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We have developed a comprehensive model of gain recovery due to unipolar electron transport

after a short optical pulse in quantum cascade lasers (QCLs) that takes into account all the

participating energy levels, including the continuum, in a device. This work takes into account the

incoherent scattering of electrons from one energy level to another and quantum coherent tunneling

from an injector level to an active region level or vice versa. In contrast to the prior work that only

considered transitions to and from a limited number of bound levels, this work include transitions

between all bound levels and between the bound energy levels and the continuum. We simulated

an experiment of S. Liu et al., in which 438-pJ femtosecond optical pulses at the device’s lasing

wavelength were injected into an In0:653Ga0:348As=In0:310Al0:690As QCL structure; we found that

approximately 1% of the electrons in the bound energy levels will be excited into the continuum by

a pulse and that the probability that these electrons will be scattered back into bound energy levels

is negligible, �10�4. The gain recovery that is predicted is not consistent with the experiments,

indicating that one or more phenomena besides unipolar electron transport in response to a short

optical pulse play an important role in the observed gain recovery. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4964939]

I. INTRODUCTION

The concept of a superlattice was proposed by Esaki and

Tsu in 1970,1 and in 1994 the first realization of a quantum

cascade laser (QCL) based on electron subbands in superlat-

tices was reported by Faist et al.2 In QCLs, the electron tran-

sitions occur between the conduction-band subbands rather

than between the conduction and valence bands, so that

QCLs are considered to be unipolar devices.3 Electrons in

these devices radiatively transfer between the upper and

lower subband levels in an active region and subsequently

tunnel through an injector region into the upper level of

the downstream active region. The tunneling rate, as well as

many other performance-related parameters, can be engi-

neered through quantum design.4

Light injected into a QCL can change the degree of pop-

ulation inversion and therefore the gain of the device; the

device returns to its original equilibrium value with a charac-

teristic gain recovery time.5 The gain recovery time is an

important parameter for many laser applications, such as cre-

ating short pulses by modelocking6 and modulating laser

light at high speeds for optical communications.7

Because carrier transport in QCLs is dominated by ultra-

fast electron-longitudinal optical (LO) phonon interactions,8

it is usually assumed that the gain recovery of QCLs is very

fast, on the order of a few picoseconds. The fast gain recov-

ery of QCLs makes it difficult to achieve mode-locking using

the conventional techniques,9,10 but it allows QCLs to follow

changes in the injection current nearly immediately without

relaxation oscillations, which is desirable for a number of

applications, including high speed free-space optical com-

munications.7 However, Liu et al.11 experimentally found

that there is a long-term component in the gain recovery of

QCLs that at large light intensities is at least 50 ps long.

They speculated that this long-term component was due to

electron transitions to and from the continuum.

The theoretical study of the gain recovery is important

for understanding the physics of QCLs, as well as their behav-

ior in mode-locking or high-speed modulation applications. In

this work, we theoretically investigate unipolar electron trans-

port and gain recovery in an In0:653Ga0:348As=In0:310Al0:690As

QCL structure that was fabricated by Liu et al.4 The prior

works5,12,13 only considered the interaction of the incoming

pulse with a limited set of levels—the lasing levels. However,

incoming pulses can induce transitions between any two

bound levels as well as between the bound levels and the con-

tinuum. We have created a model that is comprehensive in the

sense that it takes into account all these transitions. This

model also includes the electron dynamics in the continuum,

which must be taken into account in order to properly account

for the contribution of the continuum electrons to the gain

recovery. The dynamics are complicated because of electron-

phonon interactions that lead to rapid thermalization in the

electric field that is due to the electrostatic potential. This field

is somewhat larger than the field in other quantum well devi-

ces such as quantum well infrared photodetectors (QWIPs);

however, the processes that govern the continuum electron

dynamics are expected to be similar. Electrons that make a

transition from bound states to the continuum are originally in

the C valley, but they will rapidly scatter into the X or La)Electronic mail: sjamali1@umbc.edu
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valleys due to collisions with phonons, which greatly

increases their effective masses.14–22 Shortly thereafter, within

approximately one period of the QCL, the electrons reach

their terminal drift velocity. The wave functions of these elec-

trons are poorly phase-matched to the bound states and only a

small fraction of the electrons return to the bound states

before they are collected at the cathode.

