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Polarization mode dispersion (PMD) is a major source of impairments in optical

fiber communication systems. PMD broadens the optical pulses carrying the infor-

mation and leads to inter-symbol interference. In long-haul transmission systems it is

necessary to limit the penalty caused by polarization effects, so that the probability

of exceeding a maximum specified penalty, such as 1 dB, will be small, typically 10−5

or less. This probability is referred to as the outage probability. Because of this strin-

gent requirement, it has been very difficult to use either standard, unbiased Monte

Carlo simulations or laboratory experiments to determine the outage probability of a

system. Only outage probabilities larger than 10−4 can be efficiently computed with



standard, unbiased Monte Carlo simulations. A very large number of samples must

be explored using standard Monte Carlo simulations in order to obtain an accurate

estimate of rare events that lead to penalties of interest to system designers, which

is computationally costly. To overcome this hurdle, advanced Monte Carlo meth-

ods such as importance sampling and multicanonical Monte Carlo (MMC) methods

have recently been applied to compute PMD-induced penalties using a much smaller

number of samples.

In this Ph.D. dissertation, I present work in which my colleagues and I inves-

tigated and applied importance sampling and MMC to accurately and efficiently

compute penalties caused by PMD. These techniques allow low probability events to

be efficiently computed by enabling one to concentrate the selection of samples on the

most significant regions of the sample space. Even though these techniques are well-

known in statistics, statistical physics, and some areas of communications, they have

only recently been applied to optical fiber communication systems. Using these sta-

tistical techniques, we studied the performance of PMD compensators and compared

the efficiency of these two advanced Monte Carlo methods to compute penalties of

different types of compensated systems. We also used importance sampling to com-

pare the penalty resulting from first-order and all-order PMD models, demonstrating

the importance of accurately modeling PMD by including higher orders.

Since Monte Carlo methods are statistical, error estimates are essential to ver-

ify the accuracy of the results. MMC is a highly nonlinear, iterative method that

generates correlated samples, so that standard error estimation techniques cannot be

applied. A more sophisticated approach is needed. On the other hand, one can suc-



cessfully apply standard error estimation techniques and first-order error propagation

to estimate errors in importance sampling simulations. In this Ph.D. dissertation,

I also report the contribution that we made to estimate the statistical errors when

using importance sampling and multicanonical Monte Carlo methods. We developed

an efficient numerical method to estimate statistical errors when using MMC, which

we refer to as the transition matrix method. We showed that this method is a variant

of the bootstrap method.
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Chapter 1

Introduction

The rapid increase in the demand for bandwidth is driving most telecommunication

operators toward the deployment of large capacity transmission systems. The data

rates per channel in commercial systems have increased to the point that 10 Gbit/s

systems have been on the market for many years, and systems with channel rates of

40 Gbit/s are beginning to be deployed. However, high speed optical fiber transmis-

sion systems face limitations imposed by physical properties of the transmission fiber.

There are four principal impairments in optical fiber transmission: chromatic disper-

sion, nonlinearity, polarization effects, and amplified spontaneous emission noise. The

polarization effects are polarization mode dispersion (PMD), polarization-dependent

loss (PDL), and polarization-dependent gain (PDG). PMD is due to the randomly

varying birefringence in optical fibers, PDL is caused by optical components such as

directional couplers and isolators, while PDG is caused by polarization hole burning

in optical amplifiers [1]. These effects can combine to produce signal impairments in

single-channel as well as in wavelength-division-multiplexed systems [2]. Therefore,

in long-haul transmission systems it is necessary to limit the penalty induced by po-

1
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larization effects, requiring that the probability of exceeding a maximum specified

penalty, such as 1 dB, be very small, typically 10−5 or less [3]. This probability is

referred to as the outage probability. PMD-induced penalty is defined as the ratio

between the back-to-back and the PMD-distorted eye opening. The back-to-back

eye opening is computed when PMD is not included in the system. We defined the

eye opening as the difference between the lowest mark and the highest space at the

decision time in the received electrical noise-free signal. Because of this stringent

requirement to penalty induced by polarization effects, it has been very difficult to

use either standard, unbiased Monte Carlo simulations or laboratory experiments to

determine the outage probability of a system. Only outage probabilities larger than

10−4 can be computed in practice by use of standard, unbiased Monte Carlo sim-

ulations, since a large number of samples must be obtained in order to accurately

estimate the rare events that lead to penalties of interest to system designers. Rare

events are almost always defined on the tails of probability density functions. They

have small probability and occur infrequently in real applications or in simulations [4].

To overcome this hurdle, advanced Monte Carlo methods such as importance sam-

pling and the multicanonical Monte Carlo (MMC) method have recently been applied

to compute PMD-induced penalties using a much smaller number of samples. This

dissertation investigates advanced Monte Carlo techniques that compute penalties

induced by PMD in uncompensated and compensated systems. A major focus of this

dissertation is the estimation of errors in the probability density function (pdf) of the

penalties.

The use of Monte Carlo calculations pre-dates the electronic computer [5]; how-
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ever, the name “Monte Carlo” is relatively recent. It was coined by Nicolas Metropolis

in 1949 [6], but, under the older name of statistical sampling, the method has a history

stretching back well into the last century, when numerical calculations were performed

by hand [5]. As first envisaged, Monte Carlo was a method for estimating integrals

that could not be solved otherwise — integrals in high-dimensional spaces [7]. The

Monte Carlo method is a computer-based statistical sampling approach for solving

numerical problems that arise in complex systems. The methodology was then fur-

ther developed in the field of statistical physics during the early days of electronic

computing (1945-55) [8]. The idea for constructing Markov-chain-based Monte Carlo

algorithms was introduced in the 1950s [8]. This idea was later extended to handle

increasingly complex physical systems [9]. In the 1980s, statisticians and computer

scientists developed Monte-Carlo-based algorithms for a wide variety of integration

and optimization tasks [10]. In the 1990s, the method began to play an important

role in computational biology [11]. Over the past fifty years, researchers in diverse

scientific fields have studied the Monte Carlo method and contributed to its devel-

opment [12]. Today, a large number of scientists and engineers employ Monte Carlo

techniques as an essential tool in their work.

The most common use of Monte Carlo simulations in optical fiber communications

is when we need to compute the distribution of a random variable y, where y = f(x).

Here, x represents a state of the system, for example a fiber realization. In this case

f : S → R is a deterministic function from the state space S of the system to the

real numbers, such as the mapping from fiber realizations to eye-opening penalties.

Often, there is no analytical formula for f , and so we cannot easily obtain an analytical
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formula for the moments or the pdf of y. In fact, we not always need to compute the

distribution of y, but only its moments.

The principle behind Monte Carlo simulation is that the behavior of a statistical

quantity, such as a moment of y, can be assessed by the empirical process of drawing

many random samples x from the state space S, computing the values of y = f(x) and

then computing the statistics of y. The basic Monte Carlo procedure is as follows [13]:

1. Use pseudo-random numbers produced by a random number generation algo-

rithm to generate the random samples x.

2. Calculate y = f(x).

3. Calculate the estimator θ̂ of the desired statistical quantity of the random vari-

able y.

4. Repeat steps 2 and 3 N times, where N is the number of trials.

5. Construct a relative frequency distribution (histogram) of the resulting θ̂N val-

ues, which is the Monte Carlo estimate of the desired statistical quantity.

In a Monte Carlo simulation, the generated random samples depend on the se-

quence of pseudo-random numbers that are generated during the simulation. Num-

bers obtained by a formula that imitate the values of a random variable uniformly

distributed between 0 and 1 are called pseudo-random numbers [14]. With a second,

different sequence of pseudo-random numbers the simulation will not give identical

results but will yield different values for θ̂ which agree with those obtained from the
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first sequence to within some statistical error [15]. In the field of optical fiber com-

munications, standard Monte Carlo simulations have been applied to study outage

probability due to PMD [16] among other applications. Although this approach has

proved useful, the error in standard Monte Carlo simulations is given approximately

by N
−1/2
I , where NI is the number of hits in a given bin of the histogram [7]. There-

fore, this technique is not efficient in the estimation of the probability of rare events,

such as outage probabilities on the order of 10−5, since it would be necessary to use

at least 106 standard Monte Carlo samples.

In this Ph.D. dissertation, I describe the work in which my colleagues and I used

the advanced Monte Carlo techniques of importance sampling [17] and multicanonical

Monte Carlo [18] to accurately and efficiently estimate penalties induced by PMD.

These techniques allow low probability events to be efficiently computed by concen-

trating samples in the most significant regions of the sample space. For example, in

the application of Monte Carlo techniques to compute the pdf of differential group

delay (DGD) for a PMD emulator, the most significant regions are those where the

rare events or large DGD values are located. Using these methods, we evaluated the

performance of PMD compensators and compared the efficiency of the two meth-

ods to compute penalties in different types of compensated systems [19], [20]–[25].

We also used importance sampling to compare the penalty resulting from first-order

and all-order PMD models, demonstrating that simple theoretical models that take

into account only first-order PMD overestimate the penalty when the DGD is large

compared to the mean DGD [26], [27].

Importance sampling [17] is a well-known statistical technique that uses a priori
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knowledge of which regions in the sample space are most significant to concentrate

samples in those regions. This technique allows one to compute almost arbitrarily

small probabilities at a fraction of the computational cost of standard, unbiased Monte

Carlo simulations. Monte Carlo simulations with importance sampling have been used

to bias first-order PMD [28] and to bias both first- and second-order PMD [29] to

compute the probability of large PMD-induced penalties, which are rare. The results

obtained from this method rely on the correlation between the penalty and the first-

and second-order PMD. When both first- and second-order PMD are biased, the

entire first- and second-order PMD plane is statistically resolved, even though only a

portion of this plane determines the penalty, as we showed in [23].

The multicanonical Monte Carlo method was proposed by Berg and Neuhaus [18]

and was recently applied to compute the pdf of the DGD for a PMD emulator [30]. In

the work presented in this dissertation, we applied the MMC simulation technique to

directly compute the probability of large penalties resulting from all orders of PMD in

uncompensated and compensated systems. In contrast to importance sampling and

most other biasing Monte Carlo methods, MMC does not require prior knowledge

of which rare events contribute significantly to the large penalty values in the tail

of the pdf. MMC is an iterative method which in each iteration produces a biased

random walk that automatically searches the state space for important rare events.

MMC also has the advantage that it does not require one to combine different biased

pdfs of the quantity of interest in order to obtain the entire pdf, as is the case with

importance sampling.

As mentioned earlier in this chapter, Monte Carlo methods rely on statistics since
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they use random numbers, so that statistical error estimates are essential to assess

the accuracy of the results. The goal of any scheme for biasing Monte Carlo sim-

ulations is to reduce the variance of the desired statistical quantity of the random

variable y [10], [17]. MMC uses a set of systematic procedures to reduce the vari-

ance, which are highly nonlinear as well as iterative and have the effect of inducing

a complex web of correlations from sample to sample in each iteration and between

iterations. These in turn induce bin-to-bin correlations in the histograms of the pdfs

of the quantities of interest. Thus, calculating the error is significantly more difficult

than in standard Monte Carlo simulations. Due to the correlations, one cannot apply

to MMC the standard error analysis [31] that is traditionally used for simulations

with uncorrelated samples. For the same reason, one cannot determine the contri-

bution of the variance from each iteration using standard error propagation methods

as is possible with importance sampling [24]. In this Ph.D. dissertation, I report the

contribution that we made to estimate the statistical errors when using importance

sampling and multicanonical Monte Carlo methods. We applied standard error esti-

mation techniques and first-order error propagation to estimate errors in importance

sampling simulations. For MMC, we developed an efficient numerical method to esti-

mate statistical errors, which we refer to as the transition matrix method. We showed

that this method is a variant of the well-known bootstrap method [32].

The remainder of this Ph.D. dissertation is organized as follows: In Chapter 2, I

describe the physical characteristics of PMD and its associated statistical quantities,

and I also describe how we model PMD. In Chapter 3, I describe how to imple-

ment the technique that uses Monte Carlo simulations with importance sampling to
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compute the probability density function of the eye-opening penalty and the outage

probability due to PMD for a single-channel optical fiber transmission system. Us-

ing importance sampling, we were able to compare penalties from a first-order PMD

model with the penalties from an all-order PMD model. I also show how to analyze

the performance of PMD single-section compensators using importance sampling. In

Chapter 4, I describe how to implement the multicanonical Monte Carlo method to

compute penalties from polarization mode dispersion in optical fiber communication

systems. In Chapter 5, I present the transition matrix method that we developed to

estimate errors in MMC simulations. In Chapter 6, I describe a comparative study

of the two techniques of MMC and importance sampling that were introduced in

Chapters 3 and 4 to compute penalties due to PMD in systems with multi-section

PMD compensators. Finally, in Chapter 7, I present the conclusions of this Ph.D.

dissertation.



Chapter 2

Polarization Mode Dispersion (PMD)

In this chapter, I give a physical and a statistical description of PMD. Since PMD

varies with temperature, stress, and other conditions, a statistical method is required

to estimate outage probabilities. In addition, I show how my colleagues and I modeled

PMD in the systems that we studied.

2.1 Physical description of PMD

Polarization mode dispersion in optical fibers is due to deviations from circular sym-

metry in the core and cladding. These deviations give rise to two distinct polarization

modes with distinct phase and group velocities. Although telecommunications fibers

are often called “single-mode,” there are two polarized HE11 modes [33] even in an

ideal, circularly-symmetric fiber. Therefore, light propagation in single-mode fibers is

governed by two orthogonally polarized fundamental modes (or eigenmodes), which

are degenerate in the case of ideal fibers. The asymmetry in actual optical fibers

breaks the degeneracy of the HE11 modes, resulting in birefringence, which is defined

as the difference in the phase and group velocities of the two modes [33]. In opti-

9
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cal fibers, the birefringence is nearly linear, and one may refer to the two orthogonal

eigenmodes of polarization as the x- and y-polarizations. The strength of birefringence

B may then be defined as

B =
|βx − βy|

k0

= |nx − ny| , (2.1)

where nx and ny are the modal refractive indices for the two orthogonally polarized

eigenmodes, βx and βy are the corresponding wavenumbers, and k0 = 2π/λ, where

λ is the wavelength of light. For a given value of B, the two modes exchange their

powers in a periodic fashion as they propagate inside a fiber section with constant

birefringence. This period is called the beat length LB [34],

LB =
2π

|βx − βy|
=
λ

B
. (2.2)

The beat length is the propagation distance over which a 2π phase difference accu-

mulates between the two modes, or equivalently the polarization states vary through

a full cycle.

The axis along which the modal refractive index is smaller is called the fast axis

because the phase velocity is larger for light propagating in that direction. For the

same reason, the axis with the larger modal refractive index is called the slow axis.

In standard optical fibers, the birefringence changes randomly along the fiber due

to vibrations and variations of the temperature on a time scale that varies from

milliseconds to hours [35]. The fiber can be modeled as a sequence of birefringence

sections [35], where the amount of birefringence remain constant in each section but

the orientation of the principal axes changes randomly from section to section along
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the fiber length. As a result, light launched into the fiber with a fixed state of

polarization changes its polarization in a random fashion along the fiber.

Considering a single section of constant birefringence, if an input pulse excites

both polarization eigenmodes of the fiber section, the two polarization eigenmodes

drift apart along the fiber section because they travel at different group velocities. The

pulse becomes broader at the output because the two eigenmodes undergo different

delays in the fiber section. In the frequency domain, the state of polarization at the

output of the fiber section varies with frequency for a fixed input polarization. When

displayed on the Poincaré sphere, the polarization at the output moves on a circle on

the surface of the sphere as the optical frequency is varied. The evolution of the state

of polarization along the fiber section is the result of the increase in the frequency-

dependent phase difference between orthogonal components of the electrical field in

the two eigenmodes of polarization. In the presence of extensive mode coupling, i.e.,

considering many fiber sections, light in different frequencies will couple differently

into the fast and the slow axes of birefringence along the fiber sections, which will

undergo different propagation delays. In this case, the states of polarization evolve

randomly over the surface of the Poincaré sphere as the light propagates along the

fiber until the surface of the sphere is uniformly covered. This phenomenon is referred

as polarization mode dispersion.

Polarization mode dispersion is characterized in Stokes space by the polarization

dispersion vector τ (ω). The polarization dispersion vector is defined as [34]

ds

dω
= τ × s, (2.3)
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where s is a three-dimensional unit Stokes vector representing the output polariza-

tion state of light. The direction of the polarization dispersion vector determines the

direction of the two orthogonal principal states of polarizations (PSP), ±τ/ |τ |. The

differential group delay (DGD) between the PSPs is equal to the length of the po-

larization dispersion vector, |τ | = τ . When the polarization dispersion vector varies

slowly over the bandwidth of the optical signal, one may neglect the higher order

terms of the Taylor expansion of τ (ω) at the central frequency of the channel ωc, so

that τ (ω) ≈ τ (ωc). In this regime, the penalty is said to be dominated by distor-

tion due to first-order PMD. In this approximation, the signal splits into two PSPs,

which propagate at different group velocities, causing intersymbol interference. Light

launched in a single PSP does not experience first-order PMD distortion. Hence, in

the frequency domain, a PSP is defined as that input polarization for which the out-

put state of polarization is independent of frequency to first order, i.e., over a small

frequency range.

