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Abstract: We consider the impact of saturable nonlinearity and group
velocity dispersion on self-induced transparency (SIT) modelocking of
quantum cascade lasers (QCLs). We find that self-induced transparency
modelocking in QCLs can be obtained in the presence of saturable nonlin-
earity if the saturable loss or gain is below a critical limit. The limit for the
saturable loss is significantly more stringent than the limit for the saturable
gain. Stable modelocked pulses are also obtained in the presence of both
normal and anomalous group velocity dispersion when its magnitude is
below a critical value. The stability limit for the saturable loss becomes less
stringent when group velocity dispersion is simultaneously present. How-
ever, the stability limit for the saturable gain is not significantly affected.
All these limits depend on the ratio of the SIT-induced gain and absorption
to the linear loss. Realistic values for both the saturable nonlinearity and
chromatic dispersion are within the range in which SIT modelocking is
predicted to be stable.
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1. Introduction

Modelocking of quantum cascade lasers (QCLs) [1] is an active field of research. They are the
most useful semiconductor sources that operate in the mid-IR, and modelocking these lasers
opens a path to generating short pulses in the mid-IR from a semiconductor source. That in
turn has a host of military, communications, medical, and environmental sensing applications.
While the generation of 3 ps pulses has been achieved using active modelocking [2], it has
proved difficult to generate sub-ps pulses from QCLs using conventional modelocking because
of the inherently narrow linewidth and short gain recovery time T1 compared to direct-bandgap
semiconductor lasers [3]. The linewidth in QCLs is narrow compared to direct-bandgap semi-
conductor lasers because the lasing transition takes place between two subbands within the
conduction band [4]. The subbands have approximately the same curvature, so that the tran-
sition frequency only has a weak dependence on the electron temperature. The gain recovery
time of a conventional QCL is generally on the order of a ps due to very fast carrier transport
by resonant tunneling and LO phonon relaxation [5, 6], while the round-trip time Trt in a typi-
cal 3-mm-long cavity of conventional QCLs is around 50 ps. The condition T1 � Trt makes it
difficult to form a pulse, and the laser may become unstable when operated above its threshold
due to the Risken-Nummedal-Graham-Haken instability [7].

Though the fast gain recovery time and the narrow linewidth of the conventional QCLs are
not suitable for conventional passive modelocking [8–10], these conditions are ideal for using
the self-induced transparency (SIT) effect [11–14]. The relatively narrow linewidth compared
to direct-bandgap semiconductor lasers corresponds to a relatively large coherence time T2,
and the short recovery time implies that inversion in the gain medium will be restored during
one round-trip of a short pulse. Recently, it has been theoretically demonstrated that QCLs
can be modelocked using the SIT effect in their typical parameter range and that pulses on
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the order of the coherence time T2 can be generated [15–17]. For this purpose, QCLs must be
grown with interleaved absorbing and gain periods. The absorbing periods stabilize the short
pulses by absorbing continuous waves and shape the pulses as they propagate. These absorbing
periods operate in a way that is analogous to a saturable absorber in a conventional passively
modelocked laser.
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Fig. 1. Refractive index profile and resulting intensity distribution of the fundamental
waveguide mode along the lateral direction of a conventional QCL waveguide in case of (a)
saturable loss and (b) saturable gain. The intensity profile changes due to the strong index
nonlinearity of the active region. (a) If the intensity increases, the index near the center
of the waveguide increases and the mode is more tightly confined. (b) If the intensity de-
creases, the index near the center of the waveguide decreases and the mode is more weakly
confined.

Paiella et al. [18] observed self-focusing due to a strong intensity-dependent refractive index
in QCLs. In addition, Wang et al. [3] and Gordon et al. [19] found evidence for an intensity-
dependent loss in QCLs. They found that the loss saturates when QCLs are operated with an
input current that is above threshold. As the intensity of the light inside the laser increases, the
intensity-dependent portion of the refractive index, n2, adds to the intensity-independent portion
of the refractive index, n0. The total refractive index of the core increases. Therefore, the overlap
of the lateral optical mode with the core increases, and the overlap with the lossy cladding
decreases, as schematically shown in Fig. 1(a). As a result, the loss decreases. In practice, the
change of the refractive index with intensity can be positive or negative, depending on the
wavelength. When the sign of n2 is negative, then the loss will increase because the overlap
of the lateral optical mode with the lossy cladding will increase, as schematically shown in
Fig. 1(b). Therefore, an optical pulse may experience saturable loss or saturable gain, depending
on the wavelength of the laser transition.