Our model does not include effects that would lengthen

the optical pulse such as facet reflections, temperature changes

due to the optical pulse, creation of electron-hole pairs due to

high-harmonic generation, and electrical parasitic effects.

We compare our carrier transport and gain recovery

results to the experiments that have been carried out on this

structure by Liu et al.11 We obtain agreement with the short-

term gain recovery, which is due to transitions to and from

the bound energy levels; its duration is on the order of 2 ps

and is consistent with the earlier results of Talukder.5 We

found that transitions to and from the continuum contribute a

longer-term component to the gain recovery with a duration

on the order of 10 ps. However, this component contributes

on the order of 1% to the gain recovery and is too small to be

observable.

Our model does not predict a component to the gain

recovery on the order of 50 ps or longer, as is observed in

the experiments.11 Since our model includes all known con-

tributions to the gain recovery from unipolar electron trans-

port after a short optical pulse, these results suggest that one

or more phenomena other than unipolar electron transport

are responsible for the slow gain recovery that is observed.

Some possibilities were mentioned earlier.

II. THEORETICAL MODEL

In the pump-probe experiments with QCLs, an ultrashort

laser pulse is split into two portions: a stronger beam (pump)

is used to excite the sample, generating a nonequilibrium

carrier distribution, and a time-delayed weaker beam (probe)

is used to monitor the pump-induced changes in the optical

parameters, such as reflectivity or transmission, of the sam-

ple. Measuring these parameters as a function of the time

delay yields information about the relaxation of electronic

levels in the sample. Figure 1 schematically illustrates the

excitation of electrons to the continuum by the pump pulse

and the redistribution of their energy to a Maxwell-

Boltzmann distribution. We will show that this redistribution

occurs on a time scale that is similar to the time scale for an

electron to move through one period of the device. The thick

green line illustrates the finite linewidth of the pump pulse,

and the brown inset on the right illustrates the Maxwell-

Boltzmann distribution of the electrons in the continuum.

The blue curves illustrate wave functions that are primarily

in the injector region, and the red curve illustrates a wave

function that is primarily in the active region. To find the

energy levels, we solve Schr€odinger’s equation based on the

barrier and well heights and widths for the QCL structure. In

our model, all the energy levels are excited by an incoming

pump pulse with a wavelength equal to the lasing wave-

length of the QCL and a duration that is nearly instanta-

neous. We then calculate the interaction between the

incoming pulse and the carrier densities in all the energy lev-

els, and we calculate the subsequent gain recovery. We do

not need to include a probe pulse in the model since we

directly calculate the recovery of the carrier densities. We

write the density matrix equations, which include the inco-

herent scattering of electrons from one energy level to other

energy levels and the coherent tunneling of electrons from

an injector region level to an active region level or vice

versa. We have extended a previous model5,12,13 in which

only the interaction of the pump pulse with lasing levels was

taken into account. Our new model includes the interaction

of the incoming pulse not just with the lasing levels, but also

with all the bound state levels. It also includes transitions to

and from the continuum, taking into account the dynamics of

the continuum electrons.

We used a finite difference method for 1–D discretiza-

tion of the QCL in the z-direction, which is the growth direc-

tion of the QCL, and we used a mid-point method to solve

the density matrix equations in time. We formulated and

solved the density matrix equations for one active region and

two injector regions preceding and following the active

region, assuming translational symmetry. The density matrix

equations are23

dnx

dt
¼
X
x 6¼x0

nx0

sx0x
�
X
x6¼x0

nx

sxx0
� i
X
x 6¼x0

D0;xx0

2�h
Cxx0 � C�xx0
� �

þi
X
x6¼x0

lxx0

2�h
gxx0 E� � g�xx0E
� �

�
X

x

nxWx þ
X

x

n0W0x;

dn

dt
¼
X

x

nxWx �
X

x

n0W0x;

dCxx0

dt
¼ i

D0;xx0

2�h
nx0 � nxð Þ �

Cxx0

T2;xx0
� i

Exx0

�h
Cxx0 ;

