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Nonlinear mode coupling in whispering-gallery-mode resonators
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We present a first-principles derivation of the coupled nonlinear Schrödinger equations that govern the
interaction between two families of modes with different transverse profiles in a generic whispering-gallery-mode
resonator. We find regions of modulational instability and the existence of trains of bright solitons in both the
normal and the anomalous dispersion regime.
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I. INTRODUCTION

Whispering-gallery modes (WGMs) have been a source
of fascination to physicists since at least the work of Lord
Rayleigh in 1910 [1], when he explained the phenomenon that
a whisper in one end of the gallery of St. Paul’s Cathedral
could be heard at the other end. This phenomenon has
practical implications as well, since WGMs in resonators with
cylindrical or spherical symmetry can have very high quality
(Q) factors. In the past two decades, microcavity resonators
have been increasingly used to generate and filter narrowband
light [2,3]. The quest to obtain pure optical frequency sources
was revolutionized in 2000 with the invention of locked
frequency comb lasers [4,5]. This revolution was enabled
by technology that allowed the inventors of the comb laser
to achieve a factor of 2 (an octave) of bandwidth. However,
these sources have the drawback that they are typically bulky
and expensive. Today, we may be on the verge of a second
revolution in frequency generation. In fact, in the past eight
years it has been demonstrated that it is possible to use WGM
microresonators to generate solitons and hence broadband
combs [6,7], and, within the past year, they have been used
to generate nearly an octave of bandwidth and to lock the
carrier-envelope phase [8]. However, the process by which
these modes are generated remains poorly understood. It has
been demonstrated that single modes are governed by the
Lugiato-Lefever equation (LLE) [9–11]; however, there is
recent experimental evidence that mode coupling can play
a critical role in obtaining a broad bandwidth comb [12,13].
That is particularly the case at optical and near-ultraviolet
(UV) wavelengths at which the modes typically have normal
dispersion and solitons cannot be obtained from a single mode.

In this article, we present coupled LLEs that describe the
coupling of two WGMs in a resonator in which chromatic
dispersion, the Kerr nonlinearity, and an external pump are
all present. These equations resemble the coupled nonlinear
Schrödinger equations (NLSEs) that describe mode coupling
in optical fibers and waveguides [14] and Bose-Einstein
condensates [15]. However, the presence of the pump and
the periodicity of the resonator change the equations in a
fundamental way. It is no longer possible to remove the phase
velocity difference from the equations by separately shifting
the central frequencies of each of the modes because that
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changes their frequency difference from the pump. It is natural
to choose the central frequency for each mode so that it matches
the pump frequency. Moreover, periodic boundary conditions
must be imposed along the spatial coordinate of the resonator.
Among consequences, we find that solitons typically form on
a broad pedestal, and it is possible to obtain the modulational
instability (MI) in the normal dispersion regime. While our
own focus is on applications to microresonators, we note that
the LLE has a broad range of applications throughout physics.
Since nonlinear mode coupling is a phenomenon that occurs
in many physical systems, we anticipate that the equations and
the phenomena that we describe here will have a similarly
broad range of applications.

II. RESULTS AND DISCUSSION

Our aim in this paper is twofold: First, we provide an
ab initio derivation of the set of externally driven, coupled,
damped NLSEs, or coupled LLEs, that account for nonlinear
mode coupling in a WGM resonator with a Kerr (χ (3))
nonlinearity. Second, we apply the equations that we derive
to discuss the onset of the MI and the formation of trains of
mode-locked bright solitons.

The two coupled LLEs are given by
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are the overlap integrals of the two dominant modes; Vc

is the resonator volume; m̄ and �(j )(θ,t) are, respectively,
the azimuthal number and the spatiotemporal envelope of
the dominant modes; θ is the azimuthal coordinate of the
WGM resonator; τ (j ) is the photon lifetime in the cavity;
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of Eqs. (1) and (2) from Maxwell’s equations is given in the
Appendix. We introduce the following dimensionless variables
and parameters: τ = t/τ̄ , the time normalized to the average
cavity photon lifetime of the two modes [τ̄ = (τ (1) + τ (2))/2];
α(j ) = δω(j )τ̄ , the normalized detuning; ζ̄
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only keeping terms up to n = 2, we find that Eq. (1) becomes
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with j = 1 and 2. The quantity δ(j ) = ζ̄
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(j )
1 is the group

velocity mismatch (GVM) of the two envelope fields with
respect to the average group velocity and β̄
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2 = −ζ̄

(j )
2 is the

GVD parameter. Note that in the retarded coordinate system
traveling at the average group velocity we have δ(1) = −δ(2) =
δ. Equation (3) has the form of two coupled LLEs [11,16],
plus the additional term δ(j )∂ψ (j )/∂θ representing the GVM.