Chromatic dispersion is also present in QCLs. Choi et al. [20] found for a particular QCL
a dispersion coefficient β2 ∼ −4.6 ps2/m at the 5 μm gain transition. Therefore, a pulse may
broaden during propagation inside the laser structure.

Work to date on SIT modelocking of QCLs has not considered the intensity dependence of
the refractive index when the pulse propagates in the laser structure or chromatic dispersion. In
work to date, we have demonstrated analytically that SIT modelocking is possible under ideal
conditions [15], and we have shown computationally that the modelocking is robust when the
parameters of the Maxwell-Bloch equations vary from their ideal values [16]. We have also
shown that SIT modelocking is robust when the geometric effects of bi-directional propagation
and lumped mirror losses are considered [17]. Since the stability of SIT modelocking depends
on the magnitude of the gain and absorption coefficients relative to loss, the modulation of
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loss by the intensity will affect the stability of the SIT modelocking. Since SIT modelocking
generates, in principle, pulses on the order of only 100 fs, chromatic dispersion, which spreads
the pulses will also affect the stability. Therefore, it is critical to investigate the effects of the
saturable nonlinearity and chromatic dispersion in order to determine the practicality of SIT
modelocking.

In this work, we find that SIT modelocking is achieved in the presence of the saturable
loss or the saturable gain, but only when the saturable loss and the saturable gain are below
critical values. The limiting values of the saturable loss are significantly lower in magnitude
than the limiting values of the saturable gain. The intensity and duration of the modelocked
pulse depend on the amount of the saturable loss or saturable gain, in addition to the gain and
absorption coefficients.

SIT modelocking is stable when the group velocity dispersion is normal or anomalous, in
contrast to conventional passively modelocked systems that can be modeled by the complex
Ginzburg-Landau equation [21]. In fact, as we will show, the pulse intensity as a function
of time is the same regardless of the sign of the chromatic dispersion in SIT modelocking.
The pulse intensity decreases and the pulse duration increases when the absolute value of the
dispersion coefficient increases. Beyond a critical value that depends on the magnitude of the
gain and absorption coefficients, the pulses become unstable. They either break up into multiple
pulses due to the growth of continuous waves, or they damp away.

When saturable nonlinearity and group velocity dispersion are simultaneously present, as
would be expected to occur in practice, the stability limit for the saturable loss increases, be-
coming less stringent, while the stability limit for the saturable gain remains almost unchanged.
We will show that realistic values for the saturable nonlinearity and chromatic dispersion are
within the range where SIT modelocked pulses are expected to be stable.

In this work, we do not consider the backward-propagating waves, which may interfere with
the forward-propagating waves and create spatial hole burning. In Ref. 17, we showed that
spatial hole burning is not an issue for SIT modelocking as long as continuous waves are sup-
pressed, and continuous waves are always suppressed when SIT modelocking is stable.

In this work, we also do not consider the lumped mirror loss. The inclusion of the lumped
mirror loss in the model does not change the results qualitatively, although there is some quan-
titative change [17]. The impact of the lumped mirror loss depends significantly on the cavity
length. Quantum cascade lasers are generally 1–3 mm long. The impact of the lumped mirror
loss on SIT modelocking will decrease as the cavity length increases. In order to focus on the
effects of chromatic dispersion and saturable nonlinearity, we have added the mirror loss to
the loss in the medium and distributed the total loss along the length of the cavity. However, if
lumped mirror loss is included in the model, the realistic values for the saturable nonlinearity
and group velocity dispersion will still be within the range where SIT modelocked pulses are
expected to be stable. In Ref. 17, we found that due to lumped mirror loss, pulses decay with
a smaller absorption coefficient for a given gain coefficient. Therefore, saturable loss, which
sets the most stringent limits, will compensate the lumped mirror loss. The stability limits will
increase, and SIT modelocking will be obtained with greater saturable loss.