@gxx0

@t
¼ i

lxx0

2�h
nx � nx0ð ÞE �

1

T2;xx0
� i

Dxx0

�h

� �
gxx0 ;

(1)

where n is the carrier density in the bound levels, n0 is the

carrier density in the continuum, x denotes an energy level,

and Cxx0 denotes the coherence between the energy levels x
and x0 and has a nonzero value only between an injector level

FIG. 1. Illustration of the excitation of electrons to the continuum by an

incoming pump pulse and the redistribution of the electron energy to a

Maxwell-Boltzmann distribution in the continuum.

154502-2 Jamali Mahabadi et al. J. Appl. Phys. 120, 154502 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  130.85.58.237 On: Thu, 20 Oct 2016

15:16:00



and an active region level. The quantity D0;xx0 is the energy

splitting at resonance between levels x and x0 that are

involved in coherent tunneling and is the minimum energy

spacing between the injector and active region levels at the

injection and extraction barriers; E and g are the envelope of

the electric field and its polarization, respectively; l is the

dipole moment between the resonant levels; Wx and W0x are

the transition rate of electrons from level x to the continuum

and from the continuum to the level x, respectively; sxx0 and

T2;xx0 are the scattering and coherence times between levels x
and x0, respectively. We may write

1

sxx0
¼ 1

se–e
xx0
þ 1

se–ph
xx0

;

1

T2;xx0
¼ 1

Te–e
2;xx0
þ 1

Te–ph
2;xx0

þ 1

Te–ir
2;xx0

; (2)

where se–e
xx0 and se–ph

xx0 are carrier lifetimes for the transitions

due to electron-electron and electron-LO phonon scattering,

respectively. The parameters 1/Te–e
2;xx0 , 1/Te–ph

2;xx0 , and 1/Te–ir
2;xx0 are

the rates of the decay of the phase coherence due to electron-

electron scattering, electron-LO phonon scattering, and

electron-interface roughness scattering, respectively.5,13 We

also define

Exx0 ¼ jjEx � Ex0 j � D0;xx0 j;
Dxx0 ¼ jjEx � Ex0 j � Elightj;

Elight ¼ jEul � Ellj; (3)

where Ex and Ex0 are the energies of levels x and x0, respec-

tively, while Elight; Eul, and Ell are the energy of the incom-

ing light, the energy of upper-lasing level, and the energy of

the lower-lasing level, respectively. Hence, Ex � Ex0 is the

energy difference between levels x and x0; Exx0 is the detun-

ing of this energy difference from resonance, and Dxx0 is the

detuning of this energy difference from the incident photons.

We computationally excite all the electrons in the sub-

bands of the QCL with an incoming 120-fs, 438-pJ, 4.5-lm

optical pulse, which is equal to the device’s lasing wave-

length. These parameters correspond to the set of experimen-

tal parameters at which the pump pulse has the lowest

energy.11 We use the Fermi’s golden rule24 to calculate elec-

tron transition rates Wif to and from the continuum, so that

Wif ¼
e

mc

� �2

hjEj2i
ðþ1
�1
jlif j2

2c

jxl � xif j2 þ c2
g xð Þdx;

lif ¼
ðþ1
�1

w�f zð Þ @
@z

wi zð Þdz; (4)

where Wif is the transition rate between the initial level i and

the final level f, lif is the dipole moment between the initial

level and final levels, xif is the angular frequency difference

between the initial level and final levels, xl is the angular fre-

quency of incoming pulse, c is the linewidth of the incoming

pulse, gðxÞ is density of states, and wiðzÞ and wf ðzÞ are the

wave functions in the initial and final levels, respectively. We

solved the Schr€odinger’s equation for the QCL structure to

calculate the bound energy levels and wave functions. To

calculate wave functions in the continuum, we averaged the

potential barrier and well height and we approximated them

with a slope potential. We validated this approach a posteriori
using the actual potential and time-independent perturbation