We now discuss the particular situation of degenerate in-
teracting modes. In this case, we find δ = 0, β̄

(1)
2 = β̄

(2)
2 = β̄2,

τ̄ /τ (1) = τ̄ /τ (2) = 1, and α(1) = α(2) = α. It is useful to rescale
Eq. (3) by introducing the following variables and parameters:
σ = θ/(|β̄2|)1/2, the scaled azimuthal coordinate, U (j ) =√

D(1,1)ψ (j ), the scaled field envelope, P (j ) = D(1,1)h(j )2, the
scaled pump power, gc = D(2,1)/D(1,1), the cross-coupling
parameter, and gs = D(2,2)/D(1,1), the self-coupling parameter.
Equation (3) now becomes
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where sgn(·) is the sign function. The reader will note a
formal analogy between our Eq. (4) and the equations that
describe self-focusing of waves with different polarizations
in a Kerr medium [14]. We also note that in the limit of
negligible cross-coupling, i.e., gc → 0, Eq. (4) decomposes
into two uncoupled LLEs, as expected. Since mode coupling
has already been observed to play an important role in
microresonators [12,13], we anticipate that these equations
and their extension to more than two modes will have a
broad range of applications. Here, we focus on the MI for
two particular classes of continuous-wave (cw), spatially
homogeneous solutions admitted by Eq. (4). We write these
solutions as U

(j )
0 . The formation of a periodic pulse train is

generally initiated by the MI of the cw solutions [17,18]. As
is usually done when the MI is studied, we first write the field
envelope as U (j ) = [U (j )

0 + v(j ) + iw(j )], where v(j )(σ,τ ) and
w(j )(σ,τ ) are small perturbations, and we next linearize Eq. (4)
around U

(j )
0 to obtain

−∂w(1)

∂τ
− sgn(β̄2)

2

∂2v(1)

∂σ 2
+ [

2
∣∣U (1)

0

∣∣2 + gc

∣∣U (2)
0

∣∣2 − α + Re
(
U

(1)2
0

)]
v(1) + w(1)

[
Im

(
U

(1)2
0

) − 1
]

+2gc
[
Re

(
U

(1)
0

)
Re

(
U

(2)
0

)
v(2) + Re

(
U

(1)
0

)
Im

(
U

(2)
0

)
w(2)

] = 0, (5a)

∂v(1)

∂τ
− sgn(β̄2)

2

∂2w(1)

∂σ 2
+ [

2
∣∣U (1)

0

∣∣2 + gc

∣∣U (2)
0

∣∣2 − α − Re
(
U

(1)2
0

)]
w(1) + v(1)

[
Im

(
U

(1)2
0

) + 1
]

+2gc
[
Im

(
U

(1)
0

)
Re

(
U

(2)
0

)
v(2) + Im

(
U

(1)
0

)
Im

(
U

(2)
0

)
w(2)

] = 0, (5b)

−∂w(2)

∂τ
− sgn(β̄2)

2

∂2v(2)

∂σ 2
+ [

gc

∣∣U (1)
0

∣∣2 + 2gs

∣∣U (2)
0

∣∣2 − α + gsRe
(
U

(2)2
0

)]
v(2) + w(2)

[
gsIm

(
U

(2)2
0

) − 1
]

+2gc
[
Re

(
U

(1)
0

)
Re

(
U

(2)
0

)
v(1) + Im

(
U

(1)
0

)
Re

(
U

(2)
0

)
w(1)

] = 0, (5c)

∂v(2)

∂τ
− sgn(β̄2)

2

∂2w(2)

∂σ 2
+ [

gc

∣∣U (1)
0

∣∣2 + 2gs

∣∣U (2)
0

∣∣2 − α − gsRe
(
U

(2)2
0

)]
w(2) + v(2)

[
gsIm

(
U

(2)2
0

) + 1
]

+2gc
[
Re

(
U

(1)
0

)
Im

(
U

(2)
0

)
v(1) + Im

(
U

(1)
0

)
Im

(
U

(2)
0

)
w(1)

] = 0. (5d)

043820-2



NONLINEAR MODE COUPLING IN WHISPERING- . . . PHYSICAL REVIEW A 93, 043820 (2016)

We look for traveling-wave solutions in the form v(j ) =
Re{x(j ) exp[i(Kσ − �τ )]} and w(j ) = Re{y(j ) exp[i(Kσ −
�τ )]}, where � is the frequency shift with respect to the carrier
frequency of the dominant mode and K is the corresponding
shift in the wave number. Substituting the traveling wave
solutions into Eq. (5), we arrive at the following system of
linear, homogeneous, algebraic equations:
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The compatibility condition for the existence of traveling-
wave solutions, i.e., det(A) = 0, yields the dispersion relation,
�(K). The MI occurs at those values of K at which Re(i�) <

0, which physically gives rise to an exponential growth of the
amplitude of the traveling waves. Due to the 2π periodicity
of the system in the azimuthal coordinate θ , the wave number
K can only assume discrete values, K = p(|β̄2|)1/2, where
p = m − m̄ = ±1,±2, . . . is the shift of the mode number of
the perturbation with respect to the mode number m̄ of the
dominant mode.