The remainder of this paper is organized as follows: Sec. 2 presents the theoretical model of
the pulse dynamics in QCLs that have interleaved gain and absorbing periods when saturable
nonlinearity and group velocity dispersion are present. In Sec. 3, we show the effect of saturable
loss or saturable gain on SIT modelocking. In Sec. 4, we show the effect of group velocity
dispersion on SIT modelocking. In Sec. 5, we show the effect on SIT modelocking when both
the saturable nonlinearity and group velocity dispersion are simultaneously present. Finally, in
Sec. 6, we summarize the results and draw conclusions.
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2. Theoretical model

We use the two-level approximation of the Maxwell-Bloch equations [22,23] to model the gain
dynamics of a QCL. In SIT-modelocked QCL structures, the absorbing periods are interleaved
with the gain periods. So, in the presence of saturable nonlinearity and group velocity disper-
sion, the Maxwell-Bloch equations can be written as

n
c

∂E
∂ t

= −∂E
∂ z

− i
kNgΓgμg

2ε0n2 ηg − i
kNaΓaμa

2ε0n2 ηa − 1
2

l(|E|2)E − i
1
2

β2
∂ 2E
∂ t2 , (1.a)

∂ηg

∂ t
=

iμg

2h̄
ΔgE − ηg

T2g
, (1.b)

∂Δg

∂ t
=

iμg

h̄
ηgE∗ − iμg

h̄
η∗

g E +
Δg0 −Δg

T1g
, (1.c)

∂ηa

∂ t
=

iμa

2h̄
ΔaE − ηa

T2a
, (1.d)

∂Δa

∂ t
=

iμa

h̄
ηaE∗ − iμa

h̄
η∗

a E +
Δa0 −Δa

T1a
, (1.e)

where the subscripts g and a in Eq. (1) refer to the gain and absorbing periods, respectively.
The independent variables z and t denote length along the light-propagation axis of the QCL
and time. The dependent variables E, ηg, Δg, ηa, and Δa denote the envelope of the electric
field, the polarization and inversion in the gain medium, and the polarization and inversion in
the absorbing medium. The parameters Δg0 and Δa0 denote the equilibrium inversion away from
the modelocked pulse. The parameters μg and μa denote the dipole moments. The parameters
N and Γ denote the electron density and the mode overlap factor. The parameters n, c, k, ε0,
and h̄ denote the index of refraction, the speed of light, the wavenumber in the active region,
the vacuum dielectric permittivity, and Planck’s constant. The parameter β2 is the dispersion
coefficient. The parameter l(|E|2) denotes the loss that depends on the light intensity.

Equation (1) is the same as in [16] except that here we include the effect of chromatic dis-
persion, and we allow l(|E|2) to depend on the field intensity. We may write the intensity-
dependent loss as [21]

l(|E|2) = l0 − γ|E|2, (2)

where l0 is the linear loss and γ is the saturable nonlinearity coefficient. According to Eq. (2),
the loss will saturate when γ > 0 and the gain will saturate when γ < 0. The sign of γ depends
directly on the sign of n2, which in turn depends on the wavelength of the laser transition [23].
Gordon et al. [19] found that γ depends sensitively on the width of the QCL active region. As
the width of the active region increases, the parameter γ decreases. Gordon et al. found that γ
decreases approximately by a factor of two when the width of the active region increases from
3 μm to 7.5 μm.

The performance and the stability of the SIT modelocking of QCLs depend on the gain and
absorption coefficients from the gain and absorbing periods, respectively. The gain per unit
length (g) and the absorption per unit length (a) are given by [16]

g =
kNgΓgμ2

g T2g

2ε0n2h̄
, a =

kNaΓaμ2
a T2a

2ε0n2h̄
. (3)

The stability of SIT modelocking does not depend on the absolute values of the gain and ab-
sorption coefficients, but rather on their values relative to the loss in the system. Therefore, it is
useful to normalize the gain and absorption coefficients relative to the linear loss, i.e., ḡ = g/l0
and ā = a/l0. In this work, we have set T2g = T2a = 100 fs and T1g = T1a = 1 ps. We have set
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l0 = 10 cm−1 and Lc = 3 mm. All these values are realistic [19]. We set μg/e = 1.8 nm, which
corresponds to the design value that we reported in [16]. We also assume that the gain periods
are completely inverted in equilibrium, i.e., Δg0 = 1, while the absorbing periods are completely
uninverted in equilibrium, i.e., Δa0 =−1. The absorbing periods have a dipole moment twice as
large as the dipole moment in the gain periods, i.e., μa/μg = 2. We have previously determined
the impact of varying this ideal set of parameters, and we have found that SIT modelocking is
robust over a wide parameter range [16, 17].

