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Computational methods for determining the complex propagation constants
of leaky waveguide modes have become so powerful and so readily
available that it is possible to use these methods with little understanding of
what they are calculating. We compare different computational methods for
calculating the propagation constants of the leaky modes, focusing on the
relatively simple context of a W-type slab waveguide. In a lossless medium with
infinite transverse extent, a direct determination of the leaky mode by using
mode matching is compared with complete mode decomposition. The mode
matching method is analogous to the multipole method in two dimensions.
We then compare these results with a simple finite-difference scheme in
a transverse region with absorbing boundaries that is analogous to
finite-difference or finite-element methods in two dimensions. While the
physical meaning of the leaky modes in these different solution methods is
different, they all predict a nearly identical evolution for an initial, nearly
confined mode profile over a limited spatial region and a limited distance.
Finally, we demonstrate that a waveguide that uses bandgap confinement with
a central defect produces analogous results.
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nderstanding leaky modes:
lab waveguide revisited

onathan Hu and Curtis R. Menyuk

. Introduction

n the 1960s and 1970s, the optical modes in solid-state waveguides were the
ubject of intensive study [1–4]. The waveguides that could be made then
ere fairly simple; a higher-index material was typically embedded in
lower-index material with a slab or rectangular waveguide in the case of

emiconductor waveguides and a step or graded-index waveguide in the case
f optical fibers. In the past decade, it has become possible to make highly
omplex optical waveguides in both semiconductors and glass, and, as
consequence, the study of optical waveguides has undergone a renaissance. A
umber of highly sophisticated computational algorithms have been
eveloped to find the modes and their propagation constants inside these
aveguides, including the finite-element method [5–7], the finite-difference
ethod [6,8], the multipole method [9,10], the Galerkin method [11], and the

lane-wave method [12,13]. In general, the modes in these modern
aveguides may be evanescent or leaky even when there are no material

osses. The finite-difference method, the finite-element method, and the
ultipole method allow one to determine the mode profiles and attenuation.
ommercial finite-difference and finite-element solvers have in practice become

o sophisticated and at the same time so easy to use that it is possible to
etermine mode profiles and their complex propagation constants with little
nderstanding of what a complex propagation constant really means.

here is in fact a serious conceptual issue with leaky modes. Strictly speaking,
hey are not modes of the infinite lossless transverse waveguide. In principle,
iven any initial transverse profile at the beginning of a waveguide, one can
ecompose that profile into a finite number of guided modes and a continuum
f radiation modes. These modes then propagate without attenuation in a lossless
edium, and any attenuation of an initial profile that occurs must be due to

preading of the radiation modes. So, what is it that the finite-element, the
ultipole method, or other mode solvers are finding?

eaky modes appear when an initial profile is nearly guided. In the three-layer
lab waveguide shown in Fig. 1(a), in which n1�n0, at least one guided
ode exists. By contrast, in the five-layer W-type slab waveguide, shown in
ig. 1(b), with n1�n0, only continuum radiation modes still exist. Nonetheless,
hen the width of the lower-index region becomes large, an optical beam is
bserved that looks much like the guided mode that would exist if the outer,
igher-index layer were not present. This beam attenuates exponentially
dvances in Optics and Photonics 1, 58–106 (2009) doi:10.1364/AOP.1.000058 60
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ith a rate that decreases rapidly as the width of the lower-index layer
ncreases. How do we mathematically relate the radiation modes that compose
his nearly guided waveguide to the guided mode that exists in the absence
f the outer higher-index layers? Why is the attenuation in the W-type waveguide
xponential?

xponential attenuation is not the only possibility. If we send light into a
edium with a single index of refraction n0, then the light diffracts and its

ntensity diminishes algebraically, rather than exponentially. This algebraic
ecay occurs because the light is not even partially confined. When the light
omes from a point source, the algebraic decay is proportional to the square
f the inverse distance from the source, since the light spreads in both transverse
imensions. When the light source is extended in one dimension, then the
lgebraic decay is proportional to the inverse of the distance, since light spreads
n only one dimension. In a purely diffractive medium, the mode solvers will
ot find a single mode. In leaky mode waveguides, most of the energy
ill eventually leak out from the nearly guided waveguide, and the light will

hen diffract. When does diffraction dominate and the exponential decay of the
eaky modes become algebraic?

further issue with leaky modes is that at sufficiently large transverse
istances from the mode center they increase exponentially. This behavior is
learly unphysical in the limit x→ ±�. What is its origin? Is an exponential
ncrease away from the transverse center ever visible?

he waveguides shown in Fig. 1 are quite simple. Is the behavior in more
omplex waveguides, in particular bandgap or photonic crystal waveguides,
ualitatively similar? Can bandgap waveguides be studied by using the same
ethods as in the case of the simpler W-type waveguides?

related issue is that one normally applies the finite-difference or the
nite-element method by using a finite lossless region that is surrounded by
bsorbing layers or regions. The purpose of the absorbing regions is to avoid
eflections and simulate outward-going boundary conditions. Thus, inside
he lossless region, the solution approximates the solution with the same initial

Figure 1
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he refractive index profile for (a) a three-layer waveguide and (b) a W-type
aveguide.
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onditions that one would find in a lossless medium of infinite transverse
xtent. However, the problem that one is solving, even in the limit as the
iscretization grows finer, is in fact fundamentally different from the problem of
lossless medium of infinite transverse extent and a lossless medium. Are

he leaky modes real modes in this system? Do they still grow exponentially in
he direction transverse to the propagation, at least in the lossless regions?
s there an analog to diffraction? What is the mode decomposition in this case?
inally—and perhaps most important—is the behavior that is predicted in

his case the same as in the case of a lossless medium of infinite extent?

he answers to these questions may be found scattered throughout the technical
iterature, but not together and not in a form that is easily accessible to
ewcomers to the study of optical waveguides. The discussions rely on the
teepest descent method for evaluating integrals and other asymptotic methods,
hose physical meaning may not always be clear. In this introductory

utorial, our goal is to answer all these questions and to show the relationship
mong them. We will present the mathematical basis for these answers,
ut, at the same time, we will present pictures and animations whose goal is to
lluminate what is happening both mathematically and physically.

e will focus here on simple one-dimensional slab waveguides, although
wo-dimensional waveguides are more important in practice. All the questions
hat we posed can be answered within the context of one-dimensional
aveguides. No new concepts appear in two dimensions, although the
athematical complexity increases. Moreover, it is far simpler to illustrate the

henomena through pictures and animations, since one less dimension
ust be kept. Further discussion of the mathematical methods in two dimensions
ay be found in the textbooks by Marcuse [14] and by Snyder and Love

15].

or historical interest, we note that leaky modes were first described in the
ontext of microwave waveguides, and both the textbooks by Marcuse and by
nyder and Love refer to a classic textbook by Collins [16], who refers in

urn to reports by Barone [17,18] that appeared in 1956 and 1958. These reports
re part of a series of reports from the Brooklyn Polytechnic Institute in
hich the leaky mode concept was first described. The first archival article

eference is a brief report by Marcuvitz [19], who noted the close analogy to
uantum-mechanical tunneling. He stated that leaky modes are not
embers of a complete set of orthogonal basis functions. He noted that this

olution to the wave equation gives field representation in a center range with a
omplex propagation constant, but that the field becomes infinite at the
nfinite transverse spatial limit. A series of papers by Tamir, Oliner, and their
olleagues, begun shortly thereafter, summarizes and categorizes the possible
ehavior of a leaky mode [20–25]. The first measurement of a leaky mode
as carried out in 1961 by Cassedy and Cohn [26]. They confirmed the existence
f a leaky wave due to a line current source above a grounded dielectric slab
26]. Hall andYeh presented both theory and experiment for heteroepitaxial
eposition of ZnS or ZnSe on GaSe, which is a three-layer waveguide [27]. In
heir experiment, the index of the substrate is higher than that of the center
ayer. Hence, only leaky modes can exist in this waveguide; no guided mode can
xist. The same refractive index variation with position also occurs in
aveguides with GaAlAs layers on GaAs substrates [28]. In 1975, the W-type,
r depressed-cladding, slab waveguide was analyzed by Suematsu and
uruya [29]. At about the same time, the theory for W-type fiber waveguide
dvances in Optics and Photonics 1, 58–106 (2009) doi:10.1364/AOP.1.000058 62
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as developed by Kawakami and Nishida [30,31]. The original leaky wave
nalysis for a cylindrical waveguide was carried out in 1969 [32,33], which is
3 years after the leaky wave theory for a slab waveguide was first presented
17]. The attenuation coefficient of leaky modes has been obtained by solving
he appropriate eigenvalue equation [27,30,31,33–35], by using Poynting’s
ector theorem [36–39], and by using ray optics [39–42]. For the multilayer slab
aveguide, the mode-matching method has been extensively used to find

eaky modes [43–45].

e do not discuss the ray optics method, and, given its historical importance,
his omission requires comment. Historically, ray optics was used in the
nalysis of optical waveguides to find reasonably accurate analytical
pproximations to Maxwell’s equations in contexts where exact analytical
olutions could not be obtained. This approximation in principle requires the
avelength of the light in the waveguide to be small compared with the
aveguide’s dimensions. What “small” means in this context is difficult to
recisely define, and the attempt is rarely made. When the leakage is due to
artial refraction, as in the case of a mode just below cutoff, ray optics
an provide a reasonably accurate estimate of the leakage [15], along with a
hysical picture that some find compelling [15,46]. However, when the leakage
s due to tunneling, as in the slab waveguide examples presented in this
utorial, there is no refraction, and in principle no leakage in the limit of small
avelengths. So, ray optics cannot be used without additional, ad hoc

ssumptions. Moreover, ray optics, in contrast to mode-matching methods and
nite-difference or finite-element methods, is ill suited for use in
omputational mode solvers. That is particularly the case in the complex
eometries that are becoming increasingly common. As a consequence, it has
een little used in recent years for waveguide analysis.

he rest of this paper is organized as follows: in Section 2, we show the wave
quation and its solutions in slab waveguides. Section 3 shows wave
ropagation and asymptotic analysis in nonleaky waveguides for a uniform
edium and a three-layer slab waveguide. Section 4 shows the analysis for a
-type slab waveguide. Section 5 shows the analysis for a bandgap slab
aveguide. Section 6 shows the analysis for a W-type slab waveguide with

bsorbing layers. In Section 7, we provide answers to the introductory questions.