In the first-order approximation, the PSPs and the DGD do not vary with fre-

quency. The correlation bandwidth [34] ∆νPMD over which the DGD can be con-

sidered constant is inversely proportional to the expected value of the DGD with a

constant of proportionality close to 1/2. For pulses with a small bandwidth compared

to ∆νPMD, which means that the expected DGD is small compared to the duration of

the optical pulse, the first-order model is practically useful. In most sections of this

dissertation, however, we use a PMD model that takes into account the frequency

variation of the DGD and of the PSPs. The random variations with wavelength

of both the DGD and PSPs are the origin of the higher orders of PMD [36]. In
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Section 2.3 we describe the PMD simulation model that we use [37].

The PMD coefficient DPMD of an optical fiber is related to the average DGD 〈τ〉

by [34]

DPMD =

√
3π

8L
〈τ〉, (2.4)

where L is the fiber length. Typical values for DPMD are in the range from 0.1 to

1.0 ps/km1/2 [38]. Because of its L1/2 dependence, PMD-induced pulse broadening

is relatively small compared to broadening due to chromatic dispersion. However,

chromatic dispersion is a deterministic effect that can be compensated in a deter-

ministic way, while PMD is a random effect. Since 〈τ〉 ≈ DPMD · L1/2, PMD can

become a limiting factor for optical fiber communication systems designed to operate

over long distances. In this dissertation, we focus on systems whose PMD is large

enough to produce significant waveform distortion. In these systems, the mean of

the accumulated DGD of the transmission line exceeds 10% of the bit period. These

systems include 10 Gbit/s long-haul terrestrial communications systems that use high

PMD (> 1 ps/km1/2) optical fibers that were deployed before 1990 [39]. For systems

in which the mean DGD exceeds 10% of the bit period, there is a need for PMD

compensation that takes into account the effects of second and higher orders of PMD

impairments. In the following chapters of this dissertation, I address the issue of

PMD compensation for first and higher orders of PMD.
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2.2 Polarization mode dispersion statistics

Polarization mode dispersion is a stochastic phenomenon that changes with wave-

length and time. Therefore, one cannot predict the impairment of the system due

to PMD at any particular wavelength and time, but must instead rely upon a sta-

tistical description. Since the probability density functions for PMD in most cases

have asymptotic tails that extend to unacceptable large impairments, the system

cannot be designed to handle the worst case PMD impairment and must instead be

designed for a specific outage probability [40]. For similar reasons, the goal of PMD

compensation cannot be to eliminate the impairment, but rather to reduce the PMD

outage probability. To understand and predict system outage probabilities, to design

PMD compensators, and to accurate model PMD in systems, one must understand

the statistics of the phenomena associated with PMD. In this section, the statis-

tical characteristics of PMD that we investigate include the probability densities of

first-order PMD, τ , second-order PMD, τ ω, and the probability densities of their

magnitudes. Probability densities can be obtained from an analytical model devel-

oped by Foschini and Poole [36], [41]. This model, like most models used to obtain

analytical results for PMD statistics, assumes the ideal, perfectly random, fiber bire-

fringence. It is important to mention that real systems are not perfectly random and

real densities presumably do not exhibit the asymptotic tails extending to infinity

that are found in densities obtained analytically [40].

The derivation of the PMD probabilities density functions (pdfs) is based on the

known characteristic function of the six-dimensional (6-D) vector (τ , τ ω), which is
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defined to be the 6-D Fourier transform of the probability density function pτ ′,τ ′
ω

[36]

F
{
pτ ′,τ ′

ω

}
(z,Ψ) =

∫
<6

ei(z·τ+Ψ·τ ω)pτ ′,τ ′
ω
(u,v)duxduyduzdvxdvydvz . (2.5)

The normalized vector, (τ ′, τ ′ω), is obtained from the 6-D vector (τ , τ ω) according to

(τ ′, τ ′ω) =

(√
8

π

τ

〈|τ |〉
,

8

π

τ ω

〈|τ |〉2

)
. (2.6)

We may write F
{
pτ ′,τ ′

ω

}
explicitly as

F
{
pτ ′,τ ′

ω

}
= sech |Ψ| exp

{
−1

2

[
|z|2 tanh |Ψ|

Ψ
+

(z ·Ψ)2

|Ψ|2

(
1− tanh |Ψ|

|Ψ|

)]}
,

(2.7)

where F indicates the 6-D Fourier transform of a function of (τ ′, τ ′ω) into a function of

its conjugate vector (z,Ψ), and the vectors z and Ψ represent 3-D transform variables

corresponding to the components of τ ′ and τ ′ω, respectively. The normalization allows

the results obtained from (2.7) to be independent of the mean DGD. For simplicity,

in the pdfs that we present in this section, we use 〈τ〉 instead of 〈|τ |〉 to represent

the mean DGD.

We can use (2.7) to obtain a variety of probability density functions and mo-

ments [36], [40], [41]. For instance, the characteristic function of a single variable can

be obtained from the six-dimensional function by setting the uninteresting conjugate

variables to zero. In this way, the Gaussian characteristic function for a first-order

component, τx for example, is found from (2.7) by setting zy, zz, and Ψ to zero. An

inverse Fourier transform can be used to provide the desired density, which is also

Gaussian [36]. By setting Ψ to zero and performing an inverse Fourier transform with
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respect to z, we obtain the 3-D Gaussian density function of τ . Letting τi = τx, τy,

or τz, we find

pτi
=

2

π 〈τ〉
exp[− (2τi/ 〈τ〉)2 /π], (2.8)

and the pdf of the DGD |τ | = τ , which is Maxwellian is

pτ =
8

π2 〈τ〉

(
2τ

〈τ〉

)2

exp[− (2τ/ 〈τ〉)2 /π], (2.9)

where τ ≥ 0.

Setting z = 0 in (2.7), one obtains the pdf of τ ω. In addition, setting Ψj 6=i = 0,

followed by a 1-D inverse Fourier transform, we find that the probability density of a

component, τω,i, is given by

pτω,i
=

4

π〈τ〉2
sech

(
4τω,i

〈τ〉2

)
. (2.10)

Conversion to polar coordinates after one obtains the pdf of τ ω shows that the prob-

ability density of the magnitude |τ ω| is given by [40], [42]

p|τ ω | =
32 |τ ω|
π〈τ〉4

tanh

(
4 |τ ω|
〈τ〉2

)
sech

(
4 |τ ω|
〈τ〉2

)
. (2.11)

While these analytical expressions are useful, it is not possible to obtain exact

analytical expressions for the densities after compensation or for penalties either be-

fore or after compensation. Simulations must be used to obtain these other densities.

The tails of both the analytical and simulated distributions are the regions of great-

est importance because it is the large values of PMD that lead to system outages.

Assuming that ρ is a random variable representing the penalty or any other quantity

for which we described the probability density function above, the outage probability
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with respect to ρ is the probability of exceeding some value of ρ, which is typically the

threshold for unacceptable impairment. The estimation of system outage probabili-

ties requires the computation of the complement of the cumulative density function

(cdfc), where cdfc (ρ) =
∞∫
ρ

p (ρ′) dρ′, and p (ρ) is the corresponding pdf.

It is very difficult to obtain the tails of the distributions using standard, unbiased

Monte Carlo simulations. The advanced Monte Carlo techniques of importance sam-

pling and multicanonical Monte Carlo can be used to efficiently estimate rare penalties

induced by PMD. The techniques of importance sampling and multicanonical Monte

Carlo and their applications to PMD are presented in the following chapters of this

dissertation.

2.3 Modeling of polarization mode dispersion

Perturbations that cause loss of circular symmetry in the core of optical fibers lead

to birefringence and hence to PMD. Here, I describe the PMD simulation model

that my colleagues and I used [37]. This model is based on the representation of the

fiber link by a frequency-dependent transfer function, expressed as a 2 × 2 matrix,

T̄ (ω), referred to as the Jones matrix. This transfer function takes into account all

orders of PMD. Since we focused our investigation on the penalty caused by PMD,

we did not take into account polarization-dependent loss, chromatic dispersion, or

fiber nonlinearity in this model. In this case, the Jones matrix is unitary, and the

complex envelope of the electrical field vector at the end of the fiber link, Eout (ω),

may be written as

Eout (ω) = T̄ (ω) Ein (ω) , (2.12)
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where Ein (ω) is the input field vector in the Jones space [43]. Using the coarse step

model of a fiber [37] in which we assume that the fiber passes ergodically through all

possible orientations of the birefringence and that each section is long compared to

the fiber correlation length [37], the Jones transfer matrix T̄ (ω) of an optical fiber

that consists of N linearly birefringent sections may be written as [37]

T̄ (ω) =
N∏

n=1

T̄n(ω), (2.13)

where

T̄n(ω) = P̄(ω) S̄n (2.14)

is the transmission matrix of the n-th fiber section. The matrix

S̄n =

(
cos (ξn/2) exp[i (ψn + φn) /2] i sin (ξn/2) exp[i (ψn − φn) /2]

i sin (ξn/2) exp[−i (ψn − φn) /2] cos (ξn/2) exp[−i (ψn + φn) /2]

)
(2.15)

is a Jones matrix that corresponds to a uniformly distributed rotation on the Poincaré

sphere, while

P̄(ω) =

(
exp(−iωτs/2) 0

0 exp(iωτs/2)

)
, (2.16)

models the frequency-dependent phase rotation of the light through a birefringent

section. The parameter τs is the DGD in a single fiber section. The angles ξn, ψn,

and φn will be independent at each n and from each other. The angles ψn and φn

are uniformly distributed between 0 and 2π, while the random variables cos ξn are

uniformly distributed between −1 and 1. The Müller matrix [43] Sn that is equivalent

to the Jones matrix S̄n in (2.15) is comprised of elementary rotations around two of

the three orthogonal axes [43] of the Poincaré sphere,

Sn = Rx (ψn) Ry (ξn) Rx (φn) , (2.17)
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which produces a uniform rotation on the Poincaré sphere [37] provided that the

angles ψn, ξn, φn are distributed as described above. In (2.17), Rx (ψn) is a rota-

tion around the x-axis, and Ry (ξn) is a rotation around the y-axis. Likewise, the

Müller matrix P(ω) equivalent to the Jones matrix P̄(ω) in (2.16) is comprised of an

elementary rotation around the x-axis,

P(ω) = Rx (−ωτs) . (2.18)

Since the Müller matrix of a section is equal to P(ω)Sn, the polarization dispersion

vector of a single section is given by [44]

τ s = −τs âx, (2.19)

where âx is a unit vector along the x-axis.

The formulation of (2.14) is consistent with the one in [44], where the random

mode coupling in the n-th section occurs prior to the birefringent element of that

section. We set τs equal to

τs =

√
3π

8N
〈τ〉, (2.20)

where 〈τ〉 = 〈τ (N)〉 is the mean DGD of the fiber with N sections [45]. Throughout

this dissertation, we emulate an optical fiber with eighty birefringent sections N = 80

unless otherwise stated. In [3], Lima et al. showed that N = 80 is sufficient to obtain

a Maxwellian distribution of the DGD in the outage probability range up to 10−6.

The pdf of the DGD τ , for a PMD emulator with polarization controllers, which

implements the coarse step method [37], and N concatenated birefringent sections
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each with a DGD of τs, is given by [46]

p (τ,N) =
τ

2 τs2 (N − 2)!

k∑
j=0

(−1)j

(
N

j

)
(Nm− j)(N−2) , (2.21)

where m = 0.5 (1− τ/Nτs) and k is the integer part of Nm. The expression given in

(2.21) is valid only for N > 1. In the case N = 1 the pdf is a delta function p(τ, 1) =

δ(τ − τs). The pdf p (τ,N) is identically zero outside the interval 0 < τ < Nτs. This

interval is reasonable since N concatenated vectors of length τs cannot be longer than

Nτs. In the limit N → ∞, the pdf is the Maxwellian pdf [36], [46], where the mean

DGD is equal to τs
√

8N/3π.



Chapter 3

Importance sampling applied to PMD

In this chapter, I discuss the application of the biasing Monte Carlo techniques of

importance sampling to compute outage probabilities in optical fiber transmission

systems. I show how to implement importance sampling in which one biases just the

DGD and importance sampling in which one biases both the first- and second-order

PMD. Then, I show how my colleagues and I estimate the mean and the variance of

the penalty given a value of first- and second-order PMD. Finally, I apply importance

sampling to compare penalties resulting from first-order and all-order PMD and to

analyze the performance of single-section PMD compensators. I also describe the

single-section PMD compensator that we investigated.

3.1 Importance sampling to compute outage prob-

ability

As discussed in Chapter 1, optical fiber transmission systems are vulnerable to prob-

lems arising from a variety of fiber polarization effects, including PMD. PMD has

become a serious barrier to the deployment of high bit rate (10 Gbit/s and higher)

21
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transmission systems. One of the goals in designing these systems is to minimize the

probability of channel outage due to polarization effects. The penalty due to PMD

is defined as the ratio between the eye opening when PMD is not included in the

system and the PMD-distorted eye opening. The eye opening is defined as the dif-

ference between the lowest mark and the highest space. System designers commonly

allocate a prescribed penalty margin to polarization effects, such as 1 dB, with a fixed

probability that the margin will be exceeded, such as 10−5, corresponding to approx-

imately five minutes per year. When this margin is exceeded, an outage is said to

occur. Thus, we define outage probability as the probability of the penalty exceeding

this allowed value. When using standard, unbiased Monte Carlo simulations, a very

large number of samples must be explored in order to obtain an accurate estimate

of the rare events that lead to unacceptable penalties, such as large DGD values. In

this chapter, I focus on the use of a biased Monte Carlo technique called importance

sampling to accurately estimate the penalty induced by polarization mode dispersion.

This technique allows low probability events to be efficiently computed using a far

smaller number of samples than would be required with standard, unbiased Monte

Carlo simulations.

The goal of any biased Monte Carlo simulation, including simulations based on

importance sampling, is to cause the events that contribute to the statistical quan-

tities of interest to occur more frequently and thus to reduce the relative variation

in the numerical estimate of those quantities with a fixed number of samples [17].

In this dissertation, the quantities of interest are the eye-opening penalties and their

probability density functions both before and after compensation.



23

In Section 3.2, I explain how we implement the single-section compensator and how

we determine the eye-opening penalty. In Section 3.3, I describe the implementation

of importance sampling to the length of the polarization dispersion vector, the DGD.

I show that biasing the DGD is sufficient to accurately calculate the uncompensated

penalties and their pdfs, but it is not sufficient to accurately calculate the compen-

sated penalties and their pdfs. To study single-section compensated systems where

second-order PMD also plays a role it is necessary to use an importance sampling

method capable of biasing both the DGD and the length of the frequency derivative

of the polarization dispersion vector. In Section 3.4, I show how the probability of

rare events with large first- and second-order PMD can be efficiently computed us-

ing Monte Carlo simulation with importance sampling applied to both the DGD and

length of the second-order PMD. In Section 3.5, I show how to compute the relative

variation in the results that one obtains using Monte Carlo simulations with impor-

tance sampling. In Sections 3.6 and 3.7, I show the use of the technique of importance

sampling applied to PMD. In Section 3.6, I show results when we compare the eye-

opening penalty from a first-order PMD model with the penalty from an all-order

PMD model. Finally, in Section 3.7, I show the simulation results of PMD-induced

penalty in the plane of first- and second-order PMD and the outage probability for

uncompensated and single-section compensated systems.
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3.2 Single-section PMD compensator and defini-

tion of penalty

In this section, I explain how my colleagues and I implemented the single-section

compensator and the receiver model that is used throughout this dissertation. The

increased understanding of PMD and its system impairments, together with a quest

for higher transmission bandwidths, has motivated considerable effort to mitigate the

effects of PMD, based on different compensation schemes [3], [16], [20]. One of the

primary objectives has been to enable system upgrades from 2.5 Gbit/s to 10 Gbit/s or

from 10 Gbit/s to 40 Gbit/s on old, embedded, high-PMD fibers. PMD compensation

techniques must reduce the impact of first-order PMD and should reduce higher-order

PMD effects or at least not increase the higher orders of PMD. The techniques should

also be able to rapidly track changes in PMD, including changes both in the DGD

and the PSPs. Other desired characteristics of PMD mitigation techniques are low

cost and small size to minimize the impact on existing system architectures. In

addition, mitigation techniques should have a small number of feedback parameters

to control [40].