We will consider initial pulses that are hyperbolic-secant shaped, so that E(t) = Asech(t/τ),
where τ = 50 fs, and we choose A so that the initial pulse is a π pulse in the gain periods
and a 2π pulse in the absorbing periods. We note that when τ = 50 fs, the full width half
maximum (FWHM) duration is given by [2ln(1+

√
2)]τ ≈ 1.763τ ≈ 88 fs. We recall that the

condition to be a π pulse in the gain medium is (μg/h̄)
∫ ∞
−∞ E(t)dt = π , so that A = 7.3×106

V/m. We have previously shown that SIT modelocking is robust when the initial conditions are
changed [16, 17].
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Fig. 2. Modelocked pulse evolution in presence of saturable loss. The saturable nonlinearity
coefficient γ = 10−12 m/V2. We set ḡ = 4 and ā = 5. The dispersion coefficient (β2) is set
to zero.

3. Nonlinearity

3.1. Saturable loss (γ > 0)

The saturable nonlinearity coefficient γ is positive when the refractive index increases with in-
tensity. Therefore, with γ > 0, the lateral optical mode becomes better confined in the core,
and the loss saturates as the intensity of the pulse grows, as shown schematically in Fig. 1(a).
We have found that the stable modelocked pulses are obtained when γ < γc, where γc is the
critical value of the coefficient γ . In Fig. 2, we show an example of the evolution of an initial
hyperbolic-secant pulse whose initial energy corresponds to a π pulse in the gain periods. Here,
we have set γ = 10−12 m/V2. The gain normalized to the linear loss and the absorption nor-
malized to the linear loss are set to 4 and 5, respectively. We see that the pulse reaches its stable
equilibrium after propagating a distance that is only a few times the cavity length (Lc). The
intensity of the initial pulse grows and the duration of the initial pulse narrows before the pulse
equilibrates. In an SIT-modelocked laser, the pulse intensity and the pulse duration are deter-
mined by the values of the gain and absorption coefficients relative to the loss [15, 16]. How-
ever, in the presence of a saturable loss, pulses are further shaped by the intensity-dependent
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loss in addition to the gain and absorption coefficients. A saturable loss favors more intense,
shorter pulses. The additional pulse shaping depends on the magnitude of γ . In Fig. 3, we show
the stable modelocked pulses with different values of γ . The maximum intensity of the pulse
increases and the duration of the pulse decreases as γ increases. However, the laser becomes
unstable when γ > 1.9×10−12 m/V2 with ḡ = 4 and ā = 5.
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Fig. 3. Equilibrium modelocked pulse shapes vs. the saturable nonlinearity coefficient (γ).
In each case, the pulse is shown after it has propagated a distance of 1000Lc. We set ḡ = 4
and ā = 5. The dispersion coefficient (β2) is set to zero.

In Fig. 4, we show the change in the normalized maximum intensity and in the duration of
the stable modelocked pulses when γ changes. We define the duration as the full width at half
maximum (FWHM) divided by 2ln(1+

√
2) = 1.763. The maximum intensity of the pulses has

been normalized by the maximum intensity of the pulse with γ = 0. The maximum intensity and
the pulse durations have been calculated after the pulses have propagated a distance of 1000Lc.
In each case, the pulse becomes stable after propagating a distance of less than 100Lc. We see
that the maximum intensity of the pulse increases as γ increases. The maximum intensity of the
pulse is larger by more than a factor of two when γ = 1.9×10−12 m/V2 than it is when γ = 0.
However, beyond this nonlinearity, i.e., γ > 1.9× 10−12 m/V2, the pulse becomes unstable.
The pulse duration decreases as γ increases. We see that the stable pulse has a duration of ∼ 43
fs when γ = 0, while the stable pulse has a duration of ∼ 28 fs when γ = 1.9×10−12 m/V2.

The critical value of γ , γ = γc, at which there is no stable pulse depends on the normalized
gain and absorption coefficients. In Fig. 5, we present γc vs. ā for two values of ḡ. We find that
the values of γc vary significantly when ā and ḡ change. As ā increases or ḡ decreases, we find
that γc increases. By increasing ā and decreasing ḡ, the critical value of the saturable loss for
stable operation can be significantly increased.