. Wave Equation and Its Solutions in Slab
aveguides

hen polarization effects can be ignored, so that the electric field vector can
e represented by a single component of the vector, then the field in optical
aveguides can be approximately described by the scalar Helmholtz equation

6,47]. When we restrict our study to one transverse dimension, as shown in Fig.
, this equation becomes

�2A�z,x�

�z2
+

�2A�z,x�

�x2
+ k0

2n2�x�A�z,x� = 0, �1�

here z and x denote the dimensions along and transverse to the waveguide,
�z ,x� is the complex electric field, normalized so that �A�z ,x��2 is the power per

nit length, k0 is the propagation constant in vacuum, which is equal to the
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atio of the angular frequency to the speed of light � /c, and n�x� is the index
f refraction. Here, we will assume that n�x� is purely real, so that the
aveguide has no material losses. Throughout this paper, we will refer to
ower per unit length simply as power. We will also use the negative carrier
requency convention in which all fields vary proportional to exp�−i�t�, where
=�−1. While this convention is common among physicists, electrical
ngineers typically use the positive carrier frequency convention in which all
elds vary proportional to exp�j�t�, where j=�−1. The optics literature is
plit, and one occasionally finds the positive carrier frequency convention along
ith the use of i=�−1, as in [15]. The reader of the optics literature must

lways check which convention is being used, since the authors are often not
xplicit.

hile Eq. (1) is only approximate in general, it becomes exact when the
lectric field only has a y component, as in the case of a TE mode. Moreover,
he basic behavior of leaky modes remains unchanged when the full-vector

axwell’s equations are used. Likewise, the basic behavior is unchanged when,
nstead of one transverse dimension, two transverse dimensions are
onsidered. If we search for solutions to Eq. (1) of the form

A�z,x� = E�x�exp�i�z − i�t� , �2�

e find that E�x� obeys the equation

d2E�x�

dx2
+ �k0

2n2�x� − �2�E�x� = 0, �3�

here the eigenvalue � corresponds to the propagation constant in the z
irection.

n slab waveguides with the property that n�x� is equal to some constant value

0 when �x� is larger than some value x0, there are three qualitatively different
ypes of solution that can appear, as shown in Fig. 2. Beyond �x � =x0, where n
n0, the field E�x� must be expandable in the form E�x�=E0 exp�ikxx�, where

x= ± �k0
2n0

2−�2�1/2. First, as shown in Fig. 2(a), if � is real and k0
2n0

2−�2

0, then kx= ± i� is purely imaginary and the field decays exponentially when
x��a as x→ ±�. These solutions are guided mode solutions. Second, as
hown in Fig. 2(b), if � is real and k0

2n0
2−�2�0, then kx is purely real, and the

eld oscillates when �x � �b as x→ ±�. These solutions are radiation mode
olutions. Only a finite number of � values, which may equal zero, may be found
or which k0

2n0
2−�2�0 and for which Eq. (3) has guided mode solutions. By

ontrast, radiation mode solutions may be found for any value for which k0
2n0

2

�2�0 [48].

he guided modes and the radiation modes constitute a complete set, by which
e mean that any physically reasonable initial condition A�x ,z=0� can be

xpanded as a superposition of guided modes and radiation modes [48,49].
eaky mode solutions of the sort shown in Fig. 2(c) are not part of this complete
et. Equation (3) is self-adjoint, which implies that it is possible to choose
oth the guided mode solutions and the radiation mode solutions that make up
he complete set so that they are all real. In all the examples that we will
onsider, the index of refraction n�x� is symmetric, i.e., n�x�=n�−x�. The

symmetric case is more complicated, but the basic behavior is unchanged

dvances in Optics and Photonics 1, 58–106 (2009) doi:10.1364/AOP.1.000058 64
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14,15]. In the symmetric case, it is possible to choose the solutions to Eq. (3)
o that they are even or odd, and we may write

A�z = 0,x� = �
l=1

N

ÃlEl�x� +
1

�
�

0

�

Ãe�kx�Ee�kx,x�dkx +
1

�
�

0

�

Ão�kx�Eo�kx,x�dkx,

�4�

here N is the number of guided mode solutions, which may equal zero, the El�x�
re the guided mode solutions to Eq. (3), the Ee�kx ,x� are the even radiation
odes, and the Eo�kx ,x� are the odd radiation modes. The El�x�, Ee�kx ,x�, and

o�kx ,x� are all mutually orthogonal. If in addition we choose them to be
rthonormal and real, so that

�
−�

�

El�x�Em�x�dx = �lm, �5a�

�
−�

�

Ee�kx,x�Ee�kx�,x�dx = ���kx − kx�� , �5b�

�
−�

�

Eo�kx,x�Eo�kx�,x�dx = ���kx − kx�� , �5c�

Figure 2
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utside a center region, which depends on the details of the waveguide index
ariation.
hen we find that
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Ãl = �
−�

�

A�z = 0,x�El�x�dx , �6a�

Ãe�kx� = �
−�

�

A�z = 0,x�Ee�kx,x�dx , �6b�

Ão�kx� = �
−�

�

A�z = 0,x�Eo�kx,x�dx . �6c�

quations (6b) and (6c) are analogous to cosine and sine transforms. It is
ossible and often useful to define an analog to the Fourier transform by writing

˜ �kx�= Ãe�kx�− iÃo�kx�, E�kx ,x�=Ee�kx ,x�+ iEo�kx ,x�, Ã�−kx�= Ã*�kx�, and
�−kx ,x�=E*�kx ,x�. We now find that Eq. (4) becomes

A�z = 0,x� = �
l=1

N

ÃlEl�x� +
1

2�
�

−�

�

Ã�kx�E�kx,x�dkx, �7�

nd Eqs. (6b) and (6c) become

Ã�kx� = �
−�

�

A�z = 0,x�E*�kx,x�dx . �8�

e note that Ee�kx ,x�	cos�kxx+
e�kx�� and Eo�kx ,x�	sin�kxx+
o�kx�� when
� �x0�, with Ee�kx ,x�=Ee�kx ,−x� and Eo�kx ,x�=−Eo�kx ,−x� when x� �x0�,
here in general 
e�kx��
o�kx�, and we recall that x0 is the value of �x� beyond
hich n�x�=n0. As a consequence E�kx ,x� contains components proportional

o both exp�ikxx� and exp�−ikxx� as x→ ±�. If the initial field consists of
urely forward-going waves in the z direction, as would be the case for a beam
hat is externally injected into a waveguide, then we may write the solution
or all z as

A�z,x� = �
l=1

N

ÃlEl�x�exp�i�lz� +
1

2�
�

−�

�

Ã�kx�E�kx,x�exp�i��kx�z�dkx, �9�

here we recall that ��kx�= �k0
2n0

2−kx
2�1/2. When kx

2�k0
2n0

2, ��kx�= i�kx
2−k0

2n0
2�1/2,

nd these contributions to the solution are purely decaying. The energy in
hese components will be reflected backward.

hile this formalism is completely general and allows one to determine in
rinciple the evolution of a wave along a waveguide starting from any initial
ondition, the inclusion of radiation modes in the analysis is usually
ifficult, since one must integrate over the continuum of modes, and an exact
olution is rarely available. When the problem is discretized for a numerical
olution, the number of modes that must be included in the analysis is typically
uite large. Moreover, this formalism often fails to capture the essence of
he physics. The contribution from the continuous spectrum of radiation modes
an be replaced approximately by a summation of discrete modes, which are
alled leaky modes [50]. If we consider for example the three-layer waveguide
hown in Fig. 1(a), then it will have at least one guided mode. By contrast,
f we consider the W-type waveguide shown in Fig. 1(b), then it has no guided
ode solutions, and any solution must be expressible in terms of the

adiation modes. At the same time, it is intuitively clear that when b�a, the

-type waveguide must have solutions that closely resemble the guided mode
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olution to the waveguide in Fig. 1(a), and indeed such solutions can be
bserved to propagate with a slow exponential decay when an initial condition
orresponding to the guided mode in the three-layer waveguide is launched
n the W-type waveguide.

n fact, one can find solutions to Eq. (3) for the W-type waveguide that have
early the same profiles in some range around x=0 as the profiles that
e observed computationally when an initial condition that corresponds to the
uided mode solution in the three-layer waveguide is launched in the W-type
aveguide. These leaky mode solutions have complex propagation constants �,

nd the attenuation rate corresponds to what is observed computationally.
owever, the leaky mode solutions have the uncomfortable property that they
row exponentially as x→ ±�, as shown schematically in Fig. 2(c), so that
eyond some range of �x� they no longer resemble the computationally observed
olution. We will show below that this exponential growth is required by
ux conservation. While these leaky modes can be very useful in practice, and,
s noted in Section 1, they are often what is found by computational mode
olvers, they are not normalizable and thus are not part of a complete set of basis
unctions on the infinite line in the usual sense. While mathematical work is
ngoing to explore some unusual senses in which leaky modes are part of a
omplete set on the infinite line [46], this work is in its early stages and will
ot be discussed here.

n this discussion, we have assumed thus far that the index of refraction n�x�
ecomes equal to the same value n0 as x→ ±�. In a slab waveguide, it is possible
or these limits to be different. In that case, instead of just the three
ossibilities shown in Fig. 2, additional possibilities appear [20,22]. As a
onsequence, the complete mode decomposition, shown in Eq. (7), becomes
ore complicated. However, the basic behavior is unchanged by this added

omplexity. Any mode that grows exponentially as x→ +� or as x→−� cannot
e part of a complete set of basis functions, since they do not satisfy the
oundary conditions.

n Sections 3–5 of this tutorial, we will be presenting computational solutions
f Eq. (4) or Eq. (9). In numerical calculations, one has a finite spatial
indow. A boundary condition should be enforced that ensures that the
iscretized equations remain self-adjoint [48] and that leads to an orthogonal
et of basis functions. In a uniform medium with periodic boundary
onditions, this orthogonal set will be uniformly spaced in kx and will be
oubly degenerate, allowing the use of complex exponents as a basis set [48,51].
n effect, we are discretizing Eq. (9). However, in more complex waveguides,
ike the three-layer waveguide that we will consider in Section 3, the W-type
aveguide that we will consider in Section 4, and the bandgap waveguides that
e will consider in Section 5, it is no longer possible to choose the even and
dd modes with self-adjoint boundary conditions so that they are degenerate.
ence, we must in effect discretize Eq. (4) with different choices of the kx

alues for the even and the odd modes. In all cases except for the uniform
edium, we use Neumann boundary conditions, which means that the

erivatives of E�kx ,x� are zero at the ends of the transverse spatial window. In
ll of our computational examples, we pick initial conditions that are initially

ymmetric around x=0, so that Ão�kx�=0, and we will only need to determine
˜

e�kx� at the allowed values of kx for the even modes. We keep anywhere
rom 1000 to 20,000 kx modes, and the boundaries of our spatial window, x
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±B, are chosen so that B is hundreds to thousand of times larger than the
nitial beam width. We checked these values in every simulation to ensure that
hey are large enough, so that all our figures are unaffected by numerical
rrors. The number of modes and the spatial window must be large to ensure
hat we have good spatial resolution, while at the same time the field remains
qual to zero at the spatial boundary over the entire propagation. We choose
=1 µm in all cases except for the bandgap waveguides in Section 5. One can
btain results for different wavelengths by scaling the wavelength, the
aveguide dimensions, and the mode fields, since Maxwell’s equations are

cale invariant [52].

hen the medium becomes lossy beyond some value in �x� as x→ ±�, as is
lways assumed in computational mode solvers based on the finite-difference or
nite-element methods, then the decomposition of an initial condition into a
omplete set of modes changes in important ways. First, all modes decay
xponentially as x→ ±�, and there are a countably infinite number of discrete
odes. Hence, any initial condition may be written in the form

A�z = 0,x� = �
l=1

�

Ãl�x�El�x� , �10�

o that

A�z,x� = �
l=1

�

Ãl�x�El�x�exp�i�lz� . �11�

adiation modes and leaky modes are no longer present. However, when
uided modes exist in the lossless waveguide, there are modes in the discrete
et of Eq. (10) that closely resemble the guided modes. Likewise, when
eaky modes exist, there are modes in this discrete set that closely resemble the
eaky modes up to the values of �x� where the waveguide becomes lossy. A
econd major difference from the lossless case is that Eq. (3) is no longer
elf-adjoint. As a consequence, both El�x� and �l become complex, and E

l
*�x� is

ot a solution of Eq. (3). However, Eq. (3) is symmetric, by which we mean
hat

�
−�

�

f�x�	 d2

dx2
+ �k0

2n�x� − �2�
g�x�dx = �
−�

�

g�x�	 d2

dx2
+ �k0

2n�x� − �2�
f�x�dx

�12�

or any f�x� and g�x� for which the integrals exist. As a consequence, the

l�x� are self-dual, and we may determine the Ãl by using the relation

Ãl = �
−�

�

A�z = 0,x�El�x�dx . �13�

he appropriate normalization condition is

�
−�

�

El
2�x�dx = 1, �14�

hich sets the overall phase as well as the amplitude of El�x�. Because El�x� is
omplex, one might worry that the integral in Eq. (14) could equal zero, in

hich case El�x� would not be normalizable. However, that cannot happen, at
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east for any finite discretization, because Eq. (3) is symmetric and hence
ormal [53].

n the reminder of the paper, we will elucidate the relationship between the
eaky modes and the modes that form a complete basis set in the lossless guide,
s described in Eqs. (4)–(9). We will also elucidate the relationship between
he leaky modes and the modes in a lossy waveguide, as described in Eqs. (10),
11), (13), and (14). While these two descriptions are quite different, we will
nd that the they yield nearly identical behavior for nearly confined light over
ome range of �x� and �z�. We will also elucidate the relationship between the
eaky modes and the modes that are found by computational mode solvers.