In this chapter, I will describe a PMD compensator with an arbitrarily rotatable

polarization controller and a single DGD element, which can be fixed [47] or vari-

able [48]. The adjustable DGD element or birefringent element is used to minimize

the impact of the fiber PMD and the polarization controller is used to adjust the

direction of the polarization dispersion vector of the compensator. The expression for

the polarization dispersion vector after compensation, which is equivalent to the one
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in [49], is given by

τ tot(ω) = τ c + Tc(ω)Rpcτ f (ω), (3.1)

where τ c is the polarization dispersion vector of the compensator, τ f (ω) is the polar-

ization dispersion vector of the transmission fiber, Rpc is the polarization transforma-

tion in Stokes space that is produced by the polarization controller of the compen-

sator, and Tc(ω) is the polarization transformation in Stokes space that is produced

by the DGD element of the compensator, which is similar to (2.18). We model the

polarization transformation Rpc as

Rpc = Rx(φpc)Ry(ψpc)Rx(−φpc). (3.2)

I note that the two parameters of the polarization controller’s angles in (3.2) are

the only free parameters that a compensator with a fixed DGD element possesses,

while the value of the DGD element of a variable DGD compensator is an extra free

parameter that must be adjusted during the operation. In (3.2), the parameter φpc

is the angle that determines the axis of polarization rotation in the y-z plane of the

Poincaré sphere, while the parameter ψpc is the angle of rotation around that axis

of polarization rotation. An appropriate selection of these two angles will transform

an arbitrary input Stokes vector into a given output Stokes vector. While most

electronic polarization controllers have two or more parameters to adjust that are

different from φpc and ψpc, it is possible to configure them to operate in accordance

to the transformation matrix Rpc in (3.2) [50].

In all the work reported in this chapter, we used the eye opening as the feedback

parameter for the optimization algorithm unless otherwise stated. We defined the
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eye opening as the difference between the lowest mark and the highest space at the

decision time in the received electrical noise-free signal. The eye-opening penalty is

defined as the ratio between the back-to-back and the PMD-distorted eye opening.

The back-to-back eye opening is computed when PMD is not included in the system.

Since PMD causes pulse spreading in amplitude-shift keyed modulation formats, the

isolated marks and spaces are the ones that suffer the highest penalty [51]. To define

the decision time, we recovered the clock using an algorithm based on one described by

Trischitta and Varma [52]. We simulated the 16-bit string “0100100101101101.” This

bit string has isolated marks and spaces, in addition to other combinations of marks

and spaces. In most of other simulations in this dissertation we use pseudorandom

binary sequence pattern. The receiver model consists of an Gaussian optical filter with

full width at half maximum (FWHM) of 60 GHz, a square-law photodetector, and a

fifth-order electrical Bessel filter with a 3 dB bandwidth of 8.6 GHz. To determine

the decision time after the electronic receiver, we delayed the bit stream by half a bit

slot and subtracted it from the original stream, which is then squared. As a result

a strong tone is produced at 10 GHz. The decision time is set equal to the time at

which the phase of this tone is equal to π/2.

The goal of our study is to determine the performance limit of the compensators.

In order to do that, we search for the angles φpc and ψpc of the polarization controller

for which the eye opening is largest. In this case, the eye opening is our compensated

feedback parameter. We therefore show the global optimum of the compensated

feedback parameter for each fiber realization. To obtain the optimum, we start with

5 evenly spaced initial values for each of the angles φpc and ψpc in the polarization
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transformation matrix Rpc, which results in 25 different initial values. If the DGD

of the compensator is adjustable, we start the optimization with the DGD of the

compensator equal to the DGD of the fiber. We then apply the conjugate gradient

algorithm [53] to each of these 25 initial polarization transformations. To ensure that

this procedure yields the global optimum, we studied the convergence as the number

of initial polarization transformations is increased. We examined 104 fiber realizations

spread throughout our phase space, and we never found more than 12 local optima

in the cases that we examined. We missed the global optimum in three of these cases

because several optima were closely clustered, but the penalty difference was small.

We therefore concluded that 25 initial polarization transformations were sufficient to

obtain the global optimum with sufficient accuracy for our purposes. We observed

that the use of the eye opening as the objective function for the conjugate gradient

algorithm produces multiple optimum values when both the DGD and the length of

the frequency derivative of the polarization dispersion vector are very large.

The performance of the compensator depends on how the DGD and the effects of

the first- and higher-order frequency derivatives of the polarization dispersion vector

of the transmission fiber interact with the DGD element of the compensator to pro-

duce a residual polarization dispersion vector and on how the signal couples with the

residual principal states of polarization over the spectrum of the channel. Therefore,

the operation of single-section PMD compensators is a compromise between reducing

the DGD and setting one principal state of polarization after compensation that is

approximately co-polarized with the signal. An expression for the pulse spreading

due to PMD as a function of the polarization dispersion vector of the transmission
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fiber and the polarization state over the spectrum of the signal was given in [54].

3.3 Importance sampling that biases only the DGD

Importance sampling is a well-known technique in statistics that makes efficient use

of Monte Carlo simulations to compute the probability of rare events. The rare events

that lead to outage due to PMD are highly correlated with the large DGD values.

These values are large compared to the average or expected value of the DGD. When

we use importance sampling to bias the DGD, we are taking advantage of the large

correlation that exists between the PMD-induced penalty and the DGD. We note that

first- and higher-order frequency derivatives of the polarization dispersion vector are

included in the simulations, although this approach does not produce larger values of

first- and higher-order frequency derivatives of the polarization dispersion vector than

the moderately large values that are naturally obtained when one biases the DGD.

My colleagues and I observed that the use of a single biased distribution with

importance sampling is insufficient to resolve the histogram of the penalty produced

by polarization effects in the configuration space. Thus, it is necessary to combine the

statistical results from several different biased distributions, since each distribution

resolves a different region in the sample space. This approach is referred to as multiple

importance sampling.

To apply the multiple importance sampling technique, we first recall that PI , the

probability of an event defined by the indicator function I(x), can be estimated as [55]

P̂I =
J∑

j=1

1

Mj

Mj∑
i=1

I(xj,i)wj(xj,i)Lj(xj,i), (3.3)
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where

Lj(xj,i) =
p(xj,i)

p∗j(xj,i)
(3.4)

is the likelihood ratio of the i-th sample xj,i drawn from the j-th biasing distribution

and where Mj is the number of samples drawn from the j-th biasing distribution

p∗j(x). The term p(x) is the pdf of the unbiased distribution, and J is the number

of different biasing distributions. The weights wj(x) allow one to combine different

biasing distributions and are defined in (3.5) below. In this application, the random

vector x corresponds to the random realization of the fiber PMD, which is determined

by the random mode coupling between the birefringent sections, and the unbiased pdf

p(x) is assumed to be known a priori. The indicator function I(x) in (3.3) is chosen

to compute the probability of having an eye-opening penalty within a given range,

such as a bin in a histogram. Thus, the indicator function I(x) is defined as 1 inside

the desired penalty range and 0 otherwise.

An efficient technique to combine the samples from multiple biased distributions

is the balanced heuristic method [55], which my colleagues and I used for the work

reported in this dissertation. The balanced heuristic weight assigned to the sample x

drawn from the j-th distribution is given by

wj (x) =
MjL

−1
j (x)∑J

k=1MkL
−1
k (x)

. (3.5)

The idea behind the balanced heuristic method is that samples are weighted accord-

ing to the likelihood that each biased distribution produces samples in that region;

distributions that are more likely to put samples there are weighted more heavily.

The computation of the balanced heuristic weight for any given sample requires that
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the likelihood ratio of all the biased distributions be evaluated for that sample. In

other words, the likelihood ratio of all samples in all J biased distributions have to

be evaluated for the i-th sample drawn from the j-th distribution, even though this

sample was obtained using only the biased pdf of the j-th distribution.

The polarization dispersion vector after n fiber sections is determined by the same

concatenation rule showed in (3.1),

τ (n) = τ n + Tnτ
(n−1), (3.6)

where Tn is the equivalent Müller matrix of the n-th section in (2.14). Biondini,

et al. [28] demonstrated that the appropriate parameters to bias are the angles θn

between the polarization dispersion vector of the first (n− 1) sections τ (n−1) and the

polarization dispersion vector of the n-th section τ n at the center frequency of the

channel, such that cos θn is biased towards one, thereby increasing the probability that

the polarization dispersion vector at that frequency will lengthen after that section.

In other words, τ n is biased towards a direction b̂ that is equal to the direction of

τ (n−1). The angles θn are directly determined by the realization of the random mode

coupling between the birefringent sections. Thus, the values of cos θn play the role of

the components of the random vector x in (3.3). In standard Monte Carlo simulations,

in which the PMD is modeled using the coarse step method [37], the cosines of each

of the angles θn are uniformly distributed in the interval [−1, 1]. One can note that

an unbiased importance sampling simulation, for which L(x) = 1, is exactly the same

as a standard Monte Carlo simulation. However, in biased importance sampling one

fixes a biasing parameter α and selects the cos θn from a biased pdf, p∗α(cos θ). In the
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work reported in this dissertation, we choose cos θn from the pdf [56]

p∗α (cos θ) =
α

1− e−2α
e−α(1−cos θ), (3.7)

which biases cos θ towards 1 when α is positive, and corresponds to standard Monte

Carlo simulations in the limit α = 0. The likelihood ratio for each value of cos θ that

is obtained from the biasing pdf in (3.7) is given by

Lα (cos θ) =
1− e−2α

2α
eα(1−cos θ). (3.8)

Since the values of cos θn are independent random variables, the likelihood ratio for

a biased realization of the fiber PMD is equal to the product of the likelihood ratios

for each of its biased angles,

Lj (xj,i) =
N∏

n=1

Lαj
(cos θj,i,n) , (3.9)

where αj is the amount of bias used in the j-th distribution, and cos θj,i,n is cos θ for

the n-th section of the i-th sample obtained from the j-th distribution.

To efficiently apply importance sampling, we must determine the value of the

biasing parameter α that enables us to statistically resolve the histogram of the eye-

opening penalty over a range of large eye-opening penalty values whose probability

is on the order of a given target probability Pα, such as Pα = 10−5. Intuitively, we

anticipate that the required value of α is the one for which the target probability Pα

is equal to the likelihood ratio of the biased realization of the fiber PMD evaluated

at the expected value of the random variable cos θ with biasing pdf p∗α(cos θ). That

is, the bias parameter α satisfies the equation

Pα = [Lα (〈cos θ〉)]N =

[
Lα

(
1 + e−2α

1− e−2α
− 1

α

)]N

, (3.10)
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where N is the number of fiber sections, and 〈·〉 is the expectation operator. Our

motivation for this heuristic comes from (3.3) and from the observation that, over a

given range of penalties, the biased samples statistically resolve the histogram of the

eye-opening penalty when the indicator function for this range has the value 1 for a

large proportion of the biased samples. In Fig. 3.1, I show the results in which we
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Figure 3.1: The pdf of the normalized DGD, |τ | /〈|τ |〉, plotted on a loga-

rithmic scale with 80 bins. The squares show the results of Monte Carlo

simulations with importance sampling in which we only biased the DGD us-

ing 3 × 104 samples. The solid line shows the Maxwellian distribution with

the same mean.

only biased the DGD, choosing α = 0, which produces unbiased samples, together

with α = 0.5, and α = 1.0. The target probabilities of the biased simulations are

P0.5 = 3.9 × 10−2 and P1.0 = 5.4 × 10−6. We used 104 samples for each of the three

biases, except as noted. We point out that as we increase the number of samples with

bias parameter α, the size of the interval about Pα for which the histogram of the
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eye-opening penalty is well resolved increases.

In order to bias the angle θn between the polarization dispersion vector of the first

(n− 1) sections τ (n−1) and the polarization dispersion vector of the n-th section τ n,

the polarization rotation matrix Sn in (2.17) has to be modified to properly account

for the bias. In practice, we bias the direction of the polarization dispersion vector

of the previous (n − 1) sections τ (n−1) toward τ n because the polarization disper-

sion vector of the previous sections τ (n−1) is the vector rotated by the matrix Tn,

as shown in (3.6). The polarization dispersion vector of any of the sections of the

transmission fiber modeled by (2.14) is given by τ s = −τs âx, as in (2.19), which

is independent of Sn. Therefore, the matrix Sn of the n-th section must bias the

polarization dispersion vector of the previous sections toward the vector −âx. We

obtain this bias by replacing the first two random rotations in (2.17) by the combi-

nation of one random rotation with two deterministic rotations around the y- and

the z-axes. The first rotation Ry (χn) eliminates the z-component of the polarization

dispersion vector of the previous (n − 1) sections τ (n−1), which is accomplished by

choosing χn = arctan (τz/τx). The second rotation Rz (ζn) eliminates the y-component

of Ry (χn) τ (n−1), where ζn is chosen like χn, with the additional constraint that the

resultant vector Rz (ζn) Ry (χn) τ (n−1) should be in the −âx direction. Then, we chose

a random angle θn from the biasing pdf in (3.7) to rotate Rz (ζn) Ry (χn) τ (n−1) around

the z-axis. This rotation can be combined with the previous deterministic rotation

around the z-axis by ζn to produce a single rotation. Finally, we add a uniformly

distributed random rotation ψn around the x-axis to obtain the polarization rotation
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matrix for the DGD bias S
(1)
n , which becomes

S(1)
n = Rx (ψn) Rz (θn + ζn) Ry (χn) . (3.11)

A uniform rotation like S̄n in (2.15) could in principle be added at the end of the

fiber so that the direction of τ (N) is uniformly distributed on the Poincaré sphere.

However, the receiver model used for the results in this dissertation has no polarization

dependence; so, this final rotation is unnecessary.

In Fig. 3.1, I show the pdf of the normalized DGD, τ/〈τ〉, of a fiber with 80

birefringent sections and 30 ps of mean DGD 〈τ〉, where τ = |τ | and the DGD is

normalized with respect to 〈τ〉. Hence, these results are independent of 〈τ〉. The

unbiased probability of obtaining normalized DGD values outside the domain [0, 4]

that I show in Fig. 3.1 is less than 10−8. This curve was obtained with only 104

samples from Monte Carlo simulations for each of the three biasing distributions:

α = 0, which produces unbiased samples, α = 0.5, and α = 1.0. The results of the

biasing distributions were combined using the balanced heuristic method previously

described. The largest relative variation over the domain [0.3, 4] is 8%. The relative

variation is the ratio between the standard deviation of the probability and the proba-

bility value. In Section 3.5, I describe in detail how we compute the relative variation

for the results shown in this chapter. We observed an excellent agreement between

the numerically calculated pdf of the DGD obtained with importance sampling and

the Maxwellian pdf with the same mean. The slight deviation in the tail between the

numerically calculated pdf and the Maxwellian distribution occurs because we use 80

sections rather than a larger number [57].
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Figure 3.2: The joint pdf of the normalized |τ | and |τ ω| with 25 × 25 bins.

The solid lines show the results of Monte Carlo simulations with importance

sampling in which we only biased the DGD using 3 biases with 6×104 samples

in each bias. The dashed line shows the contour level corresponding to 10%

relative variation in the results using importance sampling. The dotted lines

show the results of standard Monte Carlo simulations using 108 samples.

The dot-dashed line shows the contour level corresponding to 10% relative

variation in the results using standard Monte Carlo simulations with 108

samples. The contours of the joint pdf from bottom to top of the plot, are

at 3× 10−n , n = 1, · · · , 7 and 10−m, m = 1, · · · , 11.

In Fig. 3.2, we compare the joint pdf of the DGD |τ | and the length of the fre-

quency derivative of the polarization dispersion vector |τ ω| that is obtained with the

implementation of the importance sampling with DGD bias to the joint pdf obtained

with standard Monte Carlo simulations with 108 samples. We had the same configu-

ration as in Fig. 3.1, except that we used 6× 104 samples per bias. We observed that

the length of the frequency derivative of the polarization dispersion vectors that are

statistically correlated to the DGD that we bias are correctly accounted for. How-
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ever, this implementation is not efficient in obtaining samples with large lengths of

the frequency derivative of the polarization dispersion vector associated with moder-

ately small values of DGD. Hence, the use of DGD bias is limited to systems where

the DGD is the dominant source of penalties, which is the case in uncompensated

systems and in systems with limited PMD compensation. In Fig. 3.9 of Section 3.7,

I show that biasing only the DGD is not sufficient to accurately compute penalties

in a single-section PMD-compensated system, where the compensator has a variable

DGD-section in which the residual DGD of the system at the central frequency of the

channel is canceled after compensation.