3.2. Saturable gain (γ < 0)

The saturable nonlinearity coefficient γ becomes negative when the refractive index of the core
decreases as the light intensity increases. In this case, the overlap of the lateral mode with the
core decreases, while the overlap with the lossy cladding increases as in Fig. 1(b). As a result,
the gain will saturate as the light intensity increases. We show an example of the evolution of
a stable modelocked pulse in Fig. 6 when saturable gain is present. As before, we choose an
initial π pulse. In this case, the nonlinear coefficient γ is set to −10× 10−12 m/V, and we use
ḡ = 4 and ā = 5. We note that the intensity of the initial pulse decreases and the duration of
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Fig. 4. The normalized maximum intensity and pulse duration (FWHM/1.763) of the stable
modelocked pulse vs. the saturable nonlinearity coefficient (γ). We set ḡ = 4 and ā = 5.
The dispersion coefficient (β2) is set to zero.
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Fig. 5. The critical values of the saturable nonlinearity coefficient (γc) vs. the normalized
absorption coefficient (ā) for two values of the normalized gain coefficient (ḡ). The dis-
persion coefficient (β2) is set to zero.

the initial pulse increases before the pulse equilibrates. Similar to the case when the saturable
loss is present, the pulse intensity and the pulse duration are determined by the saturable gain,
in addition to the gain and absorption coefficients. In Fig. 7, we plot the stable modelocked
pulses with different amounts of saturable gain. In each case, the pulse is shown after it has
propagated a distance of 1000Lc. Stable modelocked pulses become less intense and broader
as γ becomes more negative. The pulses no longer equilibrate, but instead damp away when
γ � −68×10−12 m/V2.

In Fig. 8, we show the change in the normalized maximum intensity and in the duration
(FWHM/1.763) of the stable modelocked pulses as |γ| increases. The maximum intensity and
the pulse duration values have been calculated after the pulses have propagated a distance of
1000Lc. In each case, the pulse equilibrates after propagating a distance of less than 100Lc.
We see that the maximum intensity of the pulse at equilibrium decreases as |γ| increases, i.e.,

#121880 - $15.00 USD Received 22 Dec 2009; revised 28 Jan 2010; accepted 21 Feb 2010; published 4 Mar 2010

(C) 2010 OSA 15 March 2010 / Vol. 18,  No. 6 / OPTICS EXPRESS  5646



0
5

10

−1

0

1
0

2

4

6

Distance (Lc)Time (ps)
In

te
ns

it
y

(a
.u

.)

Fig. 6. Modelocked pulse evolution in the presence of saturable gain. The saturable non-
linearity coefficient γ = −10 × 10−12 m/V2. We set ḡ = 4 and ā = 5. The dispersion
coefficient (β2) is set to zero.
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Fig. 7. Equilibrium modelocked pulse shapes vs. the saturable nonlinearity coefficient (γ).
In each case, the pulse is shown after it has propagated a distance of 1000Lc. We set ḡ = 4
and ā = 5. The dispersion coefficient (β2) is set to zero.

when γ becomes more negative. The maximum intensity of the pulse is lower by approximately
a factor of eight when γ = −68× 10−12 m/V2 than it is when γ = 0. When γ becomes more
negative, pulses damp away. As |γ| increases, the equilibrium pulse duration also increases.
The stable pulse duration is 43 fs when γ = 0, while the stable pulse duration is 155 fs when
γ = −68× 10−12 m/V2. We note that this value is more than 30 times larger in magnitude
than the corresponding limit for saturable loss (1.9×10−12 m/V2). Hence the constraint on the
saturable gain is far less stringent than the constraint on the saturable loss.

In Fig. 9, we show the critical values of the saturable nonlinearity coefficient (γc) vs. the
absorption coefficient (ā) for two values of the gain coefficient (ḡ) when the pulse experiences
saturable gain during propagation. When γ < γc, the initial pulses do not equilibrate. The mag-
nitude of γc is sharply peaked, first increasing rapidly as ā increases and then decreasing. On
either side of the peak, āpeak(ḡ), different physical mechanisms destabilize the initial pulse.
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Fig. 8. The normalized equilibrium maximum intensity and pulse duration (FWHM/1.763)
of the stable modelocked pulse vs. the saturable nonlinearity coefficient (γ). We set ḡ = 4
and ā = 5. The dispersion coefficient (β2) is set to zero.
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Fig. 9. Critical values of the saturable nonlinearity coefficient (γc) vs. the normalized ab-
sorption coefficient (ā) for two values of the normalized gain coefficient (ḡ). The disper-
sion coefficient (β2) is set to zero.

When ā < āpeak and |γ| > |γc|, continuous waves grow and ultimately lead to the generation of
multiple pulses. When ā > āpeak(ḡ) and |γ| > |γc|, the initial pulse damps away.