We find by substitution into Eq. (4) that a particular class
of cw solutions is the one given by

U
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0 = i

√
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(2)
0 = i

√
α − P (1) , (8)

with P (2) = α − P (1) and gs = gc = 1, where 0 ≤ P (1) ≤ α.
The dispersion relation is given by
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[−sgn(β̄2) ± 1]
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. (9)

Equation (9) implies that the MI only occurs for this particular
class of solutions in the anomalous dispersion regime, for
which sgn(β̄2) = −1, and only for α > 1 and i� = i�(−,+).
The range of allowed wave numbers at which the MI occurs is

K− � |K| � K+, where K± = [2α ± 2
√

α2 − 1]
1/2

.
To verify the results of our analytical study for this

particular case, we have performed a numerical integration of
Eq. (4), using a symmetrized fast Fourier transform, split-step
algorithm [19] with the following initial conditions:

U (j )(σ,τ = 0) = U
(j )
0 + Re[x(j ) exp(iKσ )]

+ iRe[y(j ) exp(iKσ )], (10)

with j = 1 and 2, where U
(j )
0 is given by Eq. (8) and

[x(1),y(1),x(2),y(2)]T is the eigenvector corresponding to the
eigenvalue i�(−,+) calculated for the conditions that allow
the MI to occur. Explicit expressions for the eigenvector
components are

x(1) = C, (11a)

y(1) = Csgn(β̄2)K2/� (11b)

x(2) = − Csgn(β̄2)K2[P (1)(α − P (1))]1/2

�2/4 + K4/4 + sgn(β̄2)K2(α − P (1))
, (11c)

y(2) = − CK4[P (1)(α − P (1))]1/2/�

�2/4 + K4/4 + sgn(β̄2)K2(α − P (1))
, (11d)

where � = 2[1 − i�(−,+)] and C is an arbitrary constant that
quantifies the modulation around the cw solutions. Here, we
take C = 0.1. The initial conditions described in Eqs. (10)
and (11) are the cw solutions modulated by the solutions
of the linearized system, i.e., Eq. (5). In the spirit of the
induced MI [18], we expect that these initial conditions
will initiate the formation of trains of bright solitons. For
the numerical integration, we use the following parameters:
β̄2 = −0.01, α = 2, P (1) = 0.5, P (2) = 1.5, and gc = gs = 1.
For α = 2, the range of the allowed wave numbers for the

MI is [4 − 2
√

3]
1/2 � |K| � [4 + 2

√
3]

1/2
. In particular, we

take K = 15(|β̄2|)1/2 for the case described in Fig. 1 and
K = 8(|β̄2|)1/2 for the case described in Fig. 2. Figure 1 shows
the formation of two trains of 15 mode-locked, bright solitons
for K = 15(|β̄2|)1/2. In this case, the soliton trains have the
same period as the initial conditions. On the contrary, in Fig. 2
we show soliton trains for K = 8(|β̄2|)1/2, where the period
of the soliton train is twice that of the initial conditions.
In both figures, we also show the Fourier transform of
|U (j )|2,Ft [|U (j )|2|], which corresponds to the radio-frequency
spectrum that would be obtained after a photodetector, and
which we have normalized with respect to the largest spectral
component in both modes.

It is often assumed that the MI can only exist in the
anomalous dispersion regime, as is the case for the solution that
we just presented; however, we show that the MI instability and
bright solitons can also exist in the normal dispersion regime
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FIG. 1. (a): Two trains of 15 mode-locked bright solitons at
τ = 150 calculated by the numerical integration of Eq. (4) with the
following parameters: β̄2 = −0.01, α = 2, P (1) = 0.5, P (2) = 1.5,
and gc = gs = 1. The input conditions (dashed curves) are described
by Eqs. (10) and (11) with the wave number K = 15(|β̄2|)1/2. The
lower curves refer to mode 1 and the upper curves refer to mode
2. The Fourier transform (Ft ) of the intensity of the soliton trains
(Ft [|U (j )|2]) is shown respectively in panel (b) for mode-1 and panel
(c) for mode-2. The mode number spacing between two adjacent
spectral lines is 15.