. Nonleaky Waveguides

n this section, we consider two nonleaky waveguides that we will compare
ith the leaky waveguides. The first is a uniform waveguide in which simple
iffraction occurs, and the intensity decays algebraically rather than
xponentially as z→�. The second is the three-layer waveguide shown in Fig.
(a).

.1. Uniform Medium
n this case, we only have radiation modes, and they are the standard Fourier
odes. Referring to Eq. (9), we find N=0 and E�kx ,x�=exp�ikxx�. It follows that

t any point z along the waveguide we may write

A�z,x� =
1

2�
�

−�

�

Ã�kx�exp�ikxx + i��kx�z�dkx, �15�

here Ã�kx�=�−�
� A�z=0,x�exp�−ikxx�dx.

n most cases, it is not possible to find an analytical solution to Eq. (15). An
mportant exception is when the beam is initially Gaussian distributed so that
�z=0,x�=A0 exp�−x2 /2w2�, where w is the initial beam width. In this
ase, we find

Ã�kx� = A0�
−�

�

exp�− x2/2w2�exp�− ikxx�dx = �2�wA0 exp�− kx
2w2/2�.

�16�

n the paraxial approximation, which often holds in optical waveguides, we
ay assume that k0n0�kx, so that ��kx��k0n0�1− �kx

2 /2k0
2n0

2��, where n0 is the
ndex of the uniform waveguide. Equation (9) then becomes

A�z,x� =
wA0 exp�ik0n0z�

�2�
�

−�

�

exp−
1

2
�w2 +

iz

k0n0
�kx

2 + ikxx�dkx

=
wA0 exp�ik0n0z�

�w2 + iz/k0n0�1/2
exp − x2

2�w2 + iz/k0n0�
� . �17�

e see that the field remains Gaussian distributed, but the argument becomes

omplex, corresponding to the development of a curved phase front. The
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ntensity per unit length �A�z ,x��2 becomes

�A�z,x��2 =
w2A0

2

�w4 + z2/k0
2n0

2�1/2
exp − w2x2

�w4 + z2/k0
2n0

2�� . �18�

hen z�k0n0w
2=2�w2n0 /�, where � is the vacuum wavelength, we find that

he on-axis intensity per unit length decreases as z−1 and the beam width
preads proportional to z.

s a special case of the Gaussian beam, we may consider the case w=�,
orresponding to a relatively narrow beam. In Fig. 3, we plot P�kx�
�Ã�kx��2 /max��Ã�kx��2�. As kx increases, P�kx� decreases, and when it falls to
.01, we find that ��kx� /��kx=0�=0.94, so that the propagation is nearly
araxial. We also show for reference the real part of the effective index Re�neff�
s a function of kx. The effective index, neff=� /k0, equals the ratio of the
ropagation constant to the wavenumber k0. In Fig. 4, we show a movie of the
eam as it propagates through the medium. We solve Eq. (9) after discretization
ith the Gaussian input beam profile, A�z=0,x�=exp�−x2 /2w2�, setting w
�. We then multiply A�z ,x� by exp�−i�t� and allow �t to increase, where �

s the angular frequency of the input wave. We show the real part of the
eld in Fig. 4. We use a spatial transverse limit of B=500�, and 1000 kx modes.
s noted in Section 2, the kx modes are uniformly spaced in these cases. We

et n0=1.45, which is a typical value for silica waveguides.

he same qualitative features are present with almost any initial beam shape
hen z becomes large, as may be shown by using the method of stationary phase

54]. We may rewrite Eq. (9) in the form

A�z,x� =
1

2�
�

−�

�

Ã�kx�exp�ikxx + i��kx�z�dkx =
1

2�
�

−�

�

Ã�kx�exp�i
�dkx.

�19�

xpanding 
=kxx+��kx�z about the point kx=ks, we find 
=
�0�+
�1��kx−ks�
�1/2�
�2��kx−ks�2+higher-order terms, where 
�0�=ksx+��ks�z, 
�1�=x

Figure 3

he normalized spectral power density P�kx�= �Ã�kx��2 /max��Ã�kx��2� and the
eal part of neff as a function of kx.
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���ks�z, 
�2�=���ks�z. We have written ���ks�=d� /dkx at kx=ks and ���ks�
d2� /d2kx at kx=ks. From the expansion ��kx�= �k0

2n0
2−kx

2�1/2, we find ���kx�
−kx /��kx�. The stationary phase point satisfies the condition 0=
�1�=x
ksz /��ks�. It follows that ks= �x / �x2+z2�1/2�k0n0 and ��ks�= �z / �x2+z2�1/2�k0n0.
sing this result, we find that 
�0�= �1+x2 /z2�1/2k0n0z and 
�2�=−�1
x2 /z2�3/2�z /k0n0�. Equation (19) now becomes

A�z,x� =
1

2�
expi�1 +

x2

z2�1/2

k0n0z�
�� −�

� Ã�kx�exp−
i

2
�1 +

x2

z2�3/2 z

k0n0

�kx − ks�2�dkx. �20�

s z becomes larger, the oscillations about the stationary phase point kx=ks

ecome increasingly more rapid; so, to lowest order in an expansion in

ncreasing powers of z, we may replace Ã�kx� with Ã�ks�, and Eq. (20) becomes

A�z,x� =
1

2�
expi�1 +

x2

z2�1/2

k0n0z�Ã x

�x2 + z2�1/2
k0n0�

��
−�

�

exp−
i

2
�1 +

x2

z2�3/2 z

k0n0

�kx − ks�2�dkx

=
1 − i

2��
�1 +

x2

z2�−3/4� k0n0

z
�1/2

expi�1 +
x2

z2�1/2

k0n0z�
� Ã x

�x2 + z2�1/2
k0n0� . �21�

Figure 4

1

−1

x/λ

z/
λ

−10 10

10

0

−1

ave propagation in a uniform medium. Light is injected into a uniform
edium at z=0. The movie (Media 1) shows the real part of the electric field.
n the paraxial limit, which is of greatest practical interest, Eq. (21) reduces to
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A�z,x� =
1 − i

2��
� k0n0

z
�1/2

exp�ik0n0z�Ã� x

z
k0n0� , �22�

nd the intensity per unit length becomes

�A�z,x��2 =
1

2�

k0n0

z
�Ã� x

z
k0n0��2

. �23�

ence, any initial condition ultimately resembles its initial Fourier transform,
iminishes proportional to z−1 for any fixed ratio x /z, and has a width that
s proportional to z.

quation (20) is the first term in an asymptotic expansion of A�z ,x� in powers
f z−1/2. Corrections will be small as long as z�k0n0w

2, where w is the
nitial beam width. This limit, referred to as the Fresnel limit, is rapidly reached
n most applications. In the case of the Gaussian beam, this limit can be
btained directly from the complex solution that is shown in Eqs. (17) and
18). In Fig. 5, we show Inorm= �A�z ,x=0��2 / �A�z=0,x=0��2, the on-axis
ormalized intensity per unit length, for both the complete and the first-order
symptotic solutions in the case of the Gaussian beam. At the point z /�
20, the two solutions are nearly indistinguishable.

.2. Three-Layer Waveguide
simple waveguide that has guided modes as well as radiation modes is the

hree-layer symmetric waveguide, shown in Fig. 1(a). As long as n1�n0, this
aveguide has at least one guided mode [47]. We note that since the
aveguide is symmetric, all modes must be even or odd, or must be the

uperposition of two degenerate mode in the case of radiation modes, where
here is one even and one odd mode for each allowed value of �.

Figure 5

norm= �A�z ,x=0��2 / �A�z=0,x=0��2 as a function of z /� for a Gaussian beam.
lue circles represent the complete solution, while the red solid curve

epresents the lowest-order asymptotic approximation.
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rom the wave equation, Eq. (3), we find that the even guided modes are
xpressible as

E�x� = 	C1 cos�kcx� �x�  a

C0 exp�− ��x�� a  �x�
 , �24�

here �= ��2���−k0
2n0

2�1/2 and kc= �k0
2n1

2−�2�1/2= �k0
2�n1

2−n0
2�−�2�1/2.

onsequently, the guided modes must satisfy the condition kc
2�k0

2�n1
2−n0

2�.
ny mode that satisfies Eq. (3) and its derivative must be continuous at the slab

nterfaces, from which we infer

C1 cos�kca� = C0 exp�− �a� , �25a�

kcC1 sin�kca� = �C0 exp�− �a� , �25b�

hich yields the dispersion relation

kc tan�kca� = � = ��k0
2�n1

2 − n0
2� − kc

2��1/2. �26�

his transcendental relation always has at least one solution and will have at
east two if k0a�n1

2−n0
2�1/2��. The orthonormality condition, Eq. (5), becomes

47]

1 = �
−�

�

E2�x�dx = C1
2a +

sin�2kca�

2kc

+
cos2�kca�

�
� . �27�

he discussion for the odd guided modes is similar. When x�0, we find

E�x� = 	C1 sin�kcx� 0  x  a

C0 exp�− �x� a  x 
 , �28�

nd E�x�=−E�−x� when x�0. The dispersion relation becomes

− kc cot�kca� = � = �k0
2�n1

2 − n0
2� − kc

2�1/2, �29�

hich will have at least one solution as long as k0a�n1
2−n0

2�1/2�� /2. Conversely,
here is only one even guided mode when k0a�n1

2−n0
2�1/2�� /2. Quite

enerally, it follows from Sturm–Liouville theory that the propagation numbers
or the even and odd modes are interleaved and are nondegenerate [51].

hen x�0, the even radiation mode may be written as

Ee�kx,x� = 	C1e cos�kcx� 0  x  a

C0e cos�kxx + 
e� a  x 
 , �30�

nd odd radiation mode solutions may be written as

Eo�kx,x� = 	C1o sin�kcx� 0  x  a

C0o sin�kxx + 
o� a  x 
 , �31�

ith Ee�kx ,x�=Ee�kx ,−x� and Eo�kx ,x�=−Eo�kx ,−x� when x�0. Any value of

x is allowed, and we find ��kx�= �k0
2n0

2−kx
2�1/2 and kc�kx�= �k0

2�n1
2−n0

2�
kx

2�1/2. Taking the combination E�kx ,x�=Ee�kx ,x�+ iEo�kx ,x� at each value of
x, we may write
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E�kx,x� = 	C1 exp�ikcx� 0  x  a

C0 exp�ikxx� + D0 exp�− ikxx� a  x 
 , �32�

here C1=C1e=C1o, C0= �C0e exp�i
e�+C0o exp�i
o�� /2, and D0

�D0e exp�−i
e�−C0o exp�−i
o�� /2 when x�0 and E�kx ,x�=E*�kx ,−x� when
�0. From the continuity of E�kx ,x� and its derivative at x=a, we find

C1 exp�ikca� = C0 exp�ikxa� + D0 exp�− ikxa� , �33a�

ikcC1 exp�ikca� = ikxC0 exp�ikxa� − ikxD0 exp�− ikxa� , �33b�

hich determines the ratios D0 /C1 and C0 /C1. From the orthogonality
ondition, Eq. (5), we find �C0�2+ �D0�2=1. The solution given in Eq. (32) is
ike the solutions E�kx ,x�=exp�ikxx� that we found in the case of the uniform
edium. However, there is one important difference. When kx�0, the

olution in the uniform medium propagates rightward, which means that it is
urely outgoing as x→ +� and is purely incoming as x→−�. The opposite holds
hen kx�0. By contrast, the solution in Eq. (32) has both incoming and
utgoing components as x→ ±�.