theory. With this approximation, Schr€odinger’s equation in

the continuum region becomes

� �h2

2m�
d2

dz2
� eFz

� �
wn zð Þ ¼ Enwn zð Þ; (5)

where e is the electron charge, F is the applied electric field

across the QCL, �h is Planck’s constant, m� is the electron

effective mass, and wnðzÞ is the wave function corresponding

to the eigenenergy En. The solution to Eq. (5) can be expressed

in terms of Airy functions. Equations (6a) and (6b) show,

respectively, the wave functions and eigenenergies

wn zð Þ ¼ CAi
2m�

�h2e2F2

� �1=3

eFz� Enð Þ

" #
; (6a)

En ¼
�h2

2m�

� �1=3
3peF

2
n� 1

4

� �� �2=3

; with n¼ 1;2; :::;

(6b)

where C is a normalization factor and Ai(x) is the Airy

function.

For calculating the transition rate between any bound

energy level and the continuum, we sum all the transition

rates between that bound energy level and a Lorentzian

distribution of energy levels in the continuum. When elec-

trons are excited to the continuum, they will be thermalized.

In a moderately doped semiconductor sample, the thermal

equilibrium energy distribution of the carriers is well-

approximated by a Maxwell-Boltzmann distribution.14 So, to

calculate the transition rate from the continuum to the bound

levels, we assume that the electrons in the continuum obey a

Maxwell-Boltzmann distribution. The electrons in the bound

levels are excited to the continuum by the incoming optical

pulse. Once the electrons make a transition to the continuum,

they rapidly accelerate in a field of 98 kV/cm and their veloc-

ities saturate. Due to phonon interactions, the electrons rap-

idly scatter into the X and L valleys with scattering rates on

the order of 1013 s�1.25 The maximum velocity of electrons

in the device is less than 2� 107 cm/s and one period in

the device is 35 nm, implying that a continuum electron tran-

sits through one period in about 2� 10�13 s and is likely to

make a transition to the X or L valley in that time. Electrons

in the X and L valleys have higher effective masses, and their

wave functions are poorly phase-matched to the bound

energy levels.

III. SIMULATION RESULTS

Figure 2 shows the conduction band diagram and the

moduli-squared wave functions for bound state energy levels

in one period of the QCL structure that was studied by Liu

et al.11 that we are modeling. In this figure, we show one

period of the QCL structure that comprises an injector region

and an active region. There are four energy levels that are

154502-3 Jamali Mahabadi et al. J. Appl. Phys. 120, 154502 (2016)
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primarily in the injector region (shown in blue), and there

are three levels that are primarily in the active region (shown

in red).

Figure 3(a) shows the transition rates of electrons from

the bound levels to the continuum for 43 periods of the QCL

structure. Each small circle shows the transition rate for a

specific energy level in a specific period. In our calculations,

the first period is the period that is closest to the collector,

and we number them successively until we reach the trans-

mitter. The density of states in the continuum above the peri-

ods increases as the period number increases, while the

cross–section for a transition from a confined state to any

particular state in the continuum decreases. We take these

two competing effects into account when calculating the

transition rate from the confined states in each period into

the continuum. We find that for period 20 and higher, these

two effects compensate and the transition rate from the same

confined state into the continuum becomes the same in each

period with a period number greater than 20. Figure 3(a)

shows the sum of transition rates from all 43 periods. The

variable Wi is the transition rate from energy level i in the

bound levels to the continuum. As shown in this figure, level

7 has the highest transition rate to the continuum of all the

levels. However, the electron density in level 7 is small com-

pared to the densities in other levels. Transitions from the

bound levels to the continuum levels lead to a decrease in

the gain. Our simulations show that approximately 1% of the

electrons in all the bound levels will be excited to the contin-

uum by an incoming optical pulse whose specifications are

given in Table I. All simulation parameters are the same as

those used in the pump-probe experiments that we are

modeling.11 Figure 3(b) shows the transition rates of elec-

trons from the continuum to the bound levels. The variable

wi is the transition rate to energy level i in the bound levels

from the continuum.