for Eq. (4). In fact, another class of cw solutions of Eq. (4) is
given by

U
(1)
0 = U

(2)
0 = i

√
α/(1 + gc), (12)

where P (1) = P (2) = α/(1 + gc), gs = 1, and α > 0. Both
the pump detuning and the cross-coupling coefficient play a
critical role. In this case, the dispersion is given by

i�(±,±) = 1 ±
{

− K4

4
+ αK2

1 + gc
[−sgn(β̄2) ± gc]

}1/2

. (13)

In this case, the MI takes place in both the normal and
the anomalous dispersion regime. In particular, we find an
instability in the normal dispersion regime when

gc > 1, α >
1 + gc

gc − 1
, and i� = i�(−,+). (14)

The range of allowed wave numbers in the MI region is K− �
|K| � K+, where

K± =
{

2α(gc − 1)

gc + 1
± 2

[
α2(gc − 1)2

(gc + 1)2
− 1

]1/2
}1/2

. (15)

We have performed a large-scale numerical integration of
Eq. (4) in the parameter space (gc,α) to search for coupled
bright solitons in the normal dispersion regime. We have
used the initial conditions described in Eq. (10), where, in
this case, U

(j )
0 is the cw solution given by Eq. (12) and

[x(1),y(1),x(2),y(2)]T is the eigenvector corresponding to the

FIG. 2. Same parameters as in Fig. 1 except that here K =
8(|β̄2|)1/2. In panel (a) the lower curves refer to mode 1 and the
upper curves refer to mode 2. The period of the soliton trains is twice
that of the input conditions. In this case, the mode number spacing
between two adjacent spectral lines is 16.

eigenvalue i�(−,+). Explicit expressions for the eigenvector
components are

x(1) = C, (16a)

y(1) = Csgn(β̄2)K2/� (16b)

x(2) = − Csgn(β̄2)K2αgc

�2/4 + K4/4 + sgn(β̄2)K2α/(1 + gc)
, (16c)

y(2) = − CK4αgc/[�(1 + gc)]

�2/4 + K4/4 + sgn(β̄2)K2α/(1 + gc)
, (16d)

where � = 2[1 − i�(−,+)] and C = 0.1. The wave number
K has been chosen near the center of the allowed range of
wave numbers in the MI region, i.e., K = (|β̄2|)1/2p and p =
�(K+ + K−)/(2(|β̄2|)1/2)�, where �·� is the floor function. The
results of this computational study are summarized in Fig. 3.
Trains of mode-locked bright solitons are found near the border
of the MI region. Figure 4 shows one example.

The existence of coupled bright solitons in the normal
dispersion regime is an important result from both a conceptual
standpoint and for possible applications. The MI in the normal
dispersion regime and new solitary waves for the standard
coupled NLSEs for optical fibers, i.e., with no pump term,
no detuning, and no loss, has been studied in the past
[20]. However, in the context of WGM resonators, where
the pump term, the detuning, and the loss are all present
and all play a fundamental role, the existence of coupled
bright solitons in the normal dispersion regime has never
been predicted or studied before. This finding is potentially
important for applications in light of the recent theoretical
and experimental efforts aimed at obtaining bright solitons
in normally dispersive WGM resonators [21,22]. Currently
fabricated WGM resonators for nonlinear frequency comb
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FIG. 3. Parameter values (shaded) in the parameter space with
normal dispersion for which the MI occurs. The open squares indicate
the position in the parameter space of the coupled bright solitons
obtained by the numerical integration of Eq. (4) with β̄2 = 0.01. It is
noted that bright solitons exist near the border of the MI region.

generation are based on dielectric materials, such as glass,
which have anomalous dispersion in the near-IR and longer
wavelengths. On the other hand, it would be highly desirable
for many applications to achieve nonlinear frequency comb
generation in the visible and near-UV range. One way to obtain
anomalous dispersion at shorter wavelengths is to counteract

FIG. 4. (a): Two trains of 15 mode-locked bright solitons at
τ = 150 calculated by the numerical integration of Eq. (4) with the
following parameters: β̄2 = 0.01, α = 3.1, and gc = 2. The input
conditions (dashed curves) are described by Eqs. (10) and (16) with
the wave number K = 15(|β̄2|)1/2. The lower dashed curve refers to
mode 1 and the upper dashed curve refers to mode 2. The Fourier
transforms (Ft ) of the intensity of the soliton trains (Ft [|U (j )|2]) are
shown, respectively, in panel (b) for mode-1 and panel (c) for mode-2.
The mode number spacing between two adjacent spectral lines is 15.

the natural dispersion of the material with the geometrical
dispersion that is induced by modifying the resonator shape
[23] and/or its boundary conditions [24,25]. However, it is
difficult to obtain anomalous dispersion deep into the visible
wavelengths. Other approaches recently proposed include the
use of a phase- and amplitude-modulated pump instead of a
pump at a fixed frequency [21] or the use of soliton Cherenkov
radiation [22]. The nonlinear mode coupling that we have
studied in this work may offer an alternative and more efficient
approach for the generation of mode-locked trains of bright
solitons in the normal dispersion regime.