3.4 Importance sampling that biases the magni-

tude of first- and second-order PMD

As I will show in Section 3.7, biasing the DGD is sufficient to accurately calculate the

uncompensated penalties and their pdfs, but it is not sufficient to accurately calcu-

late the compensated penalties and their pdfs. To study compensated systems where

second-order PMD also plays a role it is necessary to use an importance sampling

method capable of biasing both the DGD and the length of the frequency derivative

of the polarization dispersion version. Monte Carlo simulations with multiple impor-

tance sampling in which first- and second-order PMD is biased uses multiply-biased

simulations that generate a sufficient number of combinations of first- and second-

order PMD to cover the statistically significant regions of the first- and second-order

PMD plane.
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The derivative of the polarization dispersion vector with respect to the angular

frequency ω after n fiber sections τ
(n)
ω is determined by the concatenation rule [49],

τ (n)
ω = τ nω + τ n ×

(
Tnτ

(n−1)
)

+ Tnτ
(n−1)
ω , (3.12)

where Tn is the Müller matrix that is equivalent to the Jones matrix in (2.14), and

τ nω is the derivative of the polarization dispersion vector of the n-th section with

respect to the angular frequency. Note that |τ nω | = 0 in this problem, since each

section has a constant—frequency independent—polarization dispersion vector τ n.

In order to obtain large values of the frequency derivative of the polarization

dispersion vector τ ω with a relatively small number of Monte Carlo simulations, Fogal,

et al. [29] demonstrated that it is necessary to bias the polarization dispersion vector

of the n-th section in a direction b̂ that is different from the direction used in the DGD

bias that was described in Section 3.3. The biasing direction b̂ is located in a plane

that contains the vectors τ (n−1) and τ (n−1) × τ (n−1)
ω , and this direction is chosen so

that the angle between the biasing direction b̂ and the polarization dispersion vector

of the previous sections τ (n−1) varies linearly along the fiber sections from β1 = 0 in

the first fiber section to βN = β in the last fiber section, where the values of β and α

in (3.7) determine the region in the plane formed by the DGD |τ | and the length of

the frequency derivative of the polarization dispersion vector |τ ω| that one wants to

statistically resolve. Specifically [29], my colleagues and I chose

βn =
n

N
β, (3.13)

where 0 ≤ β ≤ π. Note that the choice β = 0 produces only DGD bias. However,

the parameter α completely determines the target probability (3.10), since the pa-
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rameter β simply selects a region of equal probability in the parameter space. For

the simulation results presented in this dissertation, in which we biased both the

DGD and the length of the frequency derivative of the polarization dispersion vec-

tor, we chose the following values of (α, β) to bias the distributions with 104 samples

each: (0, 0), which produces unbiased samples, (0.5, 0), (0.5, π/3), (0.5, 2π/3), (0.5, π),

(1, 0), (1, π/3), (1, 2π/3), (1, π), and (0.7, 0).

In order to implement the bias for both the DGD and the length of the frequency

derivative of the polarization dispersion vector, the polarization rotation matrix Sn

in (2.17) has to be modified in a way that is analogous to the derivation of S
(1)
n in

Section 3.3. The goal is to choose a set of rotations so that the vector T−1
n τ n ends

up at angle θ with the biasing direction b̂ in the three-dimensional Stokes space.

The first step is similar to the one described in Section 3.3, where two deterministic

rotations are obtained to rotate the polarization dispersion vector of the previous

(n − 1) sections τ (n−1) to the −âx direction, Rz (ζn) Ry (χn) τ (n−1). Then, a rotation

around the x-axis Rx (νn) eliminates the y-component of Rz (ζn) Ry (χn) τ
(n−1)
ω , while

leaving the z-component positive. The next step is to apply a deterministic rotation

Rz (βn) so that [Rz (βn) Rx (νn) Rz (ζn) Ry (χn)]−1 τ n is parallel to the biasing direction

b̂, where βn is determined by (3.13). Then, a uniformly distributed rotation around

the x-axis Rx (ψn) is added to produce the correct statistical randomization of the

polarization rotation matrix of first- and second-order bias S
(2)
n . Finally, a biased

rotation around the z-axis, Rz (θn), is applied to obtain an appropriate bias for both

the DGD and the length of the frequency derivative of the polarization dispersion

vector, where cos θn is obtained from the pdf in (3.7). The matrix S
(2)
n in this case
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becomes

S(2)
n = Rz (θn) Rx (ψn) Rz (βn) Rx (νn) Rz (ζn) Ry (χn) , (3.14)

where ψn is a random variable whose pdf is uniformly distributed between 0 and 2π

as in (3.11). Note that none of the angles χn, ζn, νn, and βn in (3.14) are random, and

that these rotations are not unique; it is possible to produce a bias for both the DGD

and the length of the frequency derivative of the polarization dispersion vector using

a different set of elementary rotations. A uniform rotation like S̄n in (2.15) could be

added at the end of the fiber model to make sure that τ (N) is uniformly distributed

on the Poincaré sphere. However, this extra rotation is not necessary here, just as in

the case in which only the DGD is biased.

In Fig. 3.3, I show the pdf of the length of the frequency derivative of the po-

larization dispersion vector τ ω of a fiber with 80 birefringent sections and 10 ps of

mean DGD 〈|τ |〉. I show the length of τ ω normalized with respect to its expected

value 〈|τ ω|〉. In Fig. 3.3, we combined the results of the 10 biasing distributions

with 104 samples per bias using the balanced heuristic method. The largest relative

variation over the domain [0, 9] is 17%. We observed an excellent agreement between

the numerically calculated pdf of the length of the frequency derivative of the po-

larization dispersion vector obtained using importance sampling and the theoretical

pdf of the length of the frequency derivative of the polarization dispersion vector

in (2.11) [40], [42].

In Fig. 3.4, I show the results of the joint pdf of the DGD |τ | and the length of the

frequency derivative of the polarization dispersion vector |τ ω| that is obtained with

multiple importance sampling in which both the DGD and the length of the frequency
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Figure 3.3: The pdf of the normalized |τ ω| plotted on a logarithmic scale

with 60 bins. The squares show the results of Monte Carlo simulations with

importance sampling in which we biased both the first- and second-order

PMD using 105 samples. The solid line shows the results of the theoreti-

cal distribution of the length of the frequency derivative of the polarization

dispersion vector.

derivative of the polarization dispersion vector are biased in comparison with results of

standard Monte Carlo simulations with 108 samples. We had the same configuration

as in Fig. 3.3, except that we used 6×104 samples per bias. We observed an excellent

agreement between these results. We point out that the relative variation in the

joint pdf of the DGD and the length of the frequency derivative of the polarization

dispersion vector in the results of standard Monte Carlo simulations depends only

on the number of samples used. In addition to the number of samples, the relative

variation in the results with importance sampling strongly depends on the set of biases

that are combined to produce the numerical joint pdf. As a consequence, the contours

of relative variation do not follow the probability contour lines and have a bumpy
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Figure 3.4: The joint pdf of the normalized |τ | and |τ ω| with 25×25 bins. The

solid lines show the results with importance sampling using 10 biases with

6× 104 samples in each bias. The dashed line shows the contour level corre-

sponding to 10% relative variation in the results using importance sampling.

The dotted lines show the results of standard Monte Carlo simulations using

108 samples. The dot-dashed line shows the contour level corresponding to

10% relative variation in the results using standard Monte Carlo simulations

with 108 samples. The contours of the joint pdf from the bottom to the top

of the plot, are at 3× 10−n , n = 1, · · · , 7 and 10−m, m = 1, · · · , 11.

structure. I show this behavior in Fig. 3.4 for the 10% relative variation contour.

However, we see that the 10% relative variation contour for the biasing simulations lies

well outside the 10% relative variation contour for the standard simulations, although

the standard simulations have a much larger number of samples. This result supports

the conclusion that the biasing procedure is effective.

My colleagues and I observed that one single biasing distribution is insufficient

to accurately determine the eye-opening penalty over the entire range of interest in
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the |τ | − |τ ω| plane. It is necessary to combine the statistical result from multiple

biasing distributions, since each distribution provides accuracy in different regions

of the parameter space. As in the case of importance sampling in which only the

DGD is biased, an efficient technique to combine the samples from multiple biasing

distributions when using importance sampling in which both |τ | and |τ ω| are biased

is the balanced heuristic method [55] that was described earlier in Section 3.3.

3.5 Estimators of the mean and of the variance

As I mentioned before, error estimation is important to verify the accuracy of the

results estimated with Monte Carlo methods, including importance sampling. When

applying importance sampling in which we only bias the DGD, a confidence interval

for the estimator of the probability PI of the indicator function I(x) in (3.3) can be

defined from the estimator of the variance of P̂I , which is given by [50]

σ̂2
P̂I

=
J∑

j=1

1

Mj (Mj − 1)

Mj∑
i=1

[
I(xj,i)wj(xj,i)Lj(xj,i)− P̂Ij

]2
, (3.15)

where

P̂Ij
=

1

Mj

Mj∑
i=1

I(xj,i)wj(xj,i)Lj(xj,i), (3.16)

is the contribution of the samples drawn from j-th biased distribution to the esti-

mator P̂I . The confidence interval of the estimator P̂I is defined to be the interval(
P̂I − σ̂P̂I

, P̂I + σ̂P̂I

)
. The relative variation equals σ̂P̂I

/P̂I . The key to the deriva-

tion of (3.15) is to note that the product between the indicator function I(x) and its

corresponding weight wj(x)L(x) is the random variable in the standard expression of
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the variance [58] for the j-th distribution. Then, the variances produced by all the

independent biased distributions are added to obtain the expression for the variance

of the estimator P̂I in (3.15).

When applying multiple importance sampling in which both first- and second-

order PMD are biased, one can determine the estimator of the average eye-opening

penalty µ̂ given a value of the magnitude of first- and second-order PMD, |τ | and

|τ ω|, respectively, and the expected variance σ̂2
µ̂ of this estimator in each bin, using

the estimators [24]

µ̂ =
M̂

Ĉ
, σ̂2

µ̂ =
σ̂2

M̂

Ĉ2
+
µ̂2σ̂2

Ĉ

Ĉ2
, (3.17)

where

Ĉ =
J∑

j=1

Ĉj, M̂ =
J∑

j=1

M̂j, (3.18)

with

Ĉj =
1

Nj

Nj∑
i=1

I (xj,i)wj (xj,i)Lj (xj,i) , (3.19a)

M̂j =
1

Nj

Nj∑
i=1

f (xj,i) I (xj,i)wj (xj,i)Lj (xj,i) . (3.19b)

Using (3.17), one can generate one-standard-deviation confidence intervals for the av-

erage penalty in each bin, which is computed using importance sampling. In (3.17)–

(3.19), the parameter Nj is the number of samples drawn from the j-th biased distri-

bution p∗j(x). The vector xj,i is the set of biased parameters in the i-th fiber realization

of the j-th distribution, where f (xj,i) is the associated eye-opening penalty, and J

is equal to ten for the results shown in this dissertation, which comprise nine biased

and one unbiased simulation. The likelihood ratio of the i-th fiber realization in the
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j-th biased distribution is Lj(xj,i) = pj(xj,i)/p
∗
j(xj,i), where I (xj,i) is the indicator

function whose value is one in a bin of interest and zero outside this bin, and wj(xj,i)

are the weights associated with each individual distribution [29]. The distributions

pj(x) and p∗j(x) are the unbiased and biased pdfs of a random vector x, respectively.

Finally,

σ̂2
Ĉ

=
J∑

j=1

1

Nj(Nj − 1)

Nj∑
i=1

[I (xj,i)wj (xj,i)Lj (xj,i)− Ĉj]
2, (3.20a)

σ̂2
M̂

=
J∑

j=1

1

Nj(Nj − 1)

Nj∑
i=1

[f (xj,i) I (xj,i)wj (xj,i)Lj (xj,i)− M̂j]
2. (3.20b)

It is important to note that the estimators for the mean eye-opening penalty µ̂ and

the variance σ̂2
µ̂ of the estimator µ̂ given by (3.17) are biased estimators. We obtain

the expression for the variance by using the law of propagation of errors [59], where

to first-order approximation,

σ̂2
µ̂

µ̂2
=
σ̂2

M̂

M̂2
+
σ̂2

Ĉ

Ĉ2
. (3.21)

The bias in the estimation of µ̂ and σ̂2
µ̂ can be reduced by computing Ĉ with a much

larger number of samples than is used to compute M̂ . This approach is practical

because the computational cost of generating fiber realizations to calculate Ĉ is much

smaller than the cost to compute penalties after compensation, which are required to

compute M̂ . For the results that I show in the Section 3.7, we reduced the uncertainty

in Ĉ by computing Ĉ using 107 samples per biased simulation, while M̂ was computed

using 105 samples per biased simulation. Using this approach we note that σ̂2
Ĉ
/Ĉ2 is,

in general, two orders of magnitude smaller than σ̂2
M̂
/M̂2. The maximum value for

σ̂2
Ĉ
/Ĉ2 for the results shown in Section 3.7 is 1.21 × 10−4. The maximum value for
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σ̂2
M̂
/M̂2 is 0.14, but it is much smaller in almost all bins, typically between 0.001 and

0.002.

3.6 Comparison of penalties resulting from first-

order and all-order PMD

Using importance sampling in which only the DGD is biased, my colleagues and I com-

pared the eye-opening penalty from a first-order PMD model with the penalty from

an all-order PMD model in uncompensated optical fiber transmission systems [26],

[27]. Evaluating the performance taking into account only first-order PMD produces

a good approximation to the true eye-opening penalty of uncompensated systems

when the penalty is low. However, when the penalties are high, this model over-

estimates the penalty for outage probabilities in the range of interest for systems

designers, which is typically approximately 10−6 to 10−5. These results demonstrate

the importance of accurately modeling PMD by including higher orders.

As I mentioned in Chapter 2, as long as the signal bandwidth is sufficiently nar-

row, the first-order PMD distortion is the dominant PMD effect. In the first-order

approximation, the principal states of polarizations and the DGD do not vary with

frequency. The correlation bandwidth [34] ∆νPMD over which the DGD can be con-

sidered constant is inversely proportional to the expected value of the DGD with a

constant of proportionality close to 1/2. For pulses with a small bandwidth compared

to ∆νPMD, which means that the expected DGD is small compared to the duration

of the optical pulse, the first-order model is useful in practice.
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Because of the simplicity of the first-order PMD model and its usefulness, it

has been frequently used for the performance evaluation of systems [60]–[62]. In this

section, I show that performance evaluation taking into account only first-order PMD

produces a good approximation of the true eye-opening penalty of uncompensated

optical systems when the penalty is low. However, such evaluation overestimates

the true eye-opening penalty, i.e., the penalty obtained from a PMD model that

takes into account the frequency variation of the DGD and of the principal states of

polarizations, at the higher penalties that are associated with outage probabilities of

10−6 and 10−5.

In Figs. 3.5–3.7, I show the outage probability of the eye-opening penalty caused

by PMD in an uncompensated 10 Gbit/s nonreturn-to-zero (NRZ) system. In

Fig. 3.5, we compare the eye-opening penalty from a first-order PMD model with

that of an all-order PMD model when the mean DGD 〈|τ |〉 is equal to 14 ps, for a

typical NRZ system whose pulses have rise and fall times of 30 ps, and whose receiver

has an electrical filter with a full width of half maximum (FWHM) bandwidth equal

to 8.6 GHz. At this low value of 〈|τ |〉 the system penalty is dominated by first-order

PMD, so that the eye-opening penalty when one considers all orders of PMD is very

close to the eye-opening penalty when only the first order is considered. The PMD-

induced penalty is thus highly correlated with the DGD at the central frequency of

the channel [3]. In this case, the performance evaluation taking into account only

first-order PMD produces a good approximation for the true eye-opening penalty.

In Fig. 3.6, I show the curves of outage probability versus eye-opening penalty for

the same system as in Fig. 3.5 with 〈|τ |〉 = 20 ps. In Fig. 3.6, we observe that the
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Figure 3.5: Outage probability as a function of the eye-opening penalty mar-

gin for a 10 Gbit/s NRZ system with pulse edge rise and fall times of 30 ps

and mean DGD, 〈|τ |〉, equal to 14 ps. The dashed line shows the outage

probability considering only first-order PMD, while the solid line shows the

results considering all-order (first- and higher-order) PMD distortion. The

outage probability is the probability that the eye-opening penalty exceeds

the value displayed on the horizontal axis.

first-order PMD model yields an eye-opening penalty that is slightly greater than that

of the all-order PMD model, for outage probability on the order of 10−6. Finally, in

Fig. 3.7, I show the eye-opening penalty results when we compare first- and all-order

PMD in an NRZ system whose pulses have rise and fall times of 5 ps and whose

receiver has an electrical filter with a FWHM bandwidth equal to 10 GHz. As we

can see in Fig. 3.7, the difference in eye-opening penalty values between the first-

and all-order models is larger than the previous case illustrated in Fig. 3.6 because

the pulse format used in this system has a broader bandwidth. In Figs. 3.6 and

3.7, we observe that as higher-order PMD effect become more important, the true
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Figure 3.6: Same as Fig. 3.5, except that 〈|τ |〉 = 20 ps and the pulse edge

rise and fall times are 30 ps.

eye-opening penalty tends to be smaller than the penalty produced by the first-order

PMD model. In particular, in Fig. 3.7, the first-order PMD model overestimates the

true eye-opening penalty that is due to all orders of PMD for the outage probability

value of 10−6 by approximately 0.8 dB.