e now consider as an example a medium in which n1=1.45 and n0=0.96n1

1.39. The width in the center region is chosen so that k0a�h1
2−n0

2�1/2=1, which
mplies a=0.39�. There is only one guided mode [47], and we consider a
aussian input beam A�z=0,x�=A0 exp�−x2 /2a2�, where a is half the width of

he central layer, as shown in Fig. 1. In this example, 70% of the initial
ower is in the guided mode, and the rest is in the radiation modes. We discretize
he radiation contribution to Eq. (4) using Neumann boundary conditions, as
iscussed in Section 2. For even modes, we insert the ratios D0 /C1 and C0 /C1

hat we obtained from Eq. (33) into Eq. (32). We set dE /dx=0 at x= ±B,
nd we then obtain

tan�kx�B − a�� +
kc

kx

tan�kca� = 0. �34�

e note for completeness that the corresponding dispersion relation for the
dd modes is

tan�kx�B − a�� −
kc

kx

cot�kca� = 0, �35�

lthough we will not need the odd modes in this example, since the initial
ondition is symmetric. We keep 2000 kx modes, and we set B=500a. The

unction Ã�kx�= Ãe�kx� is purely real in this case, and we show �Ã�kx��2
ormalized to its maximum for kx�0 in Fig. 6. We also show for reference the
eal part of the effective index Re�neff� as a function of kx. Note that neff is a
urely real number when kx�n0k0, and neff becomes a purely imaginary number
hen kx�n0k0. As in the case of the uniform guide, the radiation components

or which kx�n0k0 do not propagate. They are exponentially damped, and
heir energy will be reflected back.

n Fig. 7, we show a movie of the wave propagation in the z direction. The
aveguide parameters are the same as in Fig. 6. We keep 2000 kx modes, and
e set B=1000a. As expected, the Gaussian input profile separates into a

uided-wave component that propagates without diminishing and a diffractive
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omponent that diminishes algebraically, not exponentially. The behavior of
he diffractive component in the three-layer waveguide is qualitatively similar to
he behavior of a beam in the uniform medium.

e find, as in the case of the uniform medium, that the solution spreads
roportional to z and that the intensity per unit length diminishes proportional
o z−1. We may now once again use the method of stationary phase to obtain
he contribution of the radiation modes in the Fresnel limit when z�k0n0w

2 for
he three-layer waveguide. Focusing on the radiation field contribution Arad

o the total field, we rewrite this field at z in the form

Figure 6

0
0

3

n
eff

R
e(

)

21

0

(
)

P
k x

k /x k0

he normalized spectral power density P�kx�= �Ã�kx��2 /max��Ã�kx��2� and the
e�neff� as a function of kx.

Figure 7

1

−1

x/λ

z/
λ

−10 10

10

0

−1

ave propagation in a three-layer waveguide. The light is injected into the
aveguide at z=0. The movie (Media 2) shows the real part of the electric field.
he black dashed lines indicate x= ±a.
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Arad�z,x� =
1

2�
�

−�

�

Ã�kx�E�kx,x�exp�i��kx�z�dkx

=
1

2�
�

−�

�

Ã�kx�E�kx,x�exp�i
�dkx. �36�

here is no analytical solution of this equation. Hence, for x=0, we proceed by
riting

Arad�z,x = 0� =
1

2�
�

−�

�

Ã�kx�E�kx,0�exp�i
�dkx. �37�

xpanding 
=��kx�z about the point kx=ks, we find 
=
�0�+
�1��kx−ks�
�1/2�
�2��kx−ks�2+higher-order terms, where 
�0�=��ks�z, 
�1�=���ks�z, 
�2�

���ks�z, and the stationary phase point satisfies the condition 0=
�1�=
ksz /��ks�. It follows that ks=0 and ��ks�=k0n0. Using this result, we find that
�0�=k0n0z and 
�2�=−�z /k0n0�. We also write Ã�kx� and E�kx ,0� as a Taylor

eries, from which we obtain Ã�kx�= Ã�ks�+ Ã��kx��kx−ks�+higher-order terms

nd E�kx ,0�=E�ks ,0�+E��ks ,0��kx−ks�+ higher-order terms. Both Ã�kx�
nd E�kx ,0� are zero at kx=0. Equation (37) now becomes

Arad�z,x = 0� =
1

2�
exp�ik0n0z��

−�

�

Ã��0�E��0,0�kx
2 exp�−

i

2

z

k0n0

kx
2�dkx

=
1 + i

2��
exp�ik0n0z�Ã��0�E��0,0�� k0n0

z
�3/2

. �38�

he power then becomes

�Arad�z,x = 0��2 =
1

2�
� k0n0

z
�3

�Ã��0�E��0,0��2. �39�

ence, the power at x=0 diminishes proportional to z−3. At other values of x /z,

he power at Ã�ks��0, and the power will diminish proportional to z−1 at
arge z, just as is the case in the uniform medium.

n Fig. 8, we show Inorm= �A�z ,x=0��2 / �A�z=0,x=0��2 as a function of z /�. The
lue circles represent the power calculated by solving the propagation
quation, Eq. (4), by using complete decomposition. The red dashed curve
epresents the sum of the fundamental mode propagation and the steepest
escent estimated according to Eq. (39). The numerical integration and
symptotic analysis agree at z�10�.

he steepest descent approach that we have used to evaluate the radiation
ntegrals is a powerful mathematical technique that will allow us in the following
ections to separate the leaky mode contributions to the radiation integrals
rom the diffractive contributions.

. W-Type Waveguide

e now turn to consideration of what is perhaps the simplest waveguide that

as leaky modes—the W-type waveguide whose profile is shown in Fig. 1(b). A
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olution to Eq. (3) is purely outgoing when x�b as x→+� if E�x�	exp�ikx
+x�,

here Re�kx
+��0 and is purely incoming if Re�kx

+��0. A solution to Eq. (3)
s purely outgoing when x�−b as x→−� if E�x�	exp�ikx

−x�, where Re�kx
−�

0. A leaky mode is defined as a solution to Eq. (3) that has no incoming
omponents as x→ ±� and has an outgoing component either as x→ +� or x

−� or both. In an asymmetric guide, it is possible for a leaky mode to
e guided on one side and outgoing on the other, but in a symmetric guide,
ike that shown in Fig. 1(b), it must be purely outgoing as x→ ±�. Just as a
aveguide may not have guided mode solutions, it may not have leaky
ode solutions. For example, the uniform waveguide that we considered in
ubsection 3.1 only has solutions that are incoming as x→−� if they are
utgoing as x→ +� and vice versa, since E�kx ,x�=exp�ikxx�. When leaky mode
olutions exist, their growth rate as x→ ±� must be small in order for them
o be of practical interest.

.1. Leaky Mode Analysis
e focus on the index profiles shown in Fig. 1(b) for which n�x�=n0 for

x�a, n�x�=n1, a �x�b, and n�x�=n0 for b� �x�. We will search for a solution
hat when x�0 may be written as

E�x� =�
C cos kxx 0  x  a

C cos�kxa�

cosh��a + 
�
cosh��x + 
� a  x  b

C cos�kxa�cosh��b + 
�

cosh��a + 
�
exp�ikx�x − b�� b  x

� , �40�

here kx= �k0
2n0

2−�2�1/2 and �= ��2−k0
2n1

2�1/2. When x�0, we set E�−x�=E�x�,

Figure 8

norm= �A�z ,x=0��2 / �A�z=0,x=0��2 as a function of z /� for a Gaussian beam.
he blue circles represent the power calculated by solving the propagation
quation, Eq. (4), by using the complete decomposition, while the red dashed
urve represents the sum of the asymptotic approximation from Eq. (39)
nd the guided mode contribution.
o that the solution is even. We also demand Re�kx��0, so that the solution
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s outgoing as x→ ±�. By matching the x derivatives of the fields at x=a and
=b, we obtain

kx tan�kxa� = − � tanh��a + 
� , �41a�

� tanh��b + 
� = ikx. �41b�

liminating the constant 
, we obtain the dispersion relation for the W-type
aveguide [55],

tan�kxa� =
�

kx

tanhtanh−1�− i
kx

�
� + ��b − a�� . �42�

e now consider a specific numerical example that is closely related to the
hree-layer waveguide that we considered in Subsection 3.1. In this example, we
et n0=1.45 and n1=0.96n0=1.39, which is the same ratio as in the three-layer
aveguide, except that the roles of n0 and n1 are interchanged, because it

s now the higher-index material that is present when x→�. The width in the
enter region is chosen so that k0a�n0

2−n1
2�1/2=1 and b /a=5, so that a

0.39� and b=1.96�. With these choices, the waveguide is the same up to �x�
b as in the case of the three-layer waveguide. In Fig. 9, we show a

ogarithmic plot of the absolute value of e, the difference between the left and
he right sides of Eq. (42), as a function of real and imaginary parts of neff.
here is evidently a pole in the plot, corresponding to a resonance of Eq. (42).
o find its location accurately, we first find the derivative along the real axis
nd then determine its derivative in the imaginary direction using the Cauchy–
iemann relation for e [56]. We then use the Newton–Raphson method to
nd the point where e→0. In the case considered here, we obtain neff=� /k0

1.4185997+1.577�10−4i. We have written the answer to eight significant
gures, because the imaginary part is 4 orders of magnitude smaller than the
eal part. It is typical in practical problems for the imaginary part of � to be much
maller than the real part. However, obtaining this level of accuracy is not a
roblem in a modern-day 32 bit computer that has approximately 15 digits of
ccuracy for a double precision number.

Figure 9
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.2. Perturbation Analysis
e now analyze this same problem by using perturbation theory. From a

ractical standpoint, it becomes increasingly difficult to obtain the imaginary
art of � accurately as b /a increases, since the imaginary part of � rapidly
ecreases, and, when close to 15 digits of accuracy are needed, one will typically
ave large computational round-off errors. At the same time, this limit is
recisely the one in which perturbation theory is expected to work well and
an substantially decrease the computational time required to find Im��� [31].
rom a conceptual standpoint, the leaky modes in a W-type waveguide,
hown in Fig. 1(b), are expected to be a slight modification of the corresponding
uided modes in the corresponding three-layer waveguide, shown in Fig.
(a). Perturbation theory allows us to make this connection directly. We begin
y writing ���0+��, where �0 is the propagation constant for the
hree-layer waveguide. We then have

kx = ��k0n1�2 − ��0 + ���2�1/2 � kx0 − �0��/kx0, �43a�

� = ���0 + ���2 − �k0n0�2�1/2 � �0 + �0��/�0, �43b�

here kx0 and �0 are the solution for the corresponding three-layer waveguide.
e may now substitute these expressions into the dispersion relation, Eq.

42), and carry out a Taylor expansion in powers of ��, keeping only the
ero-order and first-order term. Solving for ��, we obtain

�� =
2 exp�− 2�0�b − a���ikx0

2 tan�kx0a� + �0
2�

�0MW

, �44�

here

MW = 2 + ��0/kx0 − kx0/�0��i + tan�kx0a�� + a��0 − ikx0��1 + tan2�kx0a��

− 2i tan�kx0a� + �4�0�b − a� − 4 + 2iakx0�1 + tan2�kx0a�� + 4i tan�kx0a�

+ 4i tan�kx0a��b − a�kx0/�0�exp�− 2�0�b − a�� . �45�

e now find that neff=� /k0=1.4185997+1.567�10−4i, and we see that the
irect computation of Im��� and the results from perturbation theory agree to
hree decimal places.

.3. Physical Explanation of Exponential Decay
he exponential decay in z implies that there is an exponential growth in �x�.
athematically, Eqs. (43) and (44) imply that a positive imaginary component

hange in �, corresponding to decay in z, implies a negative imaginary
hange in kx and growth in �x�. From a physical standpoint, we may understand
his growth as a consequence of flux conservation.

he Helmholtz equation, Eq. (1), has a conserved time-averaged flux that may
e written as

F�z,x� = �1/2i���A*�z,x� � A�z,x� − A�z,x� � A*�z,x�� , �46�

here ��·�= ẑ� /�z+ x̂� /�x is the transverse gradient operator. Using Eq. (1),

e find that � ·F=0. When A�z ,x� corresponds to a TE wave, then F is
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roportional to the Poynting flux. If A�z ,x�=E�x�exp�i�z� is a waveguide
ode, then Fz, the z component of F, becomes Fz= �Re��� /���A�x��2, which is

ositive definite. Referring to Fig. 10, flux conservation implies that the
nward flux must equal the outward when integrated over the sides of the
ectangles defined by the z values z1 and z2 and by any two values of x, for
xample, x= ±A or x= ±B. When x= ±A, the difference between the flux
ntering at z=z1 and leaving at z=z2 is proportional to �1
exp�−2 Im����z1−z2����−A

A �E�x��2dx, and when x= ±B, the difference is
roportional to �1−exp�−2 Im����z1−z2����−B

B �E�x��2dx. Since the second
ntegral is larger than the first, the flux that exits from the sides at �x�= ±B must
e larger than the flux that exits from the sides at �x�= ±A, as long as the
aves that exit from the sides are purely outgoing, as is the case for the leaky
ode at sufficiently large �x�. This increase is only possible if �E�x��

ncreases as well.