III. CONCLUSIONS

In conclusion, we have studied nonlinear mode coupling in
WGM resonators and we have demonstrated the possibility of
generating trains of mode-locked bright solitons in the normal
dispersion regime.

Recent experiments show that strong modification of the
effective dispersion properties of the resonator with respect
to the material properties can occur in spectral regions near
the avoided-mode-crossing points of the resonator [13,26].
In these regions, two frequency-degenerate guided modes of
the resonator undergo a strong linear interaction with a GVM
practically equal to zero. This strong interaction leads to the
formation of two hybrid guided modes, that are no longer
frequency degenerate, whose frequency splitting depends on
the coupling strength of the frequency-degenerate modes. This
phenomenon may cause, for example, one of the two hybrid
modes to acquire an anomalous GVD in a spectral region that
would otherwise be characterized by a normal GVD. In such
a scenario, it is important to study the nonlinear interaction of
these hybrid modes, and Eq. (3) can be used for this purpose
by considering a null GVM (δ(j ) = 0). This topic will be the
subject of future investigations.
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APPENDIX

Our starting point is the wave equation for the real electric
field Ē:

−∇ × ∇ × Ē − 1

c2

∂2

∂t2

[∫ +∞

−∞
ε̂(τ )Ē(r,t − τ )dτ

+ χ̄ (3)(Ē · Ē)Ē
] = −ω2

pεr,p

c2
Ēp cos(ωpt), (A1)

where

ε̂(τ ) = (1/2π )
∫ +∞

−∞
εr (ω) exp[−iωτ ]dω (A2)
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FIG. 5. Sketch of the geometry investigated. A pump field is
coupled to an axially symmetric WGM resonator placed in the
vacuum. The resonator has an azimuthal angle θ and relative electric
permittivity εr . The field Ep is the fraction of the pump field that is
coupled to the resonator.

is the linear dielectric response of the medium in the time
domain with ε̂(τ < 0) = 0 due to causality, εr (ω) is the relative
electric permittivity in the frequency domain, χ̄ (3) is the cubic
nonlinearity, Ēp is the fraction of the pump field coupled with
the resonator and acts as the source term, ωp is the pump fre-
quency, εr,p is the electric permittivity at the pump frequency,
and c is the speed of light in the vacuum. Equation (A1) is
valid if we assume that the linear and nonlinear responses of
the material are local and isotropic and if we also assume that
the nonlinear response of the material is instantaneous. The
assumption that the response is instantaneous corresponds
physically to just considering the fast nonlinear electronic
response of the medium and neglecting the contribution of the
molecular vibrations (Raman effect) [27,28]. It is convenient
to pass from the real to the complex field representa-
tion: Ē = (1/2)[E + complex conjugate] and Ēp cos(ωpt) =
(1/2)[Ep exp(−iωpt) + complex conjugate]. With reference
to Fig. 5, we can expand the complex electric field E by using
the guided modes of the resonator in cylindrical coordinates

as

E(ρ,θ,z,t) =
∑
j,m

A(j )
m (t)F(j )

m (ρ,z) exp
[
i
(
mθ − ω(j )

m t
)]

,

(A3)
and we can expand Ep as

Ep(θ ) = ep

∑
m

Ep,m exp (imθ ), (A4)

where the A
(j )
m (t) are the time-dependent envelope functions,

j = 1 and 2 labels the two families of transverse modes with
amplitudes F(1)

m (ρ,z) and F(2)
m (ρ,z) and eigenfrequencies ω(1)

m

and ω(2)
m , ep is the polarization vector of the pump field, θ is the

azimuthal angle, and finally m ∈ [1,2, . . . ,N ] is the azimuthal
number that labels the eigenfrequencies in each family. We
note that, while we restrict our analysis here to two families
of modes, our coupled mode theory can be extended to an
arbitrary number of families.

The field profile F̃(j )
m (ρ,θ,z) = F(j )

m (ρ,z) exp(imθ ) solves
the eigenmode equation

∇ × ∇ × F̃(j )
m (ρ,θ,z) = εr

(
ω

(j )
m

)
ω

(j )2
m

c2
F̃(j )

m (ρ,θ,z), (A5)

subject to the orthonormality condition

(1/Vc)
∫

V

F̃(j )
m · F̃(j ′)∗

m′ dV = δm,m′δj,j ′ , (A6)

where dV = ρdρdθdz is the elementary volume in cylindrical
coordinates, Vc is the volume occupied by the resonator, and
δk,l is the Krönecker δ function. In Eq. (A5) we take into
account the material as well as the waveguide dispersion, since
we explicitly consider the electric permittivity as a function of
frequency.

