser,” Opt.
Lett. 29, 944–946 (2004).

5. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995),
Chap. 1.