We used the first-order time-independent perturbation

theory to check the accuracy of approximating the actual

potential with a slope potential. We perturbed the slope

potential with a correction to take into account the actual

barrier potentials that we show in Fig. 2 and calculated the

actual wave functions. Figure 4 shows the transition rates of

electrons from the bound levels to the continuum for the 43

periods of the QCL structure, when we took the perturbation

of the potential into account and used the actual wave func-

tions. As was the case in our calculation of Fig. 3(a), we take

into account that the same state in different periods may

have a different transition rate. Comparing Figs. 3(a) and 4,

we observe that there are quantitative differences between

the transition rates, once we take into account the actual bar-

rier potentials. However, when the density in each level is

taken into account and we calculate the total transition rate,

we still find that only 1% of the electrons make the transition

to the continuum. The additional computational complexity

in using the actual barrier potential makes little difference in

the final result. We note that we use the transition rates corre-

sponding to the actual barrier potentials when calculating the

carrier densities, but the difference in the final result when

FIG. 2. Moduli-squared wave functions for the bound energy levels for the

QCL structure that was fabricated by Liu et al.4 The thickness of each layer

starting from the first active well is as follows (in nanometers): 4.2/1.2/3.9/

1.4/3.3/2.3/2.8/2.6/2.2/2.1/1.8/1.8/1.5/1.3/1.2/1.0. InGaAs quantum wells are

in bold and InAlAs quantum barriers are in roman text. The blue curves are

wave functions that are primarily in the injector region, and the red curves

are wave functions that are primarily in the active region.

FIG. 3. The transition rates of electrons (a) from energy levels 1–7 (W1–W7)

to the continuum summed over 43 periods and (b) to energy levels 1–7

(w1–w7) from the continuum summed over 43 periods.

TABLE I. Simulation parameters from Ref. 11.

Simulation parameter Parameter value

Pulse width (sp) 120 fs

Pulse wavelength 4.5 lm

Pulse energy 438 pJ

Temperature 300 K

Electric field 98 kV/cm

154502-4 Jamali Mahabadi et al. J. Appl. Phys. 120, 154502 (2016)
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we use a slope potential is negligible due to the rapid ther-

malization of the continuum electrons.

Similarly, calculations show that the probability of scat-

tering of the continuum electrons back into the bound levels

prior to being collected at the end of the device is negligible

(�10�4).

Figure 5 shows the time-resolved solutions of Eq. (1),

the time evolution of the carrier densities for energy levels

1–3 in the active region and energy levels 4–7 in the injector

region. The oscillations in the evolution of carrier densities

at the start and during the recovery indicate the presence of

significant coherent tunneling in the gain recovery and hence

the importance of taking into account the quantum coher-

ence. All the energy levels have initial carrier densities of

4�1010 cm�2. After the carrier density in each quantum

level reaches a steady state, we initialize the time, setting

t¼ 0, and we excite all the energy levels with the pump

pulse. As can be seen, the carrier density in the upper lasing

level (level 4) decreases sharply, while the carrier density in

the lower lasing level (level 3) increases sharply. The scatter-

ing and coherence times are given in Table II.

Figure 6 shows the carrier density in the continuum as

a function of time, which we calculated by solving the

drift–diffusion equation26 with an electron drift velocity

tn¼ 1.5 �107 cm/s and an electron diffusion coefficient Dn

¼ 200 cm2/s. These are average values for InGaAs and

InAlAs,27 which is sufficient for our purposes since the

fraction of electrons in the continuum is small.