Expressing Eq. (A1) in the complex field representation and
using Eqs. (A3) and (A4), as well as the eigenmode equation,
Eq. (A5), and, finally, by invoking the slowly varying envelope
approximation |Ä(j )

m | � ω
(j )
m |Ȧ(j )

m | � ω
(j )2
m |A(j )

m |, the dot and
double dot denote, respectively, the first and second time
derivatives, we arrive at the following equation, containing
just the first-order time derivatives of the envelope functions:

∑
j,m

εr

(
ω(j )

m

)
ω(j )

m Ȧ(j )
m (t)F(j )

m exp
[
i
(
mθ − ω(j )

m t
)] = iχ (3)

∑
j,m

ω(j )2
m A(j )

m (t)|E|2F(j )
m exp

[
i
(
mθ−ω(j )

m t
)]

+ i
χ (3)

2

∑
j,m

ω(j )2
m A(j )∗

m (t)(E · E)F(j )∗
m exp

[ − i
(
mθ−ω(j )

m t
)]

+ 1

2
iω2

pεr,p exp (−iωpt)ep

∑
m

Ep,m exp (imθ ), (A7)

where χ (3) = χ̄ (3)/4 and

|E|2 =
∑

α,β,γ,δ

A(γ )
α A

(δ)∗
β F(γ )

α · F(δ)∗
β exp

{
i
[
(α − β)θ − (

ω(γ )
α − ω

(δ)
β

)
t
]}

, (A8)

E · E =
∑

α,β,γ,δ

A(γ )
α A

(δ)
β F(γ )

α · F(δ)
β exp

{
i
[
(α + β)θ − (

ω(γ )
α + ω

(δ)
β

)
t
]}

, (A9)

with (α,β) ∈ [1,2, . . . ,N ] and (γ,δ) ∈ [1,2]. From now on, we omit the dependence of the envelope functions on t and the
dependence of the field profiles on ρ, θ , and z. In order to arrive at coupled mode equations, we project Eq. (A7) on the modes,
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and we use their orthonormality, which yields

Ȧ(1)
η = i

χ (3)

εr

(
ω

(1)
η

)
ω

(1)
η

∑
α,β,γ,δ,j

A
(j )
η−α+βA(γ )

α A
(δ)∗
β ω

(j )2
η−α+β exp

[
i
(
ω(1)

η − ω
(j )
η−α+β − ω(γ )

α + ω
(δ)
β

)
t
]
G

(j,1)(γ,δ)
η,α,β

+i
χ (3)

2εr

(
ω

(1)
η

)
ω

(1)
η

∑
α,β,γ,δ,j

A
(j )∗
−η+α+βA(γ )

α A
(δ)
β ω

(j )2
−η+α+β exp

[
i
(
ω(1)

η + ω
(j )
−η+α+β − ω(γ )

α − ω
(δ)
β

)
t
]
H

(j,1)(γ,δ)
η,α,β

−A(1)
η

τ
(1)
η

+ 1

2
iω2

p

εr,p

εr

(
ω

(1)
η

)
ω

(1)
η

exp
[
i
(
ω(1)

η − ωp

)
t
]
P (1)

η , (A10a)

Ȧ(2)
η = i

χ (3)

εr

(
ω

(2)
η

)
ω

(2)
η

∑
α,β,γ,δ,j

A
(j )
η−α+βA(γ )

α A
(δ)∗
β ω

(j )2
η−α+β exp

[
i
(
ω(2)

η − ω
(j )
η−α+β − ω(γ )

α + ω
(δ)
β

)
t
]
G

(j,2)(γ,δ)
η,α,β

+i
χ (3)

2εr

(
ω

(2)
η

)
ω

(2)
η

∑
α,β,γ,δ,j

A
(j )∗
−η+α+βA(γ )

α A
(δ)
β ω

(j )2
−η+α+β exp

[
i
(
ω(2)

η + ω
(j )
−η+α+β − ω(γ )

α − ω
(δ)
β

)
t
]
H

(j,2)(γ,δ)
η,α,β

−A(2)
η

τ
(2)
η

+ 1

2
iω2

p

εr,p

εr

(
ω

(2)
η

)
ω

(2)
η

ei[ω(2)
η −ωp]tP (2)

η . (A10b)

We have introduced the following overlap integrals, in-
volving just the transverse profile of the guided modes in the
resonator F(j )

m (ρ,z):

P (j )
η = Ep,η

Vc

∫
Vc

F(j )∗
η · epdV, (A11a)

G
(j,j ′)(γ,δ)
η,α,β = 1

Vc

∫
Vc

(
F(j )

η−α+β · F(j ′)∗
η

)(
F(γ )

α · F(δ)∗
β

)
dV,

(A11b)

H
(j,j ′)(γ,δ)
η,α,β = 1

Vc

∫
Vc

(
F(j )∗

−η+α+β · F(j ′)∗
η

)(
F(γ )

α · F(δ)
β

)
dV.