.4. Radiation Mode Decomposition
here are no guided modes in the W-type waveguide. As a consequence, it
ust be possible to express any square-integrable initial condition as a

uperposition of radiation modes, just as in the case of the uniform waveguide.
t the same time, when b�a, we expect the behavior to resemble the
ehavior in the three-layer waveguide and, in particular, when the initial profile
s close to the guided mode, as was the case with the Gaussian profile that
e showed in Subsection 3.2, we expect the evolution to closely resemble that
f the leaky mode in the central waveguide region. In this subsection, we
ill show how a superposition of the radiation modes leads to leaky behavior

n a W-type waveguide.

hen x�0, the radiation modes may be written as [57]

E�x� = �C2 exp�ikxx� 0  x  a

C1 exp�− �x� + D1 exp��x� a  x  b

C0 exp�− ikxx� + D0 exp�ikxx� b  x
� , �47�

here ��kx�= �k0
2n0

2−kx
2�1/2 and ��kx�= �k0

2�n0
2−n1

2�−kx
2�1/2. When x�0, we find

�kx ,x�=E*�kx ,−x�, and kx can have any real value. Note that in contrast to

Figure 10

z1

flux

flux
z2

x
z

flux flux

−B −A BA

Schematic illustration of the flux flow.
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he leaky mode ansatz in Eq. (40), the radiation modes include both incoming
nd outgoing waves. Equation (47) has both incoming and outgoing
omponents at �x��b, in contrast to Eq. (47), which only has outgoing
omponent at �x � �b. We may find the dispersion relation by matching E�kx ,x�
nd its derivatives at x=a and x=b, and the orthonormality condition
ecomes �C0�2+ �D0�2=1. The dispersion relation in this case is complicated,
nd we do not show it here.

n Fig. 11, we show the normalized coefficient P�kx�= �Ã�kx��2 /max��Ã�kx��2�
nd Re�neff� for the same Gaussian input beam that we considered in Subsection
.2 in which A�z=0,x�=exp�−x2 /2a2�, where a is half of the center layer

idth, as shown in Fig. 1. We calculated Ã�kx� computationally, starting from
he expression

Ã�kx� = �
−�

�

A�z = 0,x�E*�kx,x�dx , �48�

sing the decomposition procedure described in Section 2 with 2000 kx modes
nd with B=2000a. We find that P�kx� is sharply peaked around a value of

x that we denote kr. This resonant behavior of Ã�kx� differs sharply from that
f the uniform waveguide or the analogous three-layer waveguide, in which

˜ �kx� varied smoothly. There is a smoothly varying portion of Ã�kx�, in which

x
2�k0

2�n0
2−n1

2�, that corresponds to a diffractive contribution, analogous to
he diffractive contribution in the three-layer waveguide. However, we find that

s a result of the resonant behavior of Ã�kx�, the integral will become
ominated at an early stage of evolution by the behavior near kx=kr, rather
han the stationary phase points of ��kx�. There will also be a Lorentzian peak
hen kx=−kr, in addition to the Lorentzian peak at kx=kr. A close

xamination of Ã�kx�E�kx ,x=0� shows that the Lorentzian peaks that dominate
ts behavior have a Lorentzian (single-pole) shape, so that we may write to
ood approximation

Figure 11

he normalized spectral power density P�kx�= �Ã�kx��2 /max��Ã�kx��2� and the
eal part of effective index Re�neff� as a function of kx /k0.
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Ã�kx�E�kx,x = 0� = −
ikiÃ�kr�E�kr,x = 0�

kx − kr − iki

+
ikiÃ�− kr�E�− kr,x = 0�

kx + kr + iki

. �49�

orentzian peaks like the ones in Eq. (49) always appear when leaky modes
re present! These Lorentzian peaks and the corresponding poles in the complex

x domain are the signature of a leaky mode. Just as −i / �kx−kr− iki�+ i / �kx

kr+ iki� is the Fourier transform in the ordinary sense of exp��ikr−ki� �x � � when

i�0, it is also the transform of this function in a generalized sense when ki

0, in which the contour of integration over kx is deformed so that
Im�kx�−ki�x�0 as x→+� and �Im�kx�+ki�x�0 as x→−� [58]. Hence, we
nd that kr corresponds to the oscillation wavenumber of the leaky mode when

x � �b and is nearly equal to kc in the corresponding waveguide, while �ki�
orresponds to the leaky mode’s transverse exponentiation factor when �x � �b.
rom Eq. (49), it also follows that �ki� corresponds to the width of the
orentzian peaks in the kx domain. When b−a increases, we find that �ki�

apidly decreases, and the Lorentzian peaks tend toward � functions, while kr

ecomes exactly equal to kc. In general, it must be the case that �ki � �kr in
rder for a leaky mode to propagate for an observable distance. That is the case
n the example discussed here, and we thus find the following equation by
sing the residue theorem [56]:

A�z,x = 0� =
1

2�
�

−�

�

Ã�kx�E�kx,x = 0�exp�i��kx�z�dkx

�
1

2
kiÃ�kr�E�kr,x = 0�exp�i�rz − �iz� + c.c., �50�

here �r=Re���kx=kr+ iki�����kr� and �i=Im���kx=kr+ iki��
−krki /�k0

2n0
2−kr

2=ki�� /�kx�kx=kr
. We find Re�neff�=Re��r /k0�=1.4185984

nd Im�neff�=Im��i /k0�=1.588�10−4, which are close to the values that we
ound from the leaky mode analysis. Equation (50) shows the intuitively

xpected result that A�z ,x=0� is approximately proportional to Ã�kr�, which is
he overlap integral of A�z=0,x� with the mode at kx=kr that corresponds

losely to the guided mode in the three-layer waveguide. We find that Ã�kx� and
�kx ,x=0� have the same shape around kx=kr. Both are sharply peaked.
inally, A�z ,x=0� has an exponential decay rate in z that is inversely proportional

o the width of the resonance in Ã�kx�. In Fig. 12, we show a movie of the
volution of a Gaussian input beam in a W-type waveguide with A�z=0,x�
exp�−x2 /2a2�, just as in the three-layer waveguide simulation in Fig. 7. The
aveguide parameters are the same that we used in Fig. 9, i.e., n0=1.45,

1=0.96n0, k0a�n0
2−n1

2�1/2=1, and b /a=5. We keep 1000 kx modes, and we set
=2000a. After an initial transient in which a portion of the initial beam

apidly diffracts, the beam settles down into the shape of the leaky mode in the
entral region of waveguide �x � �b, after which the gradual exponential
oss is visible.

his discussion assumes that the change in ��kx�z is much less than one over
he Lorentzian linewidth. This assumption will eventually break down as z
ncreases, and the beam evolution will no longer be exponential. We will discuss

his point shortly.
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.5. Comparison and Analysis
igure 13 shows Im�neff� as a function of b /a. As the ratio b /a increases, all

he methods that we have used for calculating �i—the direct determination of
he leaky mode solution, the perturbation method, and the determination
rom the radiation mode solutions—yield nearly identical results. The linear
alloff on a logarithmic plot indicates that the imaginary part of neff decreases

Figure 12
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ave propagation in a W-type waveguide. Light is injected into the W-type
aveguide at z=0. The black dashed–dotted lines and black dashed lines indicate
= ±a and x= ±b, respectively. The movie (Media 3) shows the real part of

he electric field.

Figure 13
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m�neff� as a function of b /a. The blue solid curve, green dashed–dotted curve,
nd red dashed curve represent the leakage loss calculated from the direct
etermination of the leaky mode solution, the perturbation method, and the
etermination from the radiation mode solution, respectively.
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xponentially as b /a increases. This falloff is expected, since the magnitude of
he nearly guided mode decreases exponentially before reaching the
nterfaces at x= ±b.

igure 14 shows a movie of the transverse mode for the Gaussian input beam
hat we considered in Fig. 7 as it propagates along the W-type waveguide. We
eep 5000 kx modes, and we set B=8000a. The waveguide parameters are
he same as in Figs. 9 and 12. The red dashed curve indicates the leaky mode
olution. The mode profiles are normalized to 1 at x=0, so that the
ttenuation as z increases is not visible. The two solutions overlap in the center,
howing that the mode preserves its shape. The exponential increase as x

±� that is expected for a leaky mode is also apparent in both solutions.
owever, the dynamical solution has the following characteristics: first,
portion of the beam that is mismatched to the leaky mode in the central region
f the waveguide rapidly diffracts. Second, as the beam propagates along the
direction, the beam’s power gradually increases in the cladding region of the
aveguide, �x � �b, and resembles the leaky mode profile over larger values
f �x�. Hence, the power that is radiated from the core is actually not lost, since
t is simply redistributed from the core into the cladding region. Third, the
ynamic solution has a front in ±x beyond which it rapidly tends to zero. The
scillations in Fig. 14 are due to phase interference from different points
long the initial x profile, analogous to the oscillations that are observed in
raunhoffer diffraction from a single slit.

e noted earlier that as z becomes large, we expect the exponential decay to
ease. Mathematically, this effect will occur when the change in ��kx�z over the
andwidth of the Lorentzian peak becomes large. The stationary phase point
f ��kx� will once again dominate the solution, and the wave should exhibit
lgebraic decay that is consistent with diffraction, rather than the exponential
ecay that is characteristic of leakage. This long-term diffraction should not be
onfused with the early-term diffraction that is observed immediately after a
eam is launched into the waveguide. In contrast to the early-term diffraction

Figure 14
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ovie (Media 4) of the transverse mode evolution as the mode propagates
long a W-type slab waveguide. The red dashed curve and blue solid curve
epresent the transverse mode power from the leaky mode and the actual
rofile that is found by integrating Eq. (4). The black dashed lines indicate x
±b.
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hat is due to the portions of the spectrum Ã�kx� in which kx
2�k0

2�n0
2−n1

2�, the

ong-term diffraction is due to the portion of the spectrum Ã�kx� in which kx
2

k0
2�n0

2−n1
2�. This portion of the spectrum includes kx= ±kr, so that the

omponents of Ã�kx� that lead to long-term diffraction also act as a background,
anceling out the initial exponential growth in the ±x directions. During the
eriod of evolution when the leaky mode dominates, the phases of the continuum
ackground become increasingly mismatched, increasingly revealing the
eaky mode at larger values of �x�, as we observed in Fig. 14.

n Fig. 15, we show Inorm= �A�z ,x=0��2 / �A�z=0,x=0��2 as a function of z /�.
he red dashed curve shows the power of the field using numerical integration.
he whole curve can be separated into three regions. In region I, we find the
xpected exponential decay. In region III, we find the expected algebraic decay,
hich is proportional to z−3 at x=0, according to Eq. (39). In the transition

egion between, oscillations are visible, as the contributions due to diffraction
nd leakage interfere either constructively or destructively. The green
ashed–dotted and green solid curves show, respectively, the steepest descent
nalysis for the evolution at x=0 and the leaky mode evolution. They agree
n the appropriate limits with the exact evolution. We note that we have set b /a
2.5 instead of b /a=5, as in our previous examples. The algebraic decay is
ifficult to observe, and the larger value of b /a=5 implies a low leakage loss and
low power at the transition point where the decay rate changes from

xponential to algebraic. The power at that point is so low that round-off errors
ade it impossible for us to observe. In principle, if the input field were

erfectly matched to the leaky mode there would not be a transition to algebraic
ecay, but since perfect matching is impossible given the infinite extent of
he leaky mode, the transition will always occur.