4. Group velocity dispersion

In this section, we study the effects of the group velocity dispersion on SIT modelocking. We
assume that the loss is linear and that it does not depend on the intensity of the light pulse,
i.e., γ = 0. In Fig. 10, we show the evolution of a stable modelocked pulse in the presence
of dispersion where the initial pulse is a π pulse. In this case, the dispersion coefficient |β2|
is 5 ps2/m. We use ḡ = 4 and ā = 5. We note that the solutions of Eq. (1) when β2 < 0 are
complex conjugates of the solutions when β2 > 0 for equal values of |β2|. Hence, the pulse
intensity as a function of time is unaffected by the sign of β2. In Fig. 10, we see that the pulse’s
intensity decreases and its duration increases before the pulse equilibrates, but a modelocked
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Fig. 10. Modelocked pulse evolution in presence of group velocity dispersion. The dis-
persion coefficient |β2| = 5 ps2/m. We set ḡ = 4 and ā = 5. The saturable nonlinearity
coefficient (γ) is set to zero.

solution exists. Pulse broadening increases as |β2| increases. In Fig. 11, we show the stable
modelocked pulses in the presence of different amounts of dispersion. In each case, the pulse
has propagated a distance of 1000Lc. We note that the peak intensity of the stable modelocked
pulse decreases and the duration increases as |β2| increases. There is no modelocked solution
when |β2| > 82 ps2/m. Beyond this critical value of dispersion, the initial pulse damps away.
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Fig. 11. Equilibrium modelocked pulse shapes vs. group velocity dispersion coefficient
(|β2|). In each case, the pulse is shown at a propagation length of 1000Lc. We set ḡ = 4 and
ā = 5. The saturable nonlinearity coefficient (γ) is set to zero.

In Fig. 12, we draw the change in the normalized maximum intensity and in the duration
(FWHM/1.763) of the stable pulses as the group velocity dispersion is varied. The maximum
intensity has been normalized by the maximum intensity of the pulse with |β2| = 0. The max-
imum intensity and the duration have been calculated after the pulses have propagated a dis-
tance of 1000Lc. In each case, the pulse becomes stable after propagating a distance of less than
100Lc. We see that the maximum intensity of the pulse decreases as |β2| increases. The max-
imum intensity of the pulse decreases by approximately a factor of 10 when |β2| = 80 ps2/m
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Fig. 12. The normalized maximum intensity and pulse duration (FWHM/1.763) at equilib-
rium vs. the dispersion coefficient (β2). We set ḡ = 4, ā = 5. The saturable nonlinearity
coefficient (γ) is set to zero.

compared to when |β2| = 0. The equilibrium pulse duration when |β2| = 0 is 43 fs, while the
equilibrium pulse duration is 432 fs when |β2| = 80 ps2/m.

The critical values of the dispersion coefficients for stable modelocking |β2c| have been plot-
ted in Fig. 13 vs. ā for two different values of ḡ. We see that the critical value first increases as
ā increases up to āpeak(ḡ), and then decreases. The equilibrium pulse duration is always larger
when dispersion is present than when it is not. Analogous to the case shown in Fig. 8, we find
that when ā < āpeak(ḡ) and |β2| > |β2c|, multiple pulses are generated, and when ā > āpeak(ḡ)
and |β2| > |β2c|, the initial pulse damps away.

2 4 6 8
0

50

100

150

ā
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Fig. 13. The critical values of the dispersion coefficient (|β2c|) vs. the normalized absorp-
tion coefficient (ā) for two values of the normalized gain coefficient (ḡ). The saturable
nonlinearity coefficient (γ) is set to zero.
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Fig. 14. Contour plot of the normalized maximum intensity vs. the saturable nonlinearity
coefficient (γ > 0) and group velocity dispersion coefficient (β2). The maximum intensity
has been calculated after the pulse has propagated a distance of 1000Lc. We set ḡ = 4 and
ā = 5.