(A11c)

The integration for the overlap integrals is extended only
over the resonator volume Vc because χ (3) is zero outside
the resonator, and Ep is by definition the fraction of the
pump field coupled with the resonator. The coefficient P

(j )
η

is the effective field for the mode η of the family j , while
the terms χ (3)G

(j,j ′)(γ,δ)
η,α,β and χ (3)H

(j,j ′)(γ,δ)
η,α,β are the effective

nonlinear coupling coefficients, due, respectively, to the self-
phase modulation (SPM) and the four-wave mixing (FWM)
cubic nonlinearity. Equation (A10) describes two nonlinear
four-wave mixing processes. The first is due to the SPM cubic
nonlinearity and has a frequency detuning given by [ω(1,2)

η −
ω

(j )
η−α+β − ω

(γ )
α + ω

(δ)
β ] for the families 1 and 2. The second is

due to the FWM cubic nonlinearity and has a frequency detun-
ing given by [ω(1,2)

η + ω
(j )
−η+α+β − ω

(γ )
α − ω

(δ)
β ] for the families

1 and 2. The detuning for both processes would be zero if the
eigenfrequencies were equidistant, which would correspond
to perfect phase-matched interactions and infinite coherence
length. In practice, the perfect phase-matching condition is
never fulfilled in WGM resonators where instead the deviation
from equidistance of the eigenfrequencies plays a fundamental
role, as we show later. The effect of the finite bandwidth of the
cavity modes has been taken into account in Eq. (A10) by the
phenomenological introduction of the decay terms −A

(j )
η /τ

(j )
m

into the equations, where τ
(j )
m = 2/�ω

(j )
m is the photon lifetime

in the cavity and �ω
(j )
m is the bandwidth of the resonance.

Equation (A10) is an exact representation of the electro-
magnetic problem stated in Eq. (A1). However, the direct
numerical integration of these coupled mode equations is
computationally inefficient because it is necessary to integrate
a system of 2N equations, each one containing 2 · 8 · N2

terms, and a microresonator typically contains N ∼ 1000
to 10 000 modes. We now decouple the transverse field
evolution from its azimuthal evolution by using only two
dominant modes for the transverse field profile, one for each
family, namely, F(j )

m̄ (ρ,z) with j = 1 and 2, where m̄ is the
azimuthal number corresponding to the closest to the pump
eigenfrequency for each family, i.e., ωp

∼= ω
(j )
m̄ for j = 1 and

2. This approximation is justified because the dependence of
the transverse field profile of a guided mode on the propagation
wave vector—in our case on the azimuthal number m—is
usually weak. Hence, we may assume that the transverse
profile is nearly the same as for the respective dominant modes.
In this way, Eq. (A3) can be rewritten in the following form:

E(ρ,θ,z,t) =
2∑

j=1

F(j )
m̄ (ρ,z) exp

[
i
(
m̄θ − ω

(j )
m̄ t

)]
�(j )(θ,t),

(A12a)

where

�(j )(θ,t) =
N∑

m=1

A(j )
m (t) exp

{
i
[
(m − m̄)θ − (

ω(j )
m − ω

(j )
m̄

)
t
]}

(A12b)

is the spatiotemporal envelope of the total field. By taking the
partial time derivative of Eq. (A12b) we obtain

∂�(j )(θ,t)

∂t
=

N∑
m=1

[
Ȧ(j )

m (t) − i
(
ω(j )

m − ω
(j )
m̄

)
A(j )

m (t)
]

× exp
{
i
[
(m − m̄)θ − (

ω(j )
m − ω

(j )
m̄

)
t
]}

,

(A13)
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where the term (ω(j )
m − ω

(j )
m̄ ) can be expressed through a Taylor

expansion as

ω(j )
m − ω

(j )
m̄ =

n∑
k=1

(
ζ

(j )
k /k!