Figure 15
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norm= �A�z ,x=0��2 / �A�z=0,x=0��2 as a function of z /� for a Gaussian beam
ith b /a=2.5. The red dashed curve shows the power of the field obtained by
sing numerical integration. The green dashed–dotted and green solid
urves show, respectively, the steepest descent analysis for the evolution at x
0 and the leaky mode evolution. The blue solid curve shows the Inorm that is
alculated by summing the fields from the steepest descent analysis that
ere used to produce I and II.
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. Bandgap Waveguide

n the slab waveguides that we have studied thus far, the index of refraction in
he guiding regions is always higher than in the immediately surrounding
egions. However, it is advantageous in some cases to be able to guide waves
n a region of lower index of refraction. For example, by filling a region with air,
ne can greatly lower the nonlinearity. One can confine modes in a
ower-index region by using the bandgap effect [12,59,60]. In a periodically
arying medium, like the one shown in Fig. 16(a), frequency bands where the
ight cannot propagate though the periodically varying medium are referred to
s bandgaps. By creating a defect in the periodic structure, as shown in Fig.
6(b), and launching light at a frequency that is in the bandgap of the periodic
tructure, one can confine light inside the defect, even when the index of
efraction is smaller than in the surrounding regions. In practice, however the
eriodic variations have a finite extent, as shown in Fig. 16(c). In this case,
he waveguide is leaky. We will show in this section that the leaky modes in these
andgap waveguides behave much like the leaky modes in the W-type
aveguides. In optical fibers, an analogous approach has been widely used to

onfine light to a low-index core. This guidance is referred to as photonic
andgap guidance or capillary guidance [46].

.1. Eigenvalue Equation
e begin by considering an infinitely periodic structure, of which Fig. 16(a)

hows one example. Because Eq. (3) is a second-order ordinary differential
quation, it must be possible to write any solution E�x� as a superposition of
wo independent solutions E1�x� and E2�x�. In particular, since the equation is

Figure 16
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he refractive index profile for (a) an infinite periodic structure, (b) an infinite
eriodic structure with a center defect, and (c) a leaky bandgap waveguide.
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eriodic with period �, it must be possible to write E1�x+��=AE1�x�+BE2�x�
nd E2�x+��=CE1�x�+DE2�x�, where A, B, C, and D are constants that
epend on the details of the periodic structure. We may write these two relations
n matrix form as

�E1�x + ��

E2�x + ��� = �A B

C D
��E1�x�

E2�x�� , �51�

here A, B, C, and D are four constants that depend on the details of the
eriodic variation with one important constraint. Since Eq. (3) has no first
erivative terms, its Wronskian will be constant [51]. That implies in turn that
D−BC=1. To determine whether propagating solutions to Eq. (3) exist at
given value of �, we first search for a particular set of solutions E+�x� and E−�x�

hat have the property E+�x�=exp�iK+x�u+�x� and E−�x�=exp�iK−x�u−�x�,
here u+�x� and u−�x� are strictly periodic in �. The existence of u±�x� is
uaranteed by the Bloch–Floquet theorem, which holds for any periodic
tructure. The solutions E±�x� satisfy the conditions E±�x+��=�±E±�x�, where

±=exp�iK±��. We may find �± and hence K± and u±�x� by solving the
igenvalue problem

�A − � B

C D − �
� = 0 = �2 − ��A + D� + 1. �52�

e now infer

�± =
A + D

2
± �A + D

2
�2

− 1�1/2

. �53�

rom the condition AD−BC=1, it follows that �+�−=1, so that K+=−K−, and
oth are purely real or purely imaginary. If �A+D�2 /4�1, then K± are
eal, and waves can propagate along x, which is required in order for an initial
eam that is introduced at z=0 to propagate in the +z direction. Otherwise,
here is no propagation, and an initial beam attenuates. The case shown
chematically in Fig. 16(a) in which there are just two different indices has
een extensively analyzed in the literature [59,61]. We consider an example from
59], in which �=1.15 µm, n1=2.89, n2=3.38, nc=1, and a=b=0.1 µm,
hich applies to the cladding region in the waveguide for a gas laser. In Fig.
7, we show the band structure as a function of normalized frequency
nd propagation constant. The dark areas are the allowed bands, where �A
D�2 /4�1.

e now consider the case of a defect, shown in Fig. 16(b). The lowest-order
efect mode will be even, and we write

E�x� = 	C1 cos�kcx� 0  x  d

C0u+�x�exp�iK+x� + D0u−�x�exp�− iK−x� d  x 
 , �54�

here kc= �k0
2nc

2−�2�1/2, with the condition that E�x�=E�−x� when x�0. Since
e are only interested in confined modes within the bandgap, we may
ssume K+= i�, where � is real, and K−=−i�. As a consequence, the contribution

0u−�x�exp�−iK−x�=D0u−�x�exp��x� grows exponentially as x→ +�, and

e must set D0=0. Thus, Eq. (54) becomes
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E�x� = 	C1 cos�kcx� 0  x  d

C0u+�x�exp�− �x� d  x 
 . �55�

atching the function and its derivative at the boundary, we obtain

C1 cos�kcd� = C0u+�d�exp�− �d� , �56a�

− C1kc sin�kcd� = C0�u+��d� − �u+�d��exp�− �d� . �56b�

liminating constants C1 and C0, we find the dispersion relation

− kc tan�kcd� =
u+��d� − �u+�d�

u+�d�
, �57�

rom which the allowed value of � or neff may be determined. For the example
hat we are considering, in which n1=2.89, n2=3.38, nc=1, a=b=0.1 µm,
=6a, and �=11.5a, we find neff=� /k0=0.89295. We show a picture of n�x�
nd real part of E�x� in Fig. 18.

inally, we turn to consideration of the leaky mode in the waveguide shown in
ig. 16(c). In this case, Eq. (55) becomes

E�x� = �C2 cos�kcx� 0 � x  d

C1u+�x�exp�− �x� + D1u−�x�exp��x� d  x  d + M�

C0 exp�iKxx� d + M�  x
� , �58�

here M is the number of periods in the intermediate region, and we set
�−x�=E�x�, where x�0. We have Kx= �k0

2n2
2−�2�1/2. We may solve for the

ropagation constant � and neff by using exactly the same mode-matching
echnique that we used for the W-type waveguides described in Subsection 4.1.
n this case, we find neff=� /k0=0.89085+1.543�10−3i when the number

Figure 17

and structure as a function of normalized frequency and propagation
onstant. The dark areas are the allowed bands.
f periods M=10.
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.2. Alternative Solution Procedures
n our study of the W-type waveguide, we considered two alternative solution
rocedures. In the first, we perturbed around the nonleaky solution,
ssuming that the leakage is small. In the second, we used complete mode
ecomposition, which consists of only radiation modes. We showed that both
hese procedures yield nearly the same answer as a direct determination of
he leaky mode solution. The same is true for the bandgap leaky modes.

he perturbation analysis proceeds exactly as in the case of the W-type
aveguide. We write �=�0+��, substitute this expression into the dispersion

elation for the leaky mode, expand in powers of ��, and keep the zeroth-
nd first-order contributions. We thus obtain an expression of the form M0��0�
M1��0���=0. Since we are using �0 from the solution to the nonleaky
aveguide, M0��0� is only due to the difference between the leaky and nonleaky
aveguides and will be small. Using this approach on our example system,
e find neff= ��0+��� /k0=0.89097+1.275�10−4i. The imaginary part

s within 20% of what we found using a direct solution in the case with 10
eriods in each cladding region.

he analysis using radiation modes again proceeds by analogy to what we
ound with the W-type waveguide. In Fig. 19 we show the Re�neff� and the

ormalized coefficient P�Kx�= �Ã�Kx��2 /max��Ã�Kx��2� as a function of Kx /k0

or our example. We keep 2000 kx modes, and we set B=1000�. We consider a
aussian input beam A�z=0,x�=A0 exp�−x2 /2d2�, where d is half the width

f the center region. A sharp Lorentzian peak in �Ã�Kx��2 is visible, just as in the
ase of the W-type waveguide. Using Eq. (50) once more to find neff, we
btain neff=0.89084+1.540�10−4i, which agrees well with the result that we
btained by using the direct method. We note that there are small peaks
ocated between kx /k0=1 and kx /k0=3. The small peaks are not visible in Fig.
9(a) on a linear scale, but are visible in Fig. 19(b) on a logarithmic scale.
hese are modes that are confined inside the high-index portions of the bandgap

egions by the neighboring lower-index portions. Their mode effective
ndices are between n1 and n2.

igure 20 shows a movie of wave propagation in the leaky bandgap waveguide.

Figure 18
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Refractive index and real part of E�x� as a function of x.
igure 21 shows a movie of the transverse mode evolution as the mode
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ropagates along the bandgap slab waveguide with ten periods. The red dashed
urve and blue solid curve show the transverse leaky mode power and the
omputational solution of Eq. (4), respectively. The power in both curves is
ormalized to 1 at x=0. As the mode propagates in the +z direction, the mode
radually fills in the power in the outside region of the waveguide. Again,
he power that is radiated from the core is not lost; it is simply redistributed from
he core into the outside region. Note that the solid blue curve has an irregular
hape around the center region. The irregular shape is caused by the small

Figure 19

he real part of neff and the normalized coefficient P�Kx�
�Ã�Kx��2 /max��Ã�Kx��2� with (a) a linear scale and (b) a logarithmic scale as a

unction of Kx.

Figure 20

1

−1

x/λ

z/
λ

−10 10

10

0

−1

ave propagation in a leaky bandgap waveguide. A beam is injected into the
aveguide at z=0. The movie (Media 5) shows the real part of the electric
eld. The black dashed–dotted lines and black dashed lines indicate x= ±d and
= ± �d+M��, respectively.
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eaks shown in Fig. 19(b). If we remove these small peaks in the coefficient
unction P�Kx�, then the irregular fluctuations in the blue solid curve go away.

n Fig. 22 we show Im�neff� for all three mode-matching methods, for our
xample system, as we allow the number of periods to grow. Beyond 20
eriods, disagreement among them is slight.

Figure 21
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ovie (Media 6) of the transverse mode evolution as it propagates along a
eaky bandgap slab waveguide. The red dashed curve and blue solid curve
epresent the power of the leaky mode and the computational solution of
q. (4). The boundary lines are not shown in this figure, since they are very
lose to the center, as shown in Fig. 20.