5. Saturable nonlinearity and group velocity dispersion

In this section, we will discuss the realistic case in which a saturable nonlinearity and group
velocity dispersion are simultaneously present. We note once more that the solutions when β2 <
0 are the complex conjugates of those when β2 > 0 and |β2| is unchanged. In Fig. 14, we present
a contour plot of the maximum intensity of the equilibrium modelocked pulses as the saturable
loss and group velocity dispersion vary. The unstable region is shown blank. The maximum
intensity has been normalized by the value of the maximum intensity of the stable modelocked
pulse with γ = 0 and β2 = 0. We note that the critical value of the saturable loss increases
significantly when |β2| increases. We also note that the maximum intensity varies significantly
with the change of the saturable loss when |β2| < 4 ps2/m. The maximum intensity decreases
as |β2| increases for a fixed value of γ . When |β2| > 4 ps2/m, the maximum intensity does not
vary much as γ changes, and the normalized maximum intensity is less than 1 even when γ ≈ γc.
The critical value of dispersion coefficient |β2c| increases as γ increases. We show a contour
plot for the duration of the modelocked pulse when saturable loss and dispersion are varied in
Fig. 15. We note that the duration of the modelocked pulse increases when |β2| increases for
any value of γ . However, the duration of the modelocked pulse remains approximately the same
when γ increases for a fixed value of |β2|. When dispersion is present, a larger saturable loss can
be tolerated. Conversely, when saturable loss is present, pulse broadening due to dispersion is
diminished. The limits on saturable loss and chromatic dispersion become less stringent when
the other is present.

In Fig. 16, we show a contour plot for the maximum intensity of the stable modelocked pulses
when saturable gain and group velocity dispersion are simultaneously present. We note that the
maximum intensity only changes significantly as |β2| and γ change when |β2| � 5 ps2/m and
γ � −20× 10−12 m/V2. When γ � −20× 10−12 m/V2, the maximum pulse intensity of the
modelocked pulse changes very little as |β2| changes. Similarly, when |β2| � 5 ps2/m, the
maximum intensity of the modelocked pulse is essentially same for any amount of saturable
gain. Critical values of the saturable gain do not vary much when the dispersion coefficient is
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Fig. 15. Contour plot of the duration vs. the saturable nonlinearity coefficient (γ > 0) and
group velocity dispersion coefficient (β2). The duration has been calculated after the pulse
has propagated a distance of 1000Lc. We set ḡ = 4 and ā = 5.
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Fig. 16. Contour plot of the normalized maximum intensity vs. the saturable nonlinearity
coefficient (γ < 0) and group velocity dispersion coefficient (β2). The maximum intensity
has been calculated after the pulse has propagated a distance of 1000Lc. We set ḡ = 4 and
ā = 5.
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varied. The critical value of dispersion coefficient |β2c| decreases as |γ| increases. In Fig. 17,
we show a contour plot of the stable modelocked pulse duration when both saturable gain and
dispersion vary. We note that the pulse duration increases when the saturable gain increases for
any |β2|. Similarly, the pulse duration increases when |β2| increases for any amount of saturable
gain. The equilibrium duration decreases by well over a factor of 100 before the initial pulse
becomes unstable. However, the equilibrium pulse duration when the saturable gain is just
below the critical value stays approximately the same as |β2| is varied.
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Fig. 17. Contour plot of the duration vs. the saturable nonlinearity coefficient (γ < 0) and
group velocity dispersion (β2). The duration has been calculated after the pulse has propa-
gated a distance of 1000Lc. We set ḡ = 4 and ā = 5.

6. Conclusion

In conclusion, we show that QCLs can be modelocked using the SIT effect in the presence of a
saturable nonlinearity, either saturable loss or saturable gain, and in the presence of group veloc-
ity dispersion, as long as their magnitudes are below critical limits. However, the modelocked
pulse’s equilibrium duration and maximum intensity are affected. The saturable loss sets a
more stringent limit on |γc| than does the saturable gain. The limits are 1.9×10−12 m/V2 and
68× 10−12 m/V2 with ḡ = 4 and ā = 5, which differ by more than a factor of 30. However,
when group velocity dispersion is present, the limit on |γc| increases significantly in the case of
saturable loss, while |γc| is relatively unaffected in the case of saturable gain. The critical limits
of saturable nonlinearity and group velocity dispersion also change significantly when ḡ and ā
change.

The saturable nonlinearity calculated by Gordon et al. (∼ 10−11 m/V2) [19] and the group
velocity dispersion calculated by Choi et al. (−4.6 ps2/m) [20] for particular QCLs are within
the stable regime in Fig. 14 and in Fig. 15. The magnitude of the saturable nonlinearity
coefficient γ depends on the gain linewidth and on the lateral dimension of the laser core.
Thus, one can always reduce γ in principle to ensure stable operation by properly designing the
QCL.
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