)
(m − m̄)k . (A14)

The coefficient ζ (j )
1 = (1/2)(ω(j )

m̄+1 − ω
(j )
m̄−1) is the free spectral

range of the resonator at the frequency ω
(j )
m̄ and the coeffi-

cient ζ
(j )
2 = ω

(j )
m̄+1 − 2ω

(j )
m̄ + ω

(j )
m̄−1 equals, at lowest order, the

deviation from equidistance of the eigenfrequencies adjacent
to ω

(j )
m̄ and plays a role analogous to the group velocity

dispersion of a standard optical fiber. In particular, ζ
(j )
2 < 0

corresponds to the normal dispersion regime in which the
group velocity decreases for increasing frequencies, while
ζ

(j )
2 > 0 corresponds to the anomalous dispersion. It is also

customary to introduce the GVD parameter β
(j )
2 = −ζ

(j )
2 =

2ω
(j )
m̄ − ω

(j )
m̄+1 − ω

(j )
m̄−1, so that the dispersion is normal when

β
(j )
2 > 0 and anomalous when β

(j )
2 < 0. Using a Taylor

expansion of the term (ω(j )
m − ω

(j )
m̄ ) and the following identity

(−i)k
∂k�(j )

∂θk
=

N∑
m=1

(m − m̄)kA(j )
m

× exp
{
i
[
(m − m̄)θ − (

ω(j )
m − ω

(j )
m̄

)
t
]}

,

(A15)

we can recast Eq. (A13) in the form

∂�(j )

∂t
=

n∑
k=1

(−i)k+1 ζ
(j )
k

k!

∂k�(j )

∂θk

+
N∑

m=1

Ȧ(j )
m exp

{
i
[
(m − m̄)θ − (

ω(j )
m − ω

(j )
m̄

)
t
]}

,

(A16)

where the time derivatives of the field envelopes in the the
last term on the right-hand side can be explicitly calculated
by using the coupled mode Eq. (A10). Our goal is to write
Eq. (A16) in a form that just includes envelope fields �(j )(θ,t),
so that we obtain coupled nonlinear wave equations for
�(j )(θ,t). In doing so, we make several approximations. First,
we suppose that the decay times for all the modes of the
same family are the same: τ

(j )
m = 1/τ (j ). For high-Q WGM

resonators, we generally have decay times on the order of
τ (j ) ∼ 1 μs and Q factors given by Q(j ) = ω

(j )
m /�ω

(j )
m ∼ 109.

Second, we suppose that, as is usual in nonlinear optical
phenomena, the effects of the nonlinearity and of the pump
on the envelope field occur on a time scale much slower
than the time scale necessary for the field to complete one
round-trip in the resonator. In a typical WGM resonator
with an ∼1-mm radius, the round trip time is ∼100 ps,
while the time scale on which the nonlinearity and the pump
field produce significant effects on the field envelope is in
the microsecond or millisecond range. Hence, once the time
derivative of the field envelopes is calculated using Eq. (A10),
the nonlinear terms and pump terms in Eq. (A16) can be
averaged over the azimuthal coordinate θ from 0 to 2π . Hence,
all the terms proportional to exp[i(m − m̄)θ ], with m = m̄,
do not effectively contribute to the process because they
average to zero and can be neglected. Third, we approximate
the overlap integrals as follows: G

(s,j )(γ,δ)
m̄,α,β

∼= G
(s,j )(γ,δ)
m̄,m̄,m̄ and

H
(s,j )(γ,δ)
m̄,α,β

∼= H
(s,j )(γ,δ)
m̄,m̄,m̄ , consistent with the weak dependence

of the radial field profiles on the azimuthal number. Moreover,
in the pump term we simplify εr,p/εr (ω(j )

m̄ ) ∼= 1 and ωp/ω
(j )
m̄

∼=
1, and we introduce the detuning of the pump field with
respect to the dominant modes, δω(j ) = ω

(j )
m̄ − ωp. Fourth,

we expand ω
(s)2
m̄−α+β and ω

(s)2
−m̄+α+β around m = m̄ and keep

only the lowest order. Finally, we collect the nonlinear terms
oscillating with the same detuning and retain only the nonlinear
terms whose frequency detuning vanishes; i.e., we only retain
the frequency-matched terms ω

(j )
m̄ − ω

(s)
m̄ − ω

(γ )
m̄ + ω

(δ)
m̄ = 0.

We then obtain two incoherently coupled, externally driven,
damped, generalized NLSEs or LLEs:

∂�(j )

∂t
=

n∑
k=1

(−i)k+1 ζ
(j )
k

k!

∂k�(j )

∂θk
− 1

τ (j )
�(j )(θ,t)

+i
P

(j )
m̄ ωp

2
exp[iδω(j )t] + iχ (3)ω

(j )
m̄ �(j )

×
2∑

l=1

D(j,l)|�(l)|2, (A17)

where

D(j,l) = 2(|j−l|−1)

εr

(
ω

(j )
m̄

)
Vc

∫
Vc

[∣∣F(j )
m̄

∣∣2∣∣F(l)
m̄

∣∣2 + ∣∣F(j )
m̄ · F(l)

m̄

∣∣2

+ ∣∣F(j )
m̄ · F(l)∗

m̄

∣∣2]
dV (A18)

are the overlap integrals of the interacting modes. Note that
D(1,2) = D(2,1). Equations (A17) and (A18) are our starting
points, Eqs. (1) and (2).
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