Figure 22
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m�neff� as a function of the number of periods. The blue solid curve, green
ashed–dotted curve, and red dashed curve represent the leakage loss calculated
rom the direct determination of the leaky mode solution, the perturbation
ethod, and the determination from the radiation mode solution, respectively.
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. Waveguide with Absorbing Layers

p to this point, we have solved for the modes in the waveguide by using the
act that in a region in which the index of refraction is constant, the solution
an be written exactly as a sum of exponents or a sum of cosines and sines.
atching the solutions and their derivatives across the boundaries of the

egions with different indices yields a matrix equation whose solution produces
he propagation constant. In two dimensions, the solution can no longer be
ritten as a sum of exponents, but when each of the regions of constant index
f refraction has a circular profile, a closely analogous method based on
essel functions can be developed and is referred to as the multipole method

9,10]. When all the indices are real, so that the Helmholtz equation, Eq.
3), is self-adjoint, there is a complete mode decomposition that consists of
ome finite number of guided modes and a continuum of radiation modes. Leaky
odes are not part of this complete set, although they can usefully

pproximate the behavior of nearly guided modes, as we have discussed in
etail.

hile this approach is the basis for all analytical studies of optical waveguides,
t is neither the most useful, nor the most widespread computational approach.

ost computational approaches are based on finite-element or finite-difference
iscretizations of Maxwell’s equation [5,6,62]. While the discretization in
wo transverse dimensions is far from trivial to implement, highly robust
ommercial software is available from several different vendors. The
nite-difference and finite-element approaches are highly flexible, since they
an deal with arbitrary geometries.

o simulate outgoing boundary conditions, the finite-difference and
nite-element approaches are usually implemented with an absorbing layer at

he simulation boundary in which the index of refraction is complex [5].
he goal is to obtain a solution that reproduces as closely as possible, in a limited
patial region, the solution with a lossless medium of infinite extent. That
ill be possible only if the absorbing layer is far from the initial beam. However,

ven given this constraint, the mathematical consequences of adding this
bsorbing layer are profound. First, all the modes are confined within a finite
egion, so that the mode decomposition always consists of a countable number of
odes as the spatial discretization becomes increasingly fine, as discussed

n Section 2. Second, the equations that describe the wave propagation are no
onger self-adjoint, and the modes can no longer be chosen so that they
re purely real. The propagation constants are in general complex. Third, we
ave found that when we approximate the W-type waveguide with a lossless
egion, surrounded by a lossy region when �x��L, as shown in Fig. 23,
here is always a leaky mode that is part of the complete mode decomposition.
hat is true even when L is very large, and the maxima of the mode’s
xponential tails are actually larger than the mode’s central peak. As L→�, the
ode decomposition does not appear to converge to the mode decomposition

or the self-adjoint problem, where there is no loss in the waveguide material that
e considered in Section 4. This behavior can be considered a generalization
f the result that even with self-adjoint equations, the behavior depends
pon the choice of the boundary conditions [48]. Thus, it is important to
nderstand when and why the solutions to this problem can be expected to
eproduce the solutions to the problem of a lossless medium of infinite extent.
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n practice, the details of the absorbing layer implementation can have a
ignificant impact on the propagation constant of the leaky mode. In order to
inimize reflections from the absorbing layers, it has become common to use

erfectly matched layers—a technique that was first introduced in
nite-difference time domain simulations [63,64]. An ideal perfectly matched

ayer is a layer that gives no reflection at any frequency and angle. However,
t is important to recognize that once they are spatially discretized, the perfectly
atched layers are no longer perfectly matched, and reflections from them

o occur [64]. In our prior studies of two-dimensional waveguides, we have
ound that shifting the location of the absorbing layer slightly can make a
ifference in the propagation constant that far exceeds the round-off or
iscretization error.

n the remainder of this section, we discuss the optimization of the absorbing
ayer and then discuss the complete mode decomposition and the role of
he leaky mode for a simple finite-difference method with absorbing boundary
ayers.

.1. Optimization of the Absorbing Layer
igure 23 shows the structure of a symmetric W-type waveguide with absorbing

ayers. We have chosen not to implement perfectly matched layers in order
o simplify the discussion and because they offer little or no advantage relative
o a straightforward absorber for the discretization that we use. We use a
imple finite-difference method, so that Eq. (3) becomes

1

�2
�E�xk−1� − 2E�xk� + E�xk+1�� + �k0

2n2�xk� − �2�E�xk� = 0, �59�

here xk=−B+ �k−1�� and �=2B / �N−1� is the discretization width. The
ndex k varies from 1 to N, where the simulation window extends from −B to
. The index of refraction n�xk� is real when �xk�L and is complex when

xk��L. The problem of solving Eq. (59) is thus a matter of finding the N
igenvalues � of the N�N matrix in Eq. (59), where for convenience we have
pplied Dirichlet boundary conditions, setting E0=EN+1=0. This choice of
oundary condition does affect the mode decomposition, but has no significant
ffect on the leaky mode.

Figure 23
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Refractive index profile for a W-type waveguide with absorbing layers.
he permittivity of the absorbing layer is

dvances in Optics and Photonics 1, 58–106 (2009) doi:10.1364/AOP.1.000058 93

 2009 Optical Society of America



w
s
c
c
s
d
n
=
s
i
b
o
s
T
c
t
w
A
s
f
a
a
A
i
�

I
d
l
f

A

©

� = n0
21 + i� �x�− L

d
�2

s�� , �60�

here s� is a parameter that we choose to minimize the reflections. Figure 24
hows Im�neff�=Im��� /k0 as a function of L /�, where � is the propagation
onstant of the leaky mode that we obtain from the solution of Eq. (59). We have
hosen b /a=5, n1=0.96n0, n0=1.45, and ka�n0

2−n1
2�1/2=1, which are the

ame parameters as in Subsection 4.1. We have set N=105. The blue dashed–
otted curve, dashed curve, and dotted curve show the results with
ormalized absorbing layer widths d /�=5,10,15, respectively. We have set s�
1 in all three cases. The red solid line shows the results from Eq. (42). We

ee that Im�neff� varies sinusoidally, and its magnitude diminishes rapidly as d /�
ncreases. These oscillations are due primarily to reflections from the
oundary at x= ±B. The boundary produces strong reflection when the width
f the absorbing layer is too small. In Fig. 25, we show the results when
�=5,2 ,1. The red solid line shows the result from the eigenvalue of Eq. (42).
he normalized width of absorbing layer d /� is set to be 15 for all three
ases. A large value of s� leads once again to large oscillations, primarily due
o reflections from within the absorbing layer, close to �x�=L. In Fig. 26,
e look in more detail at the behavior of Im�neff� as s� varies from 10−2 to 10.
t each value of s�, we calculated the average value of Im�neff� and the

tandard deviation for 100 evenly spaced values of L /� as we allow it to vary
rom 5 to 10. When s��0.04, the reflection from the boundary at ±B causes
large error and hence a large standard deviation. When s��1, the reflection
t the absorbing layer cause a large error and a large standard deviation.
ny value between s�=0.04 and s�=1.0 yields nearly the same average, which

s about 1.578�10−4, but, for a single computation, it is better to use 0.04
s��0.1 so that the standard deviation is low.

Figure 24

m�neff�=Im��� /k0 as a function of L /�. The blue dashed–dotted curve,
ashed curve, and dotted curve show the results with normalized absorbing
ayer widths d /�=5,10,15, respectively. The red solid line shows the results
rom Eq. (42).
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n general, it is useful to use absorbing layers with different values of L and
hen to average the results for Im�neff�.

.2. Mode Decomposition and the Leaky Mode
quation (59) has the form of a matrix eigenvalue problem

�M − �2I�E = 0, �61�

here I is the identity matrix, and, letting �j,k denote the Kronecker delta
unction, the matrix element

Figure 25

m�neff�=Im��� /k0 as a function of L /�. The blue dashed–dotted curve,
ashed curve, and dotted curve show the results with s�=5,2 ,1, respectively.
he red solid line shows the results from Eq. (42).

Figure 26

verage value of Im�neff� and the standard deviation for 100 evenly spaced
alues of L /� as we allow it to vary from 5 to 10.
dvances in Optics and Photonics 1, 58–106 (2009) doi:10.1364/AOP.1.000058 95

 2009 Optical Society of America



i
k
i
e

w
s

E

w

w
n

B
fi

w
t
E

I

A

©

Mj,k =
�j−1,k − 2�j,k + �j+1,k

�2
+ k0

2nk
2�j,k �62�

s the j ,kth element of the matrix M. The vector E is a column vector, whose
th element is E�xk�. We note that M is a symmetric matrix, which automatically
mplies that it is normal, i.e., MM†=M†M. That in turn implies that its
igenvectors form a complete set [65], so that we may write

A�xk� = �
l=1

N

ÃlEl�xk� , �63�

here El�xk� denotes the kth element of the column vector El, and the El are
olutions of the right eigenvalue equation

�M − �2I�El = 0. �64�

quation (63) is the discretized version of Eq. (10) in Section 2. In principle,

e may find Ãl by defining left eigenvectors that satisfy

Fl
T�M − �2I� = 0, �65�

here Fl is a column vector and Fl
T is the corresponding row vector, and

oting that

Ãl = �
l=1

N

A�xk�Fj�xk� . �66�

ecause the matrix M is symmetric, we find Fl�xk�=El�xk�. To determine the
eld at any xl and any z, we use the expression

A�z,xk� = �
l=1

N

ÃlEl�xk�exp�i�lz� , �67�

here we stress that the �l are in general complex. Equation (67) is the analog
o Eq. (4) for the finite-difference method and is the discretized version of
q. (11).

n Fig. 27, we show the Re�neff� and Im�neff�. We set N=500 in this case. We

Figure 27
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se the same parameters as in Subsection 4.4 with L /�=15, �B−L� /�=15, and
�=1. We arrange the indices from small Re�neff� to large Re�neff�, which
orresponds roughly to arranging the indices from large �kx� to small �kx�. In
his case, mode number 476 corresponds to the leaky mode. Its imaginary part
s substantially lower than its neighbors. It is the modes with small indices,
orresponding to kx

2�k0
2�n0

2−n1
2�, that contribute to the early term diffraction. All

f these modes are more lossy than the leaky mode. There is one mode with
lower Im�neff� than the leaky mode, which is mode number 498. This mode is

he lowest-order cavity mode that is confined between the absorbing layer
nd the layer with low index of refraction n1. In general, the loss of the cavity
odes is low because their transverse derivatives are small, implying from
q. (46) that they have little outward flux into the absorbing region. Modes 499
nd 500 are cladding modes that are located almost entirely in the absorbing
egions and have high loss.

n Fig. 28, we show a movie of the transverse normalized power of the same
aussian input beam that we considered in Subsection 4.4, as it propagates

long the waveguide with the same parameters as in Subsection 4.1 and with
/�=15, �B−L� /�=15, and s�=1. We also show the power of the leaky
ode as the red dashed curve. We have normalized the peak of the mode power

rofiles to 1. There are several different propagation regions. First, the field
eaks into the outer region of the W-type waveguide in which b� �x � �L and
lmost exactly reproduces the profile of the leaky mode, although small
scillations are visible for 2�x /��20, just as shown in Fig. 14. However,
hen z /��10,000, the lowest-order cavity mode becomes the dominant mode.
he distance at which it dominates is determined by the magnitude of its
mall, but finite overlap with the initial beam. Since this cavity mode is located
rimarily in the region b� �x��L, the profile of the power changes
ignificantly once this cavity mode becomes dominant. The lowest-order cavity
ode eventually dominates because it has a lower value of Im�neff� than any

ther mode, including the leaky mode, and because it has a small, but nonzero
verlap with the initial beam. It is possible in principle to launch an initial

Figure 28
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ovie (Media 7) of the transverse normalized power of the same initial
aussian beam that we considered in Subsection 4.4. We also show the power
f the leaky mode as a red dashed curve. We have normalized the peak of
he mode power profiles to 1. The black dashed–dotted lines, black dashed line,
nd black dotted lines indicate x= ±a, x= ±b, and x= ±L, respectively.
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eam that has no overlap with this cavity mode or, in fact, is a pure leaky
ode. However, one cannot do so when the initial beam is localized in the center

f the simulation window, as is always required in a realistic simulation. In
ractice, any initial beam will be composed of many modes, of which the leaky
ode is just one. Figure 29 shows Inorm= �A�z ,x=0��2 / �A�z=0,x=0��2 as a

unction of z /� for a Gaussian input beam. The beam and waveguide parameters
re the same as in Fig. 27. Owing to the large attenuation, normalization is
eeded to view these results. The red solid curve shows the result keeping all 500
odes, while the blue dashed line shows the result keeping only the leaky
ode. This figure is analogous to Fig. 15, in which long-term diffraction

ltimately dominates the evolution. In this case, however, the attenuation at
arge z is still exponential, but the attenuation occurs at a slower rate than in the
ase of the leaky mode, because the energy ultimately resides in the
owest-order cavity mode, rather than a continuum of radiation modes.

n Fig. 30, we show a slide show for the input wave (blue solid curves) and its
ecomposition into the eigenmodes (red dashed curves). Starting with the
eaky mode, which has index number 476, we add the other eigenmodes with

heir coefficients Ãl. We see that the other modes ultimately cancel the
ails of the leaky mode, so that the mode profile represents the Gaussian input
eam. Since these modes attenuate more rapidly than the leaky mode, the
eaky mode is ultimately revealed as the wave propagates along the waveguide.
his behavior is different from the infinite guide, where no modes attenuate
nd the leaky mode is revealed only in a finite region surrounding the center by
iffraction of the continuum of radiation modes. However, the behavior in
he central region is still the same in both cases up to the point where the large-z
ehavior begins to dominate the evolution.

n the example that we considered here, the leaky mode does not have large
xponential tails. However, we have examined the behavior as L and B become
arge. As long as d is large enough and s� is not too big, so that reflections

Figure 29

norm= �A�z ,x=0��2 / �A�z=0,x=0��2 as a function of z /� for a Gaussian beam.
he red solid curve shows the result keeping all 500 modes, while the
lue dashed curve shows the result keeping only the leaky mode.
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rom the absorbing regions are avoided, the qualitative behavior is unchanged.
here is always a leaky mode that dominates the evolution until z becomes

arge, at which point one or more cavity modes dominate the evolution. We have
bserved the following points: with b /a kept fixed, as L increases, so do the
axima of the exponential tails of the leaky modes. Ultimately theses

ails become bigger at their maxima than the central peak of the mode.
onetheless, the leaky mode is a real mode of this waveguide system.
dditionally, as L increases, the number of cavity modes with less attenuation

han the leaky mode increases. However, the lowest-order cavity mode
lways has the lowest loss and ultimately dominates the evolution.