To understand why the first-order PMD model overestimates the penalty for out-

age probabilities in the range of interest for system designers, which is typically about

10−5 to 10−6, we studied how the DGD varies as a function of the angular frequency

ω in the neighborhood of a frequency ωc where the DGD is large. In general, the

DGD has a non-zero slope that is due to first- and second-order PMD. However,

when the DGD is large, the sign of the slope has no effect on the DGD averaged

over the bandwidth of the signal when the pulse’s frequency spectrum is symmetric.

Consequently, the slope of the DGD will have a small effect on the penalty. Moreover,
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Figure 3.7: Same as Fig. 3.5, except that 〈|τ |〉 = 20 ps and the pulse edge

rise and fall times are 5 ps.

since the effect of the slope causes a small increase in the penalty as often as a small

decrease, the expected penalty will depend only weakly on the slope when the DGD

is large. In general, the DGD will also have a curvature due to the first three orders

of PMD. For large DGD, this curvature will be negative, reducing the DGD when

averaged over the bandwidth of the signal, more often than it will be positive. Thus,

the expected penalty will be reduced. To quantify this observation, we express the

curvature of the DGD |τ |ωω, which depends on the first three orders of PMD, as

|τ |ωω =
|τ ω|2

|τ |
− (τ · τ ω)2

|τ |3
+
τ · τ ωω

|τ |
. (3.22)

Using (3.22), we calculated the conditional expectation of |τ |ωω at the channel’s

central frequency ωc as a function of the DGD, which I show in Fig. 3.8. We used

a total of 106 Monte Carlo realizations with importance sampling in which only the
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Figure 3.8: Conditional expectation of the second derivative of the DGD,

|τ |ωω, given a value of the DGD, |τ |.

DGD is biased [28] and 80 equally spaced bins in the range 0 ≤ |τ | ≤ 5 to generate

the curve in Fig. 3.8. We normalized the DGD |τ | by the mean DGD 〈|τ |〉 and |τ |ωω

by 〈|τ |〉3 in order to obtain results that are independent of the mean DGD of the fiber.

This conditional expectation 〈|τ |ωω | |τ |〉 gives the value of |τ |ωω when averaged over

all the fiber realizations for a given value of |τ |. When the DGD is larger than the

mean, corresponding to region II in Fig. 3.8, the value of 〈|τ |ωω | |τ |〉 is negative,

leading to a reduction of the average DGD when averaged over both the bandwidth

of the signal and over fiber realizations, which in turn leads to a reduction of the

eye-opening penalty margin at a given outage probability.

This explanation, which only takes into account PMD up to the third order, is

merely a heuristic explanation of the results shown in Figs. 3.5–3.7, which include

effects at all orders of PMD. When the DGD is large, it is reasonable to suppose
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that orders even higher than third might play a significant role. It is possible that

the whole notion of a higher-order PMD expansion, which implicitly assumes that

the polarization dispersion vector can be written as a convergent Taylor series over

the bandwidth of the signal, may break down at the large DGD values that typically

produce unacceptable penalties. The resolution of this issue lies beyond the scope of

this dissertation. The results do, however, show conclusively that simple theoretical

models that take into account only first-order PMD overestimate the penalty when

the DGD is large compared to the mean DGD.

3.7 Analysis of the performance of single-section

PMD compensators using importance sampling

In this section, I present results in which my colleagues and I used multiple impor-

tance sampling to bias the magnitude of both first- and second-order PMD in order

to evaluate the performance of single-section PMD compensators in a large region

of the first- and second-order PMD plane. I show that importance sampling yields

estimates of the average penalty with low variance over the entire region of interest

of first- and second-order PMD. I also show that there is little advantage in using

a compensator with a variable-DGD element and that the performance of a com-

pensator that minimizes the residual DGD at the central frequency of the channel is

considerably worse than a compensator that maximizes the eye opening.

Many performance studies of PMD compensators have focused on the average

pulse spreading reduction, and hence the average bit error ratio (BER) of optical

systems. However, reducing the average BER may not significantly reduce the outage
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probability in the range of 10−6–10−5 where real systems must operate [3]. Previous

studies that relied on the reduction of the average BER have also not addressed how

the penalty is explicitly related to first- and second-order PMD. The use of multiple

importance sampling in which both first- and second-order PMD are biased allows

one to efficiently study important rare events with large first- and second-order PMD.

Therefore, one can accurately calculate outage probabilities for the PMD-induced

penalty on the order of 10−5 or less in compensated or uncompensated systems. As

in Section 3.3, we note that third- and higher-order PMD are also included in the

simulations, but we do not specifically bias our simulations toward values of third-

and higher-order PMD other than the moderately large values that appear naturally

when one biases the first- and second-order PMD values.

In order to compensate for PMD, my colleagues and I considered two types of

single-section PMD compensators. The first type consists of a polarization controller

(PC) followed by a polarization maintaining fiber that has a fixed DGD element. The

second type also uses a PC, but has a variable-DGD element. The parameters of the

PC’s orientation are the only free parameters that a compensator with a fixed-DGD

element possesses, while the value of the DGD is an extra free parameter that the

variable-DGD compensator has to control. These compensators have a small number

of free parameters to control, as opposed to compensators with multiple sections,

which makes them attractive as PMD compensators. The implementation of these

compensators was explained in detail in Section 3.2.

Once again, my colleagues and I used the eye opening for performance evalua-

tion of the PMD-compensated systems that we investigated. We computed the joint
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pdf of the magnitude of first- and second-order PMD, |τ | and |τ ω|, using multiple

importance sampling applied to first- and second-order PMD [29], and we computed

the average value of eye-opening penalty given a value of |τ | and |τ ω|, where the

subscript ω represents the derivative with respect to the angular frequency ω.

We simulated a 10 Gbit/s nonreturn-to-zero system with a mean DGD of 30 ps.

The fiber model uses 80 sections of birefringent fiber with the coarse step method,

which reproduces first- and higher-order PMD distortions within the probability range

of interest. To adequately cover the |τ |–|τ ω| plane, we combined nine biased simula-

tions and one unbiased simulation with 105 samples each, using balanced heuristics

[55]. For each fiber realization, we computed |τ |, |τ ω|, and the eye-opening penalty.

Dividing the |τ |–|τ ω| plane into 25 × 25 = 625 evenly-spaced bins where we set the

maximum values for |τ | and |τ ω| as 4 〈|τ |〉 and 6 〈|τ ω|〉, respectively, we then de-

termined the estimator of the average eye-opening penalty value and the expected

variance of this estimator in each bin, using the estimators described in Section 3.5.

In Fig. 3.9, I show the pdf of the eye-opening penalty for a system with 30 ps mean

DGD and a single-section PMD compensator. The compensator consists of a variable

DGD element, in which the residual DGD of the system at the central frequency of

the channel is canceled after compensation. We computed the pdf using importance

sampling in which we only biased the DGD, and we also computed the pdf using

importance sampling in which we biased both the first- and second-order PMD. We

observed that it is not sufficient to only bias the DGD in order to accurately calculate

the compensated penalty and its pdf.
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Figure 3.9: Probability density function of the eye-opening penalty for a

system with a mean DGD of 30 ps and a single-section compensator. (i) Solid

line: Results using importance sampling in which we only biased the DGD.

(ii) Dashed line: Results using importance sampling in which we biased both

the first- and second-order PMD. The confidence interval is shown with error

bars.

In Fig. 3.10, I show contour plots (dotted lines) of the joint pdf of the magnitudes

of first- and second-order PMD, |τ | and |τ ω| for an uncompensated system, which

have been obtained as in [29]. I also show contours of the eye-opening penalty (solid

lines) for an uncompensated system and the eye-opening penalty with one-standard-

deviation added and subtracted (dashed lines). These three sets of curves are then

smoothed using an N -th order Bezier smoothing algorithm [63], where N is the num-

ber of points in the contour. The dashed lines represent the one-standard-deviation

confidence intervals for the penalty, given by σ̂µ̂ in (3.17), and are quite narrow except

at the edges of the plot, demonstrating the effectiveness of importance sampling in

reducing the variance of the estimator of the penalty in this case. The region of the



55

0

6

0 3

|τ ω
| ⁄ 

〈|τ
ω

|〉

|τ| ⁄ 〈|τ|〉

Figure 3.10: Uncompensated system: The dotted lines show contour plots of

the joint pdf of the normalized first- |τ | and second-order PMD |τ ω|. The

solid and the dashed lines show contour plots of the conditional expectation

of the eye-opening penalty and the confidence interval of the contour plots,

respectively. The contours of the joint pdf from the bottom to the top of

the plot, are at 3 × 10−n , n = 1, · · · , 7 and 10−m, m = 1, · · · , 11. The

curves of the conditional expectation of the eye-opening penalty in dB from

the bottom to the top of the plot, are at 0.1, 0.2, 0.4, 0.6, 0.9, 1.2, 1.6, 2.2, 3.2.

|τ |–|τ ω| plane that is the dominant source of a given penalty is where the correspond-

ing penalty level curve intersects the contour of the joint pdf of |τ | and |τ ω| with the

highest probability. The contour plots for penalties beyond 1.2 dB are approximately

parallel to the second-order PMD axis, indicating the expected result that first-order

PMD is the dominant cause of penalty in this uncompensated system.

In Figs. 3.11–3.13, I show the contours of the eye-opening penalties when dif-

ferent PMD compensators are used. The eye-opening penalty contours are plotted

as a function of the uncompensated |τ | and |τ ω|, and I show the same contours of

their joint pdf, as in Fig. 3.10. In Fig. 3.11, I show the eye-opening penalty with a
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Figure 3.11: Same set of curves of Fig. 3.10 for a compensated system with a

fixed-DGD compensator with constant DGD element equal to 2.5 〈|τ |〉. The

curves of the conditional expectation of the eye-opening penalty in dB from

the bottom to the top of the plot, are at 0.1, 0.2, 0.3, 0.4.

fixed-DGD compensator with a 75 ps DGD element, in which the polarization trans-

formation produced by the polarization controller has been optimized to maximize the

eye opening [64]. In Fig. 3.12, I show the eye-opening penalty with a variable-DGD

compensator, in which, once again, the eye opening has been maximized. In Fig. 3.13,

I show the eye-opening penalty with a variable-DGD compensator, in which the resid-

ual DGD of the system at the central frequency of the channel has been minimized

after compensation.

The first observation that my colleagues and I made, comparing Figs. 3.11 and

3.12, is that for penalties above 0.2 dB, the performance of the fixed-DGD compen-

sator is comparable to the variable-DGD compensator as long as |τ | / 〈|τ |〉 ≤ 3.0. The

domain |τ | / 〈|τ |〉 > 3.0 corresponds to an outage probability in the uncompensated
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Figure 3.12: Same set of curves of Fig. 3.10 for a compensated system with

a variable-DGD compensator with eye opening maximization. The curves

of the conditional expectation of the eye-opening penalty in dB from the

bottom to the top of the plot, are at 0.1, 0.2, 0.3, 0.4.

system of less than 10−7, which is usually negligible. As expected, we also observed

that the penalty with the variable-DGD compensator is dominated by higher-order

PMD. We inferred this result by noting that the contour lines of the penalty are nearly

parallel to the |τ | / 〈|τ |〉–axis, indicating that the penalty is nearly independent of

|τ |. Perhaps a bit more surprisingly, we observed the same result with the fixed-DGD

compensator as long as the penalty is above 0.2 dB and |τ | / 〈|τ |〉 ≤ 3.0. Comparing

Figs. 3.12 and 3.13, we observed that a variable-DGD compensator that minimizes

the residual DGD performs significantly worse than a compensator that maximizes

the eye opening. This result indicates once again the importance of higher-order

PMD in the compensator performance.

Finally, in Fig. 3.14, I plot the outage probability (P̂o) as a function of the eye-



58

0

6

0 4

|τ ω
| ⁄ 

〈|τ
ω

|〉

|τ| ⁄ 〈|τ|〉

Figure 3.13: Same set of curves of Fig. 3.10 for a compensated system with a

variable-DGD compensator with minimized DGD after compensation at the

central frequency of the channel. The solid lines show the contours of the

conditional expectation of the eye-opening penalty in dB from the bottom

to the top of the plot, are at 0.1, 0.2, 0.3, 0.4, 0.6, 0.9.

opening penalty for the compensators that we studied. The maximum relative er-

ror (σ̂P̂o
/P̂o) for the curves shown in this plot equals 0.14. This plot confirms the

results that we inferred from Figs. 3.11–3.13. The performance of the fixed- and

variable-DGD compensators is comparable. The performance of a variable-DGD

compensator that minimizes the residual DGD is significantly worse than the per-

formance of a variable-DGD compensator that maximizes the eye opening. This

result, which demonstrates the importance of higher-order PMD in determining the

penalty, is consistent with [65], where it is shown that a feedback signal provided

by a frequency-selective polarimeter is better correlated to the PMD-induced penalty

when extracting more values of the polarization dispersion vector over the spectrum

of the signal.
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Figure 3.14: Outage probability as a function of the eye-opening penalty mar-
gin. The outage probability (P̂o) is the probability that the penalty exceeds

the value displayed on the horizontal axis. (i) Dashed-dotted line: Uncom-

pensated case; (ii) Dashed line: Variable-DGD compensator with the com-

pensated DGD minimized at the central frequency of the channel; (iii) Solid

line: Fixed-DGD compensator with DGD element equal to 2.5 〈|τ |〉 and max-

imized eye opening; (iv) Solid-dotted line: Variable-DGD compensator with

maximized eye opening. The error bars show the confidence interval for the
curves that have at least one bin whose relative error (σ̂P̂o

/P̂o) exceeds 10%.
For those curves, we show the error bars for one out of three consecutive

bins.

The outage probability curve referring to a variable-DGD compensator does not

equal 1 at 0 dB because higher-order PMD in the transmission line will chirp the

pulses. In most cases, the DGD of the line is small and the variable-DGD element

of the compensator can then compress the pulses, which produces an eye-opening at

the sampling time that is larger than in the back-to-back case.



Chapter 4

Multicanonical Monte Carlo method for

PMD-induced penalty

In this chapter, I briefly review the multicanonical Monte Carlo (MMC) method pro-

posed by Berg and Neuhaus [18], and I describe how my colleagues and I implemented

MMC to compute the probability density function (pdf) of the differential group delay

(DGD) for PMD emulators. Then, I present results showing the correlation among

the histogram bins of the pdf of the DGD that is generated using the MMC method.

Finally, I present results with the application of MMC to compute the PMD-induced

penalty in uncompensated and single-section compensated system. In particular, I

use contours plots to show the regions in the |τ |–|τ ω| plane that are the dominant

source of penalties in uncompensated and single-section PMD compensated systems.

4.1 The Multicanonical Monte Carlo method

In statistical physics applications, a conventional canonical simulation calculates ex-

pectation values at a fixed temperature T and can, by re-weighting techniques, only be

extrapolated to a vicinity of this temperature [66]. In contrast, a single multicanonical

60
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simulation allows one to obtain expectation values over a range of temperatures, which

would require many canonical simulations. Hence, the name multicanonical [18], [66].

The multicanonical Monte Carlo method is an iterative method, which in each it-

eration produces a biased random walk that automatically searches the state space

for the important rare events. Within each iteration, the Metropolis algorithm [8] is

used to select samples for the random walk based on an estimated pdf of the quantity

of interest or control parameter, which is updated from iteration to iteration. Each

new sample in the random walk is obtained after a small random perturbation is

applied to the previous sample. In each MMC iteration, a histogram of the control

parameter is calculated that records how many samples are in each bin. In each

iteration, one generates a pre-determined number of samples that can vary from iter-

ation to iteration. Typically, each iteration has several thousand samples. Once the

pre-determined number of samples in any iteration has been generated, the histogram

of the control parameter is used to update the estimate of the probability of all the

bins as in [18], which will be used to bias the following iteration. After some number

of iterations, typically 15–50, the number of samples in each bin of the histogram

of the control quantity becomes approximately constant over the range of interest,

indicating that the estimated pdf of the control quantity is converging to the true

pdf.

4.2 MMC implementation to PMD emulators

In the computation of the pdf of the DGD, the state space of the system is determined

by the random mode coupling between the birefringent sections in an optical fiber
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with PMD, and the control parameter E is the DGD, as in [30]. When applying

MMC, the goal is to obtain an approximately equal number of samples in each bin of

the histogram of the control quantity. In this dissertation, we compute probabilities

by dividing the range of DGD values into discrete bins and constructing a histogram

of the values generated by the different random configurations of the fiber sections.

As explained in detail in Chapter 2, the calculations in this dissertation are based

on coarse-step PMD emulators consisting of birefringent fiber sections separated by

polarization scramblers [37]. We model the fiber using emulators with Ns = 15 and

Ns = 80 birefringent sections. Prior to each section, we use a polarization scrambler

to uniformly scatter the polarization dispersion vector on the Poincaré sphere. When

polarization scramblers are present, the evolution of the polarization dispersion vec-

tor is equivalent to a three-dimensional random walk, and an exact solution [46] is

available for the pdf of the DGD that can be compared with the simulations. In

unbiased Monte Carlo simulations, the unit matrix R = Rx(φ)Ry(γ)Rx(ψ) rotates

the polarization dispersion vector before each section, such that the rotation angles

around the x-axis in the i-th section, φi and ψi, have their pdfs uniformly distributed

between −π and π, while the cosine of the rotation angle γi around y-axis has its

pdf uniformly distributed between −1 and 1. Within each MMC iteration, we use

the Metropolis algorithm to make a transition from a state k to a state l by mak-

ing random perturbations ∆φi, ∆γi, and ∆ψi of the angles φi, γi, and ψi in each

section, where ∆φi, ∆γi, and ∆ψi are uniformly distributed in the range [−επ, επ].

To keep the average acceptance ratio close to 0.5 [10], we choose the coefficient of

perturbation ε = 0.09. This perturbation is small, since it does not exceed 10% of
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the range of the angles. To obtain the correct statistics in γi, since in the coarse

step method the cosine of γi is uniformly distributed, we accept the perturbation ∆γi

with probability equal to min [1, F (γi + ∆γi)/F (γi)], where F (γ) = 0.5 (1−cos2 γ)1/2.

When the perturbation is not accepted, we set ∆γi = 0. The random variable with

acceptance probability given by min [1, F (γi + ∆γi)/F (γi)] can be implemented by

obtaining a random number from a pdf uniformly distributed between 0 and 1, and

then accepting the perturbation ∆γi if the random number obtained is smaller than

F (γi +∆γi)/F (γi). To introduce a bias towards large values of the control parameter

E, each transition from state k to the state l in the iteration j + 1 is accepted with

probability Paccept(k → l) = min [1, P j(Ek)/P
j(El)], and rejected otherwise, where

P j (E) is the estimate of the pdf of DGD obtained after the first j iterations. At the

end of each iteration we update P j (E) using the same recursion algorithm as in [18],

so that the number of hits in each bin of the control parameter histogram becomes

approximately equal as the iteration number increases.

4.2.1 Summary of the MMC algorithm

In the first iteration we use M1 samples and set the pdf of the DGD P 1(E) of a

PMD emulator with Ns sections as uniform, P 1(E) = 1/Nb (Nb = number of bins).

Because every step in the Metropolis algorithm will be accepted with this initial

distribution, we more effectively exploit the first iteration by choosing the coefficient

of perturbation ε = 1. To update the pdf of the DGD at the end of this iteration we

use the recursive equation as in (4.1), which is the same equation used in any other

iteration. We then carry out an additional N − 1 iterations with Ml (1 < l ≤ N)
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samples in each iteration. We note that in general the number of samples in each

iteration does not have to be the same. I now present a pseudo-code summary of the

algorithm:

Loop over iterations j = 1 to N−1:

Loop over fiber realizations (samples) m = 1 to Ml:

(1) start random walk on φ, γ, and ψ with small steps ∆φ, ∆γ, and ∆ψ

∆φ= {∆φ1, · · · ,∆φNs}; ∆γ = {∆γ1, · · · ,∆γNs}; ∆ψ = {∆ψ1, · · · ,∆ψNs}

(2) compute the provisional value of the DGD (Eprov)

with the angles φ+ ∆φ, γ + ∆γ and ψ + ∆ψ.

(3) accept provisional step with probability equal to min [1, P j(Em)/P j(Eprov)]

if step accepted: Em+1 = Eprov

φm+1 = φm+∆φ; γm+1 = γm+∆γ; ψm+1 =ψm+∆ψ

if step rejected: Em+1 = Em

φm+1 = φm; γm+1 = γm; ψm+1 = ψm

(4) increment the histogram of E with the sample Em+1

End of loop over fiber realizations

update the pdf of the DGD P j+1(E)

restart histogram

go to next iteration j

End
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To update P j(E) at the end of each iteration j we use the recursive equation [18],

P j+1
k+1 = P j+1

k

P j
k+1

P j
k

(
Hj

k+1

Hj
k

)ĝj
k

, (4.1)

where ĝj
k, the relative statistical significance of the k-th bin in the j-th iteration, is

defined as

ĝj
k =

gj
k

j∑
l=1

gl
k

, with gj
k =

Hj
k+1H

j
k

Hj
k+1 +Hj

k

. (4.2)

IfHj
k+1+H

j
k = 0 in a given iteration, then the k-th bin has no statistical significance in

this iteration. Therefore, we set gj
k = 0 in that iteration. The statistical significance,

0 ≤ ĝj
k ≤ 1, depends on both previous bins and previous iterations, inducing a

significant correlation among P j
k . Finally, the P j

k are normalized so that
Nb∑
k=1

P j
k = 1,

where Nb is the number of bins. MMC is an extension of the Metropolis algorithm [8],

where the acceptance rule accepts all the transitions to states with lower probabilities,

but rejects part of the more likely transitions to states with higher probabilities. As

the number of iterations increases, the histogram of the number of hits in each bin will

asymptotically converge to a uniform distribution (Hj
k+1/H

j
k → 1), and the relative

statistical significance will asymptotically converge to zero (ĝj
k → 0). Consequently,

P j+1 will asymptotically converge to the true probability of the control parameter.

Equations (4.1) and (4.2) were derived by Berg and Neuhaus [18] assuming that the

probability distribution is exponentially distributed with a slowly varying exponent

that is a function of the control quantity (the temperature in their case and DGD

in ours). This assumption is valid in a large number of problems in optical fiber

communications, including the pdf of the DGD in fibers with an arbitrary number
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of sections [30], [67]. The recursions in (4.1) and (4.2) were derived by applying a

quasi-linear approximation to the logarithm of the pdf in addition to a method for

combining the information in the current histogram with that of previous iterations

according to their relative statistical significance [18], [30].

4.3 Correlations

The goal of any scheme for biasing Monte Carlo simulations, including MMC, is to

reduce the variance of the quantities of interest. The MMC uses a set of systematic

procedures to reduce the variance, which are highly nonlinear as well as iterative and

have the effect of inducing a complex web of correlations from sample to sample in

each iteration and between iterations. These, in turn, induce bin-to-bin correlations in

the histograms of the pdfs. It is easy to see that the use of (4.1) and (4.2) generates

correlated estimates for the P j
k , although this procedure significantly reduces the

variance [18]. In this section, I illustrate this correlation by showing results obtained

when my colleagues and I applied MMC to compute the pdf of the DGD for a PMD

emulator with 80 sections.

We computed the correlation coefficient between bin i and each bin j (1 ≤ j ≤ 80)

in the histogram of the normalized DGD by doing a statistical analysis on an ensemble

of many independent standard MMC simulations. The normalized DGD, |τ | /〈|τ |〉,

is defined as the DGD divided by its expected value, which is 30 ps in this case.

Suppose that on the l-th MMC simulation, we have P l
i as the probability of the i-th

bin and suppose that the average over all L MMC simulations is Pi. Then, we define
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Figure 4.1: Correlation coefficients between bin i and bin j (1 ≤ j ≤ 80) for

the 80-section emulator, where the bin i corresponds to DGDi = 30 ps (1

× mean DGD). The correlation coefficients are computed using 32 standard

MMC simulations. Each standard MMC simulation consists of 30 MMC

iterations with 8, 000 samples.

a normalized correlation between bin i and bin j as

C(i, j) =
1

L− 1

L∑
l=1

(P l
i − Pi)(P

l
j − Pj)

σPi
σPj

(4.3)

where σPi
and σPj

are the standard deviation of Pi and Pj, respectively. The normal-

ized correlation defined in (4.3) is known as Pearson’s correlation coefficient [68].

The values for C(i, j) generated by (4.3) will range from −1 to 1. A value of +1

indicates a perfect correlation between the random variables. While a value of −1

indicates a perfect anti-correlation between the random variables. A value of zero

indicates no correlation between the random variables.

In Figs. 4.1–4.3, I show the correlation coefficients between bin i and bin j,

1 ≤ j ≤ 80, for the DGD in the bin i, DGDi, equal to 30 ps, 45 ps, and 75 ps,
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Figure 4.2: Correlation coefficients between bin i and bin j (1 ≤ j ≤ 80) for

the 80-section emulator, where the bin i corresponds to DGDi = 45 ps (1.5

× mean DGD). The correlation coefficients are computed using 32 standard

MMC simulations. Each standard MMC simulation consists of 30 MMC

iterations with 8, 000 samples.

respectively. In this case, we used a PMD emulator with 80 sections and the mean

DGD is equal to 30 ps. To compute each value of C(i, j) we used L = 32 MMC

simulations. We computed sample mean C(i, j) and standard deviation σC(i,j) using

32 samples of C(i, j). The values of the standard deviation for the results shown

in Figs. 4.1–4.3 are in the range from 1.84 × 10−2 to 3.91 × 10−2. Note that DGDi

equal to 75 ps represents a case in the tail of the pdf of the DGD, where the unbiased

Monte Carlo method has very low probability of generating samples, by contrast to

a biased Monte Carlo method such as MMC. The results show that the correlations

are not significant until we use a large value for DGDi compared to the mean DGD.

However, these values of DGDi are precisely the values of greatest interest.
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Figure 4.3: Correlation coefficients between bin i and bin j (1 ≤ j ≤ 80) for

the 80-section emulator, where the bin i corresponds to DGDi = 75 ps (2.5

× mean DGD). The correlation coefficients are computed using 32 standard

MMC simulations. Each standard MMC simulation consists of 30 MMC

iterations with 8, 000 samples.

4.4 MMC computation of PMD-induced penalty

in uncompensated and single-section compen-

sated systems

In this section, we apply the MMC algorithm to compute PMD-induced penalties in a

10 Gbit/s NRZ system using 50 MMC iterations with 2,000 samples each. In Fig. 4.4,

I show the outage probability as a function of the eye-opening penalty. The results

obtained using the samples in the final iteration of the MMC simulation (dashed

and solid lines) are in excellent agreement with the ones obtained using importance

sampling (open circles and squares). In this section, I present results in which my

colleagues and I used the results computed with importance sampling to validate the



70

100

10-8

0 3

O
ut

ag
e 

P
ro

ba
bi

lit
y

Eye-Opening Penalty [dB]

Figure 4.4: Outage probability as a function of the eye-opening penalty.

(i) Dotted line: Uncompensated system with a mean DGD of 30 ps.

(ii) Dashed line and (iii) Open circles: Results for a variable-DGD com-

pensator, obtained using MMC and IS, respectively, for a system with mean

DGD of 30 ps. (iv) Solid line and (v) Squares: Results for an uncompensated

system with mean DGD of 15 ps, obtained using MMC and IS, respectively.

results obtained with MMC. The use of importance sampling to compute penalties in

PMD single-section compensated systems was already validated with a large number

of standard Monte Carlo simulations in Chapter 3 of this dissertation and by Lima at

al. [3], [50]. Therefore, the results computed with importance sampling can be used to

validate the results computed with MMC. Our goal here is to show the applicability of

MMC to accurately compute PMD-induced penalties in uncompensated and single-

section PMD compensated systems.

In Fig. 4.5, I show contours (dotted lines) of the joint pdf of the magnitude of

the uncompensated normalized first- and second-order PMD, |τ | and |τ ω|, computed
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Figure 4.5: Uncompensated system with a mean DGD of 15 ps. The dotted

lines show the contour plots of the joint pdf of the normalized |τ | and |τ ω|,
obtained using IS. The solid lines show the average eye-opening penalty given

a value of |τ | and |τ ω|, obtained using MMC. The contours of joint pdf from
the bottom to the top of the plot, are at 3× 10−n , n = 1, · · · , 7 and 10−m,

m = 1, · · · , 11. The penalty contours in dB from the left to the right of the

plot, are at 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6.

using importance sampling, as in [23]. I also show contours for the eye-opening

penalty (solid lines) of an uncompensated system with a mean DGD, 〈|τ |〉, of 15 ps.

The penalty contours were produced using the same samples we generated using the

MMC method in the computation of the outage probability shown in Fig. 4.4. The

fiber realizations obtained using the MMC method are all located in the region of

the |τ |–|τ ω| plane that corresponds to the large DGD values that have the highest

probability of occurrence, which is the region that is the dominant source of penal-

ties in uncompensated systems. These results are in agreement with what we have

inferred from Fig. 3.10 in Section 3.7, where we stated that the contour plots in

the region dominating the penalty were approximately parallel to the second-order
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PMD axis, indicating that first-order PMD is the dominant cause of penalty in this

uncompensated system.
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Figure 4.6: Same set of curves of Fig. 4.5 for a compensated system with a

variable-DGD compensator. The penalty contours in dB from the bottom to

the top of the plot, are at 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6.

In Fig. 4.6, I show contours of the eye-opening penalty (solid lines) of a system

with 〈|τ |〉=30 ps and a variable-DGD compensator that was programmed to mini-

mize the residual DGD at the central frequency of the channel after compensation.

As in Fig. 4.5, the penalty contours were produced using the same samples we gener-

ated using the MMC method in the computation of the outage probability shown in

Fig. 4.4. In contrast to the results shown in Fig. 4.5, the fiber realizations obtained

using the MMC method in Fig. 4.6 are located in the region of the |τ |–|τ ω| plane

where |τ ω| is large and the DGD is close to its average, corresponding to the region

in the |τ |–|τ ω| plane that is the dominant source of penalties in this compensated

system. These results are also in agreement with what we have inferred from Fig. 3.13
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in Section 3.7, where we stated that the contour plots in the region dominating the

penalty were approximately parallel to the DGD axis, indicating that the penalty

is nearly independent of DGD. In Figs. 4.5 and 4.6, the samples obtained using the

MMC method are automatically biased towards the specific region of the |τ |–|τ ω|

plane that dominates the penalty, i.e., the region where the corresponding penalty

level curve intersects the contour of the joint pdf of |τ | and |τ ω| with the highest

probability.

We did not compute the confidence interval for the results showed in this section.

In Chapter 5, I describe a procedure that I developed with the collaboration of my

colleagues to efficiently estimate the statistical errors in MMC simulations. Finally,

in Chapter 6, I present results obtained with MMC for multi-section PMD compen-

sated systems containing confidence intervals computed with the method described

in Chapter 5.



Chapter 5

Estimation of Errors in MMC simulations

In this chapter, I explain why a new error estimation procedure is needed for multi-

canonical Monte Carlo simulations, and I then present the transition matrix method

that I developed in collaboration with my colleagues to efficiently estimate the error

in MMC. Finally, I present the validation and application of this method.

5.1 Why a new error estimation procedure ?

Since MMC is a Monte Carlo technique, it is subject to statistical errors, and it is

essential to determine their magnitude. In Chapter 3, I showed how to compute errors

when using importance sampling (see also [24]). In this chapter, I will show how one

can efficiently estimate errors in MMC simulations using a transition matrix method

that my colleagues and I developed. In practice, users of Monte Carlo methods

often avoid making detailed error estimates. For example, when using an standard,

unbiased Monte Carlo simulation to calculate the pdf of a quantity such as the DGD,

the number of samples in each bin of the pdf’s histogram is independent. Hence, when

the histogram is smooth, one can infer that the error is acceptably low. This procedure

74
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is not reliable with MMC simulations because, as I showed in Chapter 4, the MMC

algorithm induces a high degree of correlation from bin to bin. While it is always

best to estimate error with any Monte Carlo method, it is particularly important in

MMC simulations, due to the presence of large sample-to-sample correlations on the

tails of the distributions.

As I explained in Chapter 4, the existence of correlations in the samples generated

with the MMC method makes calculating the errors in MMC simulations significantly

more difficult than in standard Monte Carlo simulations. Also, due to the correla-

tions, one cannot apply to MMC standard error analysis that are traditionally used

for simulations with uncorrelated samples. For the same reason, one cannot determine

the contribution of the variance from each iteration using standard error propagation

methods as in the case with importance sampling simulations. Thus, the MMC vari-

ance cannot be estimated by applying a standard error analysis to a single MMC

simulation. One can in principle run many independent MMC simulations in order to

estimate the error by using the standard sample variance formula [31] on the ensemble

of MMC simulations. However, estimating the error of the pdf of the quantity of in-

terest by running many independent MMC simulations is computationally costly and

in many cases not feasible. One can overcome this problem with the transition matrix

method that I have developed with the collaboration of my colleagues. The transition

matrix method is an efficient numerical method to estimate statistical errors in the

pdfs computed using MMC. In our method, we use the estimated transition probabil-

ity matrix to rapidly generate an ensemble of hundreds of pseudo-MMC simulations,

which allows one to estimate errors from only one standard MMC simulation. The
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transition probability matrix, which is computed from a single, standard MMC sim-

ulation, contains all the probabilities that a transition occurs from any bin of the

histogram of the quantity of interest to any other bin after a step (or perturbation)

in the MMC random walk. The pseudo-MMC simulations are then made using the

computed transition matrix instead of running full simulations. Each pseudo-MMC

simulation must be made with the same number of samples per iteration and the same

number of iterations as in the original standard MMC simulation. Once an ensemble

of pseudo-MMC simulations has been calculated, one can use standard procedures

to estimate the error. Since the transition matrix that is used in the pseudo-MMC

simulations has its own statistical error, it might seem strange at first that it can be

used as the basis from which to estimate the error in the MMC simulations. However,

bootstrap theory assures us that such is the case [32]. Intuitively, the variation of any

statistical quantity among the members of an ensemble of pseudo-MMC simulations

is expected to be the same as the variation among members of an ensemble of stan-

dard MMC simulations because the simulations are of the same type and the same

size.

To illustrate the transition matrix method, we calculated the pdf of DGD due to

PMD and the associated confidence interval for two types of PMD emulators [44].

We validated our method by comparison to the results obtained by using a large

ensemble of standard MMC simulations. We tested our method by applying it to PMD

emulators because it was the first random phenomenon in optical fiber communication

to which MMC was applied [30] and has become essential for testing biasing Monte

Carlo methods. Moreover, it is computationally feasible to validate the proposed
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method with a large ensemble of standard MMC simulations. That is not the case

for most other problems, e.g., the error rate due to optical noise [69] and the residual

penalty in PMD-compensated systems [19].

5.2 New error estimation procedure

In this dissertation, I introduce an efficient numerical procedure that we refer to as

the transition matrix method, to compute statistical errors in MMC simulations that

properly accounts for the contributions of all MMC iterations. The transition matrix

method is a bootstrap resampling method [32], [70] that uses a computed estimate of

the probability of a transition from bin i to bin j of the histogram of the DGD. In a

bootstrap method, one estimates a complex statistical quantity by extracting samples

from an unknown distribution and computing the statistical quantity. In the case of

computing the pdf of the DGD in PMD emulators, the complex statistical quantity

is the probability of each bin in the histogram of the DGD, the pseudo-samples

are the DGD values obtained in the pseudo-MMC simulations, and the unknown

distribution is the true transition matrix. One then repeatedly and independently

draws an ensemble of pseudo-samples with replacement from each original sample

and computes the statistical quantity of interest using the same procedure by which

the statistical quantity was first estimated. We describe the Bootstrap method with

more detail in Section 5.2.2. One can then estimate the variance of the quantity

of interest from these pseudo-samples using standard techniques. The bootstrap

method is useful when it is computationally far more rapid to resample the original
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set of samples than to generate new samples, allowing for an efficient estimate of the

variance.

5.2.1 The transition matrix method

In this section, I explain the transition matrix method in the context of computing

errors in the pdf of the DGD for PMD emulators. The transition matrix method

has two parts. In the first part, one obtains an estimate of the pdf of the DGD

and an estimate of the one-step transition probability matrix Π. To do so, one

runs a standard MMC simulation, as described in Section 4.2.1. At the same time,

one computes an estimate of the transition probability πi,j, which is the probability

that a sample in the bin i will move to the bin j after a single step in the MMC

algorithm. I stress that a transition attempt must be recorded whether or not it is

accepted by the Metropolis algorithm after the fiber undergoes a random perturbation.

The transition matrix is a matrix that contains the probability that a transition will

take place from one bin to any other bin when applying a random perturbation. It

is independent of the procedure for rejecting or accepting samples, which is how the

biasing is implemented in the MMC method. An estimate of the transition matrix

that is statistically as accurate as the estimate of the pdf using MMC can be obtained

by considering all the transitions that were attempted in the MMC ensemble. One

uses this information to build a Nb×Nb one-step transition probability matrix, where

Nb is the number of bins in the histogram of the pdf. The transition matrix Π consists

of elements πi,j, where the sum of the row elements of Π equals 1. The elements πi,j
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are computed as

πi,j =

Mt−1∑
m=1

Ii(Em)Ij(Em+1)

Mt−1∑
m=1

Ii(Em)

, if
Mt−1∑
m=1

Ii(Em) 6= 0, (5.1)

and πi,j = 0, otherwise. In (5.1), Mt is the total number of samples in the MMC

simulation and Em is the m-th DGD sample. The indicator function Ii(E) is chosen

to compute the probability of having a DGD sample inside the bin i of the histogram.

Thus, Ii(E) is defined as 1 inside the DGD range of the bin i, otherwise Ii(E) is

defined as 0.

In the second part of the procedure, one carries out a series of MMC simulations,

that my colleagues and I refer to as pseudo-MMC simulations. In each step, if one

starts for example in bin i of the histogram, one picks a new provisional bin j using a

procedure to sample from the pdf πi, where πi(j) = πi,j. This procedure is explained

in detail below. One then accepts or rejects this provisional transition using the same

criteria as in full, standard MMC simulations, and the number of samples in the

bins of histogram is updated accordingly. Thus, one is using the transition matrix

Π to emulate the random changes in the DGD that result from the perturbations

∆φi, ∆γi, and ∆ψi that were used in the original standard MMC simulation. In all

other respects, each pseudo-MMC simulation is like the standard MMC simulation.

In particular, the metric for accepting or rejecting a step, the number of samples

per iteration, and the number of iterations must be kept the same. It is possible to

carry out hundreds of these pseudo-MMC simulations in a fraction of the computer

time that it takes to carry out a single standard MMC simulation. This procedure
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requires us to hold the entire transition matrix in memory, which could in principle

be memory-intensive, although this issue did not arise in any of the problems that

we considered. This procedure will be useful when evaluating a transition using the

transition matrix requires far less computational time than calculating a transition

using the underlying physics. That will typically be the case and was certainly the

case for the problems that we considered.

An estimate of the pdf of the DGD is obtained in the final iteration of each pseudo-

MMC simulation. Since the estimates of the probability in a given bin in the different

pseudo-MMC simulations are independent, one may apply the standard formula for

computation of the variance σ2
p?

i
of the i-th bin

σ2
p?

i
=

1

(B − 1)

B∑
b=1

(
p?

i,b − p?
i

)2
, with p?

i =
1

B

B∑
b=1

p?
i,b, (5.2)

where p?
i,b is the probability of the i-th bin in the histogram of the DGD obtained in the

b-th pseudo-MMC simulation and B is the total number of pseudo-MMC simulations.

Thus, σp?
i

is an estimate of the error in the i-th bin in the histogram of the DGD

obtained in a single MMC simulation.

I now illustrate the details of how we choose the provisional transition from bin i

to bin j with the following pseudo-code:

bin DGD of current sample = i

use random number to generate x from a uniform pdf between 0 and 1: x← U [0, 1]

for j=1 to Nb

if (x < πcdf
i,j )
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new bin = j

break

end if

end for

current bin = new bin

where πcdf
i,j =

j∑
m=1

πi,m is the cumulative transition probability. This procedure is used

to sample from the pdf πi, where πi(j) = πi,j, and with πi,j defined as the probability

that a sample in the bin i will move to the bin j.

5.2.2 Bootstrap method

Efron’s bootstrap [32] is a well-known general purpose technique for obtaining sta-

tistical estimates without making a priori assumptions about the distribution of the

data. Suppose one draws a random vector x = (x1, x2, ..., xn) with n samples from

an unknown probability distribution F and one wishes to estimate the error in a

parameter of interest θ̂ = s(x). Since there is only one sample of θ̂, one cannot use

the sample standard deviation formula to compute the error. However, one can use

the random vector x to determine an empirical distribution F̂ from F (unknown dis-

tribution). Then, one can generate bootstrap samples from F̂ , x? = (x?
1, x

?
2, ..., x

?
n),

to obtain θ̂? = s(x?) by drawing n samples with replacement from x. The quantity

s(x?) is the result of applying the same function s(.) to x? as was applied to x. For

example, if s(x) is the median of x, then s(x?) is the median of the bootstrap resam-

pled data set. The star notation indicates that x? is not the actual data set x, but
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rather a resampled version of x obtained from the estimated distribution F̂ . Note

that one can generate as many bootstrap samples x? as one needs, and then generate

independent bootstrap sample estimates of θ̂, θ̂?
1 = s(x?

1), ... , θ̂
?
B = s(x?

B), where

B is the total number of bootstrap samples. Then, one can estimate the error in θ̂

using the standard deviation formula on the bootstrap samples θ̂?.

The transition matrix method that I am describing in this dissertation is related to

the bootstrap resampling method as follows:

1) F̂ is an estimate of the transition matrix obtained from a single standard MMC

simulation;

2) x?
1, ..., x?

B, are the collection of samples that is obtained from the ensemble of

pseudo-MMC simulations. We note that x?
b should be computed using the exact

same number of iterations and the exact same number of samples per iteration as in

the original standard MMC simulation;

3) Each θ̂?
b , where b = 1, 2, ..., B, is a value for the probability p?

k of the k-th bin of

the histogram of the DGD obtained from each of the pseudo-MMC simulations;

4) Given that one has B independent p?
k, one can obtain an error estimate for each

bin in the estimated pdf of the DGD using the traditional sample standard deviation

formula [31], [32]

σθ̂? =

[
1

B − 1

B∑
b=1

(
θ̂?

b − θ̂?
)2
]1/2

, (5.3)

where,

θ̂? =
1

B

B∑
b=1

θ̂?
b . (5.4)
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5.2.3 Assessing the error in the MMC error estimation

The estimate of the MMC variance also has an error, which depends on the number

of samples in a single standard MMC simulation and on the number of pseudo-MMC

simulations (bootstrap samples) [71]. In the work that I present in this dissertation,

the error due to the bootstrap resampling is minimized by using 1, 000 bootstrap

pseudo-MMC simulations. Therefore, the residual error is due to the finite number

of samples used to estimate both the pdf of the DGD and the transition matrix in

the single standard MMC simulation, i.e., in the first part of the transition matrix

method. Thus, there is a variability in the estimate of the MMC variance due to the

variability of the transition matrix Π̂ as an estimate of the true transition matrix Π.

To estimate the error in the estimate of the MMC variance, we apply a procedure

known in the literature as bootstrapping the bootstrap or iterated bootstrap [72]. The

procedure in based on the principle that if the bootstrap can estimate errors in one

statistical parameter using Π̂, one can also use bootstrap to check the uncertainty in

the error estimate using bootstrap resampled transition matrices Π̂?. The procedure

consists of:

1) Running one standard MMC simulation;

2) Generating NB = 100 pseudo-MMC simulations and computing transition matrices

for each of the pseudo-MMC simulation. Therefore, we obtain NB transition matrices

that we call pseudo-transition matrices Π̂?
B;

3) For each pseudo-transition matrix Π̂?
B we calculateNB = 100 pseudo-MMC simula-

tions (NB values for the probability of any given bin of the estimated pdf of the DGD,
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p??). The double star notation indicates quantities computed with bootstrap resam-

pling from a pseudo-transition matrix. We then estimate the error for the probability

of any given bin in the estimated pdf of the DGD, σp?? , for each pseudo-transition

matrix;

4) Since we have NB = 100 pseudo-transition matrices, we repeat step 3 NB times

and obtain NB values for σp?? . Then, we compute the double bootstrap confidence

interval ∆p?? of the relative variation of the error of p (statistical error in p, where p

is the probability of any given bin in the estimated pdf of the DGD computed using

a single standard MMC simulation):

∆p?? =

[
σp?? − σ(σp??)

p
,
σp?? + σ(σp??)

p

]
, (5.5)

where,

σ(σp??) =

[
1

NB − 1

NB∑
n=1

(
σ

(n)
p?? − σp??

)2
]1/2

, (5.6)

and

σp?? =
1

NB

NB∑
n=1

σ
(n)
p?? . (5.7)

In (5.6) and (5.7), σ
(n)
p?? is the standard deviation of p?? computed using the n-th

pseudo-transition matrix.

In Fig. 5.1, I show the relative variation of p?? and its confidence interval ∆p??

for a PMD emulator with 15 sections. My colleagues and I used 14 MMC iterations

with 4, 000 samples each (total of 56, 000 samples). The confidence interval of the

relative variation is defined in (5.5). We used a total of 80 evenly-spaced bins where
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Figure 5.1: Relative variation (σ̂P̂DGD
/P̂DGD) of the pdf of the normalized

DGD, |τ | /〈|τ |〉, for the 15-section PMD emulator using 14 MMC iterations

with 4, 000 samples. The confidence interval is given by (5.5) when we com-

pute an ensemble of standard deviations using bootstrap resampling for each

of the 100 pseudo-transition matrices.

we set the maximum value for the normalized DGD as five times the mean DGD.

We also use the same number for bins for all the figures shown in this chapter.

As expected, we observed that the error in the estimate of the MMC variance is

large when the MMC variance is also large. The confidence interval ∆p?? is between

(2.73×10−2, 3.19×10−2) and (3.61×10−1, 4.62×10−1) for |τ | /〈|τ |〉 < 2. It increases

to (2.68 × 10−1, 4.48 × 10−1) when |τ | /〈|τ |〉 = 3 and to (4.05 × 10−1, 9.09 × 10−1)

at the largest value of |τ | /〈|τ |〉. We concluded that the estimate of the relative

variation of the probability of a bin is a good estimate of its own accuracy. This

result is similar to what is observed with the standard analysis of standard Monte

Carlo simulations [31]. Intuitively, one expects the relative error and the error in the
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estimated error to be closely related because both are drawn from the same sample

space.

In Fig. 5.1, we also observe that the relative variation increases with the DGD for

values larger than the mean DGD, especially in the tail of the pdf. This phenomenon

occurs because the regions in the configuration space that contribute to the tail of

the pdf of the DGD are only explored by the MMC algorithm after several iterations.

As the number of iterations increases, the MMC algorithm allows the exploration of

less probable regions of the configuration space. Because less probable regions are

explored in the last iterations, there will be a significantly smaller number of hits in

the regions that contribute to the tail of the pdf of the DGD. As a consequence, the

relative variation will increase as the DGD increases.

5.3 Application and validation

We estimated the pdf of the normalized DGD (P̂DGD) and its associated confidence

interval ∆P̂DGD for PMD emulators comprised of 15 and 80 birefringent fiber sections

with polarization scramblers at the beginning of each section. The normalized DGD,

|τ | /〈|τ |〉, is defined as the DGD divided by its expected value, which is equal 30 ps.

We used 14 MMC iterations with 4, 000 samples each to compute the pdf of the

normalized DGD when we used a 15-section emulator and 30 MMC iterations with

8, 000 samples each when we used an 80-section PMD emulator.

We monitored the accuracy of our computation by calculating the relative varia-

tion of the pdf of the normalized DGD. The relative variation is defined as the ratio
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Figure 5.2: Relative variation (σ̂P̂DGD
/P̂DGD) of the pdf of the normalized

DGD, |τ | /〈|τ |〉. (i) Circles: Transition matrix method based on a single
standard MMC simulation for the 15-section PMD emulator; (ii) Solid: 103

standard MMC simulations for the 15-section emulator; (iii) Dashed: Con-

fidence interval of the relative variation of the error estimated using the

transition matrix method for the 15-section PMD emulator; (iv) Squares:

Transition matrix method based on a single standard MMC simulation for

the 80-section PMD emulator; (v) Dot-dashed: 103 standard MMC simula-

tions for the 80-section PMD emulator.

between the standard deviation of the pdf of the normalized DGD and the pdf of the

normalized DGD (σ̂P̂DGD
/P̂DGD). In Fig. 5.2, I show the relative variation when we

used PMD emulators with 15 and with 80 birefringent sections. The symbols show

the relative variation when we applied the procedure that I described in Section 5.2

with 1, 000 pseudo-MMC simulations based on a single standard MMC simulation

and the transition matrix method, while the solid and the dot-dashed lines show the

relative variation when we used 1, 000 standard MMC simulations. The circles and
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the solid line show the results for a 15-section PMD emulator, while the squares and

dot-dashed line show the results when we used an 80-section PMD emulator. As ex-

pected, the result from an ensemble of pseudo-MMC simulations shows a systematic

deviation from the result from an ensemble of standard MMC simulations for both

emulators. The systematic deviation changes depending on which standard MMC

simulation is used to generate the pseudo ensemble.

In Fig. 5.2, the two dashed lines show the confidence interval of the relative varia-

tion with the 15-section PMD emulator computed using the transition matrix method,

i.e., the confidence interval for the results that are shown with the circles. The confi-

dence interval ∆p?? is between (3.04×10−2, 3.28×10−2) and (2.76×10−1, 3.62×10−1)

for |τ | /〈|τ |〉 < 2. It increases to (2.39×10−1, 4.31×10−1) when |τ | /〈|τ |〉 = 3 and to

(2.69×10−1, 9.88×10−1) at the largest value of |τ | /〈|τ |〉. While the relative variation

that is computed using the transition matrix method from a single MMC simulation

will vary from one standard MMC simulation to another, the results obtained from

different standard MMC simulations are likely to be inside this confidence interval

with a well-defined probability. The confidence interval of the relative variation was

obtained using a procedure similar to the one discussed in the Section 5.2.3, except

that we computed the relative variation of the probability of a bin using the transi-

tion matrix method for every one of the 1, 000 standard MMC simulations. Therefore,

we effectively computed the true confidence interval of the error estimated using the

transition matrix method. We have verified that the confidence interval calculated

using the double bootstrap procedure on a single standard MMC simulation agrees

well with the true confidence interval in all the cases that we investigated.
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We observed an excellent agreement between the results obtained with the tran-

sition matrix method based on a single standard MMC simulation and the results

obtained with 1, 000 standard MMC simulations for both 15 and 80 fiber sections

when the relative variation (σ̂P̂DGD
/P̂DGD) is smaller than 15%. For larger relative

variation, the true error is within the confidence interval of the error, which can be

estimated using the double bootstrap method described in Section 5.2.3. The curves

for the 80-section PMD emulator have a larger DGD range because a fiber with 80

birefringent sections is able to produce larger DGD values than is possible with a

fiber with 15 birefringent fiber sections [44].
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Figure 5.3: The pdf of the normalized DGD, |τ | /〈|τ |〉, for the 15-section

PMD emulator using 14 MMC iterations with 4, 000 samples. (i) Dia-

monds: DGD pdf with error estimation using the transition matrix method,

(ii) Dashed line: Maxwellian pdf, (iii) Solid line: Analytical pdf of the DGD

for the 15-section PMD emulator.

In Figs. 5.3 and 5.4, I show with symbols the results for the pdf of the normalized
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Figure 5.4: The pdf of the normalized DGD, |τ | /〈|τ |〉, for the 80-section

PMD emulator using 30 MMC iterations with 8, 000 samples. (i) Dia-

monds: DGD pdf with error estimation using the transition matrix method,

(ii) Dashed line: Maxwellian pdf, (iii) Solid line: Analytical pdf of the DGD

for the 80-section PMD emulator.

DGD and its confidence interval using the numerical procedure that I presented in

Section 5.2. The solid line shows the pdf of the normalized DGD obtained analyt-

ically using the solution presented in (2.21) (see also [46]) for 15 and 80 concate-

nated birefringent fiber sections with equal length. For comparison, we also show

the Maxwellian pdf for the same mean DGD. In table 5.1, I present selected data

points from the curves shown in Fig. 5.3. For both 15- and 80-section emulators, we

find that the MMC yields estimates of the pdf of the normalized DGD with a small

confidence interval. In Figs. 5.3 and 5.4, we see that the standard deviation (σ̂P̂DGD
)

for the DGD pdf is always small compared to the DGD pdf. The values of the rela-

tive variation (σ̂P̂DGD
/P̂DGD) ranges from 0.016 to 0.541. We used only 56, 000 MMC
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|τ | /〈|τ |〉 PDGD P̂DGD σ̂P̂DGD
σ̂P̂DGD

/P̂DGD

0.031 3.00× 10−3 4.50× 10−3 1.35× 10−3 0.301

0.344 3.16× 10−1 2.84× 10−1 1.75× 10−2 0.062

0.719 8.56× 10−1 8.57× 10−1 2.83× 10−2 0.033

1.094 8.63× 10−1 8.50× 10−1 2.76× 10−2 0.033

1.469 4.64× 10−1 4.66× 10−1 2.16× 10−2 0.046

1.844 1.43× 10−1 1.36× 10−1 1.21× 10−2 0.089

2.219 2.50× 10−2 2.32× 10−2 3.37× 10−3 0.145

2.594 2.26× 10−3 2.15× 10−3 4.43× 10−4 0.206

2.969 8.70× 10−5 7.57× 10−5 2.16× 10−5 0.286

3.344 8.92× 10−7 8.13× 10−7 3.49× 10−7 0.430

3.594 1.10× 10−8 1.59× 10−8 8.63× 10−9 0.541

Table 5.1: Selected data points from the curves shown in Fig. 5.3. The

columns from left to right show: the normalized DGD value, the analytical

probability density function, the estimated probability density function, the

standard deviation computed using the transition matrix method, and the

relative variation.

samples to compute the pdf of the DGD in a 15-section emulator, but we were able

nonetheless to accurately estimate probabilities as small as 10−8. Since the relative

error in unbiased Monte Carlo simulations is approximately given by N
−1/2
I , where

NI is the number of hits in a given bin, it would be necessary to use on the order of

109 unbiased Monte Carlo samples to obtain a statistical accuracy comparable to the

results that I show in the bin with lowest probability in Figs. 5.3 and 5.4.

I conclude this chapter by stressing that the computational time that is required

to estimate the errors using the transition matrix method does not scale with the
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time needed to carry out a single standard MMC simulation. It takes approximately

17.5 seconds of computation using a Pentium 4.0 computer with 3 GHz of clock speed

to estimate the errors in the pdf of the DGD for the 80-section emulator using 1, 000

pseudo-MMC simulations with the transition matrix method, once the transition

matrix is available. The computational time that is required to compute the pdf of

the DGD using only one standard MMC simulation is 60 seconds. To obtain 1, 000

standard MMC simulations would require about 16.6 hours of CPU time in this case.

I also stress that it is difficult to estimate the statistical errors in MMC simulations

because the algorithm is iterative and highly nonlinear. I introduced the transition

matrix method that allows us to efficiently estimate the statistical errors from a

single standard MMC simulation, and I showed that this method is a variant of the

bootstrap procedure. My colleagues and I applied this method to calculate the pdf

of the DGD and its expected error for 15-section and 80-section PMD emulators.

Finally, we validated this method in both cases by comparing the results to estimates

of the error from ensembles of 1, 000 independent standard MMC simulations. The

agreement was excellent. In Chapter 6, we apply the transition matrix method to

estimate errors in the outage probability of PMD uncompensated and compensated

systems. We anticipate that the transition matrix method will allow one to estimate

errors with any application of MMC including the computation of the pdf of the

received voltage in optical communication systems [69] and the computation of rare

events in coded communication systems [73].



Chapter 6

Comparison of two biasing Monte Carlo

methods for calculating outage

probabilities in systems with multi-section

PMD compensators

In this chapter, I present the work in which my colleagues and I evaluate the perfor-

mance of single-section and three-section polarization mode dispersion compensators

using the biasing Monte Carlo methods of importance sampling and MMC, as in [25].

In Chapter 3, I showed that standard importance sampling in which only first-order

PMD is biased is insufficient to compute penalties in most compensated systems. In

Chapter 4, I used MMC to show the regions in the |τ |–|τ ω| plane that are the dom-

inant source of penalties in uncompensated and single-section PMD compensated

systems. Here, I show that both multiple importance sampling in which both first-

and second-order PMD are biased and MMC work well with all the compensators

that we investigated. I show that multiple importance sampling works well even in a

system with a three-section compensator, when both first- and second-order PMD are

compensated. The applicability of importance sampling in these systems is consis-
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tent with the existence of a large correlation between the first- and second-order PMD

of the transmission line and higher orders of PMD after compensation, so that the

first two orders, even when compensated, remain highly correlated with the residual

penalty. My colleagues and I directly demonstrated the existence of this correlation.

6.1 MMC and importance sampling to compute

PMD-induced penalties

As I mentioned earlier, the large PMD penalties of interest to system designers cannot

be efficiently computed using standard, unbiased Monte Carlo simulations, since they

are very rare. To overcome this hurdle, advanced Monte Carlo methods such as

importance sampling [28], [29] and multicanonical Monte Carlo [18] have recently

been applied to compute these penalties [19], [24] using a much smaller number of

samples.

In optical fiber communication systems without PMD compensators, the penalty

is correlated with the differential group delay due to PMD. As a consequence, one

may apply importance sampling in which one only biases the DGD [28] to compute

PMD-induced penalties. However, biasing the DGD alone is inadequate to compute

penalties in compensated systems. On the other hand, the use of multiple importance

sampling, in which both first- and second-order PMD are biased [29], allows one to

efficiently study important rare events with large first- and second-order PMD. In [24],

[50], we used multiple importance sampling in which the first- and second-order PMD

are biased to compute the outage probability due to PMD in uncompensated systems

and in compensated systems with a single-section compensator.
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As discussed in Chapters 3 and 4, the development of importance sampling re-

quires some a priori knowledge of how to bias a given parameter in the simulations.

In this particular problem, the parameter of interest is the penalty. However, to date

there is no importance sampling method that directly biases the penalty. Instead of

directly biasing the penalty, one relies on the correlation of the first- and second-order

PMD with the penalty, which may not hold in all compensated systems. In contrast

to importance sampling, MMC does not require a priori knowledge of which rare

events contribute significantly to the penalty distribution function in the tails. MMC

is an iterative method, which in each iteration produces a biased random walk that

automatically searches the state space for the important rare events. This knowledge

is accumulated, allowing the penalty distribution function to be obtained further out

in the tail from one iteration to the next.

In this chapter, I present results in which my colleagues and I used multiple im-

portance sampling in which both the first- and second-order PMD are biased. We also

used MMC. We used both methods to investigate the performance of single-section

and three-section PMD compensators. We show that both methods are appropriate

to compute outage probabilities with the compensators that we investigated. They

yield the same results within the limit of their statistical errors, and importance sam-

pling yields lower errors for comparable run times. It may appear surprising at first

that importance sampling works well with a three-section compensator in which both

first- and second-order PMD are compensated by the feedback process. We will show

however that the residual PMD is highly correlated with the first two compensated

orders in a three-section compensator. The applicability of importance sampling in
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this case is consistent with the existence of a large correlation between first- and

second-order PMD of the transmission line and the higher orders of PMD after com-

pensation. Thus, even when the first two orders are compensated, they remain highly

correlated with the residual penalty.

My colleagues and I investigated the effectiveness of higher-order PMD compen-

sators by comparing a single-section, variable-DGD compensator to a three-section

compensator. We focused our study on three-section compensators [74] because they

are the simplest multi-section compensators that allows one to compensate for the

first- and second-order PMD. We found that the use of a three-section compensator

does significantly improve the compensation when compared to a single-section PMD

compensator. However, the improvement is less than a factor of two (in dB), despite

the large increase in complexity; the three-section compensator has 7 feedback pa-

rameters [74], while the single-section has 3 feedback parameters. We show that the

residual PMD is highly correlated with the first two compensated orders in a three-

section compensator. We attribute the diminished returns with increased complexity

to this correlation. This correlation also explains the success of importance sampling

in which both first- and second-order PMD are biased.

6.2 PMD Compensators

We investigated a single-section PMD compensator [75], which is a variable-DGD

compensator that was programmed to eliminate the residual DGD at the central fre-

quency of the channel after compensation, and a three-section PMD compensator

proposed in [74], which compensates for first- and second-order PMD. I described
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details of the implementation of the single-section compensator that we used in Sec-

tion 3.2. The three-section compensator consists of two fixed-DGD elements that

compensate for the second-order PMD and one variable-DGD element that elimi-

nates the residual DGD at the central frequency of the channel after compensation.

The three-section compensator that we used has the first- and second-order PMD as

feedback parameters. This compensator can also in principle operate in a feedforward

configuration.

6.2.1 Three-section compensator

Second-order PMD has two components: Polarization chromatic dispersion (PCD)

and the principal states of polarization rotation rate (PSPRR) [74]. Let τ 1 be the

polarization dispersion vector of the transmission line, and let τ 2 and τ 3 be the

polarization dispersion vectors of the two fixed-DGD elements of the three-section

compensator. Using the concatenation rule [49], the first- and second-order PMD

vector of these three concatenated fibers are given by

τ tot = R3 R2 τ 1 + R3τ 2 + τ 3, (6.1)

τ tot,w = (τ 3 + R3τ 2)×R3 R2 τ1q̂1 + τ 3×R3τ 2 + R3 R2 τ1wq̂1 + R3 R2 τ1q̂1w, (6.2)

where R2 and R3 are the rotation matrices of the polarization controllers before the

first and the second fixed-DGD elements of the compensator, respectively. In (6.2),

τ1wq̂1 and τ1q̂1w are the transmission line PCD and the PSPRR components, respec-

tively, where we express the polarization dispersion vector of the transmission fiber
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as τ 1 = τ1q̂1. Here, the variable τ is the DGD and q̂ = τ/ |τ | is the Stokes vector

of one of the two orthogonal principal states of polarization.

The three-section PMD compensator has two operating points [74]. For the first

operating point, the term τ 3 × R3τ 2 in (6.2) is used to cancel the PSPRR compo-

nent R3 R2 τ1q̂1w, provided that we choose R3 and R2 so that R†
3τ 3 × τ 2 and R2τ1q̂1w

are antiparallel, where R†
3 is the Hermitian conjugate of R3. Note that with this

configuration one cannot compensate for PCD.

For the second operating point, τ 3×R3τ 2 in (6.2) is used to compensate for PCD

by choosing R†
3τ 3×τ 2 and R2τ1wq̂1 to be antiparallel. Moreover, we can add an extra

rotation to R2 so that
[(

R†
3τ 3 + τ 2

)
× R2 τ1q̂1

]
and R2 τ1q̂1w are also antiparallel. In

this way, the compensator can also reduce the PSPRR term. In our simulations, we

computed the reduction of the PCD and PSPRR components for the two operating

points and we selected the one that presented the largest reduction of the second-

order PMD. Finally, the third, variable-DGD, section of the compensator cancels the

residual DGD τ tot after the first two sections.

6.3 Simulation results and discussions

We evaluated the performance of a single-section and a three-section PMD compen-

sator in a 10 Gbit/s nonreturn-to-zero system with a mean DGD of 30 ps. We used

perfectly rectangular pulses filtered by a Gaussian shape filter that produces a rise

time of 30 ps. We simulated a string with 8 bits generated using a pseudorandom

binary sequence pattern. We modeled the fiber using the coarse step method with
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80 birefringent fiber sections, which reproduces first- and higher-order PMD distor-

tions within the probability range of interest [50]. The results of our simulations

can also be applied to 40 Gbit/s systems by scaling down all time quantities by a

factor of four. As in Chapters 3 and 4, we used the eye opening for performance

evaluation. The three-section compensator has two fixed-DGD elements of 45 ps and

one variable-DGD element. The results that I present in this section were obtained

using 30 MMC iterations with 8, 000 samples each and using importance sampling

with a total of 2.4 × 105 samples. We estimated the errors in MMC using the tran-

sition matrix method that I described in Chapter 5, while we estimated the errors in

importance sampling as described in Chapter 3 and in [24].

In Fig. 6.1, I show the outage probability for a 1-dB penalty as function of the

DGD element (τc) for a system with the three-section compensator that we used.

The mean DGD of the system before compensation is 30 ps. We observed that there

is an optimum value for τc that minimizes the outage probability, which is close

to 45 ps. We set the values for the two fixed-DGD elements of the three-section

PMD compensator that we used to this optimum value. The reason why the outage

probability rises when τc becomes larger than this optimum is because large values

of τc add unacceptable penalties to fiber realizations with relatively small second-

order PMD values that could be adequately compensated at lower values of τc. We

also observed that there is a relatively small dependence of the outage probability on

τc. That is because the third, variable-DGD section of the compensator cancels the

residual DGD after the first two sections, which significantly mitigates the penalty

regardless of the value of τc.
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Figure 6.1: Outage probability for a 1-dB penalty as function of the DGD

element (τc) of the three-section compensator for a system with mean DGD

of 30 ps.

In Fig. 6.2, I plot the outage probability (P̂op) as a function of the eye-opening

penalty for the compensators that we studied. The histogram of the penalty was

divided into 34 evenly spaced bins in the range −0.1 and 2 dB, even though I show

results from 0 to 1.5 dB of penalty. The maximum relative error (σ̂P̂op
/P̂op) for the

curves computed with MMC shown in this plot equals 0.13. The relative error for

the curves computed with importance sampling is smaller than with MMC, and is

not shown in the plot. The maximum relative error for the curves computed with

importance sampling equals 0.1. The results obtained using MMC (solid lines) are

in agreement with the ones obtained using importance sampling (symbols). The

agreement between the MMC and importance sampling results was expected for the

case that we used a single-section compensator, since this type of compensator can
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Figure 6.2: Outage probability as