Figure 7(a) shows the incoming pump pulse and the

inversion profile [n4ðtÞ–n3ðtÞ]/(n4;eq–n3;eq), where the sub-

script “eq” denotes equilibrium and the gain recovery in the

pump-probe experiment for the lowest intensity pump pulse

in the experiment.11 The inversion profile directly represents

the gain recovery dynamics. The gain has a constant value

before the pump pulse, but it decreases sharply when the

pump pulse interacts with the lasing levels. The recovery of

the gain begins as the pump pulse leaves the medium.

In Fig. 7(a), the strong gain depletion near t¼ 0 is

mainly due to the depletion of electrons in upper lasing sub-

bands by stimulated emission down to the lower lasing level

and the excitation of electrons up to a higher subband or con-

tinuum region. This process mainly contributes to the gain

depletion observed in Fig. 7(a) in agreement with the experi-

mental results.11 Figure 7(b) is an expanded view of Fig. 7(a)

near t¼ 0 and shows the ultrafast gain recovery, which is

due to the depopulation of lower lasing level by LO phonon

scattering and electrons filling the upper lasing level by reso-

nantly tunneling from the ground state of the injector region

to the active region in the next period through the injector

barrier. As can be observed, the simulations reproduce

the short-time inversion dip that is observed in the experi-

ments.11 However, there is a significant discrepancy between

the experimental and simulation results in Fig. 7(a). The

FIG. 4. Transition rates of electrons from energy levels 1–7 (W1–W7) to the

continuum summed over 43 periods after perturbing the system.

FIG. 5. Carrier densities for energy levels 1–3 in active region and energy

levels 4–7 in injector region.

TABLE II. Key parameter values for gain recovery.

Key parameter Parameter value (ps)

s32 0.60

s31 1.61

s21 0.88

s54 1.13

s64 1.44

s74 6.86

T2,43 0.16

FIG. 6. Carrier density in the continuum as a function of time.
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experiments exhibit a long-term gain recovery between 1 ps

and 6 ps that is not present in the simulations.

There are 43 periods in the QCL structure; each period

is 34.6 nm long and the total length of the structure is

1.49 lm. The saturation drift velocity in the continuum

region in this structure is on the order of 1.5� 107 cm/s.

The maximum time for electrons to transit through the con-

tinuum to the end collector in the 1.49-lm-long device is

on the order of 10 ps, and only 1% of electrons make this

transition. Therefore, their contribution to the gain recovery

is negligible. Liu et al.11 also report that at higher optical

pump powers, the long-term gain recovery can occur over a

time greater than 50 ps and suggest that this long-term

recovery might be due to electron transitions into and out of

the continuum. Since our model includes all electron trans-

port processes that affect the gain recovery of which we are

aware, our results indicate that one or more phenomena

besides unipolar electron transport after a short optical

pulse are responsible.

IV. CONCLUSIONS

We have developed a comprehensive model of gain

recovery in QCLs due to unipolar electron transport after a

short optical pulse. This model takes into account all partic-

ipating energy levels, including the continuum, in a device.

We calculated the transition rates of electrons from the

bound energy levels to other bound levels and to the contin-

uum after excitation by a short optical pump pulse. We then

calculated the effects of these transitions on gain recovery

in the QCL that was studied experimentally by Liu et al.11

In agreement with the experimental results, we show that

the incoming pulse depletes the lasing levels and reduces

the gain. In agreement with these results, we also find that

there is a short-term component to the gain recovery that is

on the order of 2 ps. This short-term gain recovery is pri-

marily due to electron-electron and electron-phonon scatter-

ing to the lasing levels in agreement with a prior theoretical

work.5 We also show that the gain decrease due to transi-

tions to the continuum is only 1% of the total gain, which is

too small to be observable, and the gain recovery from this

decrease occurs over 10 ps. In contrast to the experiments,

we did not observe a component of the gain recovery on the

order of 50 ps or longer. Since our model is comprehensive,

in the sense that it includes all electron transitions, this

result suggests that one or more phenomena besides unipo-

lar electron transport after a short optical pulse are contrib-

uting to the gain recovery.
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