. Answers to the Introductory Questions

here are two basic types of computational method that are used to find optical
aveguide modes. One type is mode-matching methods, in which one uses

xact analytical solutions in regions where the index of refraction is constant and
atches the solutions and their derivatives at the boundaries. In the case of

lab waveguides, one uses exponential functions. The other type is
nite-difference and finite-element methods.

hen using mode-matching methods, it is usual to specify the problem in a
ossless waveguide so that the index of refraction is real at all points in the space.
n this case, all the waveguide modes are lossless and have real propagation
onstants. If the index of refraction becomes equal to a constant value at some
nite distance from the origin, then in general there is a continuum of
adiation modes and a finite number of discrete guided modes. Any physically

Figure 30
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lide show (Media 8) for the input wave (blue solid curves) and its
ecomposition into the eigenmodes (red dashed curves). In (b), we show the
entral region from (a). The black dashed–dotted lines, black dashed line, and
lack dotted lines indicate x= ±a, x= ±b, and x= ±L, respectively.
easonable initial profile can be decomposed into a generalized sum over
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he waveguide modes, in which the sum includes an integral over the radiation
odes. One can then determine the beam profile at any subsequent point in

he waveguide by multiplying the amplitude of each mode by an appropriate
xponential factor and then resumming the modes.

his problem is equivalent mathematically to the quantum-mechanical
roblem of a particle that is confined in a potential well, and the set of facts
ust stated is often repeated in elementary textbooks on quantum mechanics and
aveguide theory. The proof is, however, far from trivial [48]. It begins with
finite region in space with boundary conditions that ensure that the eigenvalue
roblem—given in our case by Eq. (3)—remains self-adjoint. In this case,
ne has a countably infinite set of modes. As one lets the boundary tend toward
nfinity, most of the modes coalesce into a continuum, leaving a finite set of
uided modes. This continuum will always contain both outgoing and incoming
aves. That occurs because self-adjoint boundary conditions on a finite

egion of space always lead to reflections, so that as the boundary tends toward
nfinity, there are always waves propagating both outward and inward.
ecause of its importance in quantum mechanics, as well as optical waveguides,

he theory of self-adjoint eigenvalue equations has been extensively studied.

iven the complete mode decomposition into a continuum of radiation modes
nd a finite number of guided modes, the light evolution in the three-slab
aveguide of Fig. 1(a) is not difficult to understand. The portion of the beam
rofile that couples into the guided modes remains confined, while the
ortion that couples into the radiation modes diffracts.

y contrast, the evolution of the light in the W-type waveguide, in which only
continuum of radiation modes is present, is not so easy to understand.
he key point is that the continuum contains sharp Lorentzian peaks at values
f kx that nearly equal the transverse wavenumbers of the central portion of
he guided modes of the corresponding three-slab waveguide. Immediately after
beam is injected into the waveguide, there is a transient stage in which a
ortion of the energy rapidly diffracts, in close analogy to the behavior in a
hree-slab waveguide. However, Lorentzian peaks in the continuum quickly
ominate the early evolution, leading to leaky modes whose damping rates are
iven by the widths of the Lorentzian peaks. The amplitudes corresponding
o all the transverse wavenumbers in a Lorentzian peak are initially in phase, but
hen the propagation distance becomes long enough so that these amplitudes

re out of phase, then long-term diffraction dominates. This long-term
iffraction, which corresponds to the dissolution of the leaky mode and occurs
utside the central region of the waveguide, should not be confused with
he early term diffraction, during which the initial beam settles down into the
hape of the leaky mode in the central region of the waveguide. In effect,
he continuum can be decomposed into three contributions—a smooth portion
t large transverse wavenumbers that leads to the rapid initial diffraction,
orentzian peaks that correspond to the leaky modes, and a smooth background

o the Lorentzian peaks that compensates for the exponential growth at large
ransverse distances and leads to diffractive radiation at large propagation
istances.

hile leaky modes can be understood as a consequence of the Lorentzian
eaks in the continuum, that does not explain the evolution of their exponential
rowth transverse to the direction of propagation. We have found that this
xponential growth is real within a limited transverse distance surrounding the
dvances in Optics and Photonics 1, 58–106 (2009) doi:10.1364/AOP.1.000058 100
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rigin, and this transverse distance continues to grow as long as the leaky
ode dominates over the long-term diffraction. Using conservation of flux, we

ave shown that any mode that decreases exponentially as it propagates
ust increase exponentially transverse to the direction of propagation once the

ransverse dimensions are large enough that the index of refraction equals
ts final constant value. However, exponential growth that extends to infinity is
nphysical. There have been attempts in the literature to bypass this problem
y claiming that at some transverse distance the material becomes lossy
r interacts with air, and the problem goes away. However, the protective coating
r air is often very far from the region of interest, so that it is easier both
athematically and computationally to treat the medium as though the indices

f refraction at the boundary of the region of interest extended to infinity.
nvoking a protective coating or air does not help us understand how the
ppearance of leaky modes in the mathematical formulation of the problem as a
ossless waveguide can provide useful numbers or even be consistent with
hysical reality.

he Lorentzian peaks in the continuum, if separated from the continuum
ackground lead to solutions that grow exponentially in the transverse
imension. The background cancels this exponential growth. As the light
ropagates, the different components of the background evolve so that they are
ncreasingly out of phase, revealing the exponential growth. This trend
ontinues until the components of the Lorentzian peaks evolve so that they are
lso out of phase. Thereafter, long-term diffraction dominates the evolution.

emarkably, the basic behavior that we have just described remains the same in
ar more complex systems than the three-slab and W-type waveguides that
ere the focus of most of our discussion. We demonstrated this point in detail

or the important case of bandgap waveguides, but it remains true when the
ransverse structures become two-dimensional.

hen using finite-difference or finite-element methods, it is usual to surround
he region of interest with a lossy region, whose purpose is to absorb
utgoing waves. For the class of problems that we are considering here, in
hich the index of refraction reaches a constant value at some finite distance

rom the origin, the absorbing boundary would typically be placed shortly
eyond the distances at which the constant value is reached. The wave flux is
trictly outward in the lossless problem at transverse distances that are
oth beyond the initial beam width and beyond the points at which the index of
efraction reaches its final value. Hence, one expects physically that
urrounding the region of interest with an absorbing layer will produce the
ame behavior within the region of interest as does a lossless guide that extends
o infinity. Some sort of absorber is needed because any lossless boundary
onditions in a finite spatial region will produce reflections, which very visibly
hanges the behavior in the region of interest!

ecause of their flexibility and the ease relative to other methods with which
hey can be numerically implemented, finite-difference and finite-element
ethods are the methods of choice in geometries with any significant

omplexity. As a consequence, considerable effort has gone into developing
lgorithms for absorbing layers that reflect as little as possible, while using as
mall a number of node points as possible [5]. The absorbing layer must be
ptimized for each geometry, and we showed how this optimization procedure
dvances in Optics and Photonics 1, 58–106 (2009) doi:10.1364/AOP.1.000058 101
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orks in the case of a simple finite-difference scheme and a simple absorber
or the W-type waveguide.

s long as the absorbing layer has been optimized to produce negligible
eflections and the number of points is sufficiently large on a well-chosen mesh,
hen the finite-difference and finite-element methods will produce results for
he evolution of an initially localized beam that agrees in the region of interest
ith the results of the mode-matching methods for some finite propagation
istance. Moreover, when we are solving for the modes, the damping rates for
he leaky modes will agree. Not surprisingly, mode-matching methods
roduce results different from those for the finite-difference and finite-element
ethods when the energy that is outside the region of interest becomes

arge.

hile the finite-difference and finite-element methods for the quantities of
nterest may produce the same results as do the mode-matching methods, it is
mportant to recognize that the mathematical problem has profoundly
hanged, and so has the mode decomposition. Since the problem formulation
s no longer self-adjoint, one can no longer use the mathematical apparatus
hat was developed for self-adjoint problems. Indeed, there is no guarantee in
eneral that the modes constitute a complete set, although we showed that
he decomposition was complete for the simple case that we considered. Hence,
he completeness must be verified on a case-by-case basis [65].

or the simple finite-difference algorithm that we considered, we observed the
ollowing differences from the mode-matching method: (1) The mode
ecomposition consists of a finite number of discrete modes. That will be the
ase for any finite-difference or finite-element method. (2) The leaky mode
s a real mode of the system. (3) The transverse exponential behavior is revealed
hen modes that have larger loss than the leaky mode attenuate. There is no

eal diffraction, although the evolution reproduces the early term diffraction. (4)
here are one or more cladding modes that have less loss than the leaky
ode. These cladding modes decay exponentially, but at a slower rate than the

eaky mode. Algebraic decay associated with long-term diffraction is not
bserved.

t might seem surprising at first that the mode decomposition used with
ode-matching methods and the mode decomposition used with
nite-difference or finite-element methods should yield the same result for the
uantities of interest when the decompositions differ so profoundly.
owever, it is a reflection of a deep result that can be found throughout physics.
problem can often be formulated in two different ways. As long as both

ormulations are correct, they must yield the same results. Often these
ormulations lead to different, complementary physical pictures of the
henomenon being studied. That is the case here.

ppendix A: How We Did It and Software Link

.1. How We Did It
here are many ways to generate animations. We proceeded as follows: for
ach animation, we generated 10–100 frames in postscript (PS) format, labeled
equentially as fig1.ps, fig2.ps, fig3.ps, etc. Then we used the following
inux command to transform files in PS format to files in GIF format:
dvances in Optics and Photonics 1, 58–106 (2009) doi:10.1364/AOP.1.000058 102
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ogrify -format gif fig*.ps

After we generated a series of GIF files, we linked all the GIF files to
build the animation, using the commercial software GIF Construction Set
Professional (http://www.mindworkshop.com/alchemy/gifcon.html).
Both MOV files and GIF files can be generated. The schematic diagrams
in the tutorial paper, Figs. 1, 2, 10, 16, and 23, were not created by
using MATLAB. These figures were created by using xfig
(http://www.xfig.org/).

.2. Software Link
ownload the data archive (Media 9) and unpack it to a directory. Please see

he Terms of Use on the Advances in Optics and Photonics website. To use the
ode, simply download it and run it from MATLAB. To generate a particular
gure, type ‘‘FigureNumber(N),” where N is the index of the figure or movie that
ou want to generate. For questions or problems regarding the code, contact
onathan Hu.

.3. For More Information
he code UndStdLeakyMode was developed by Jonathan Hu in the
omputational Photonics Laboratory at UMBC. More information about the

aboratory and Jonathan Hu, as well as additional useful software, may be found
t our Web site (http://www.umbc.edu/photonics/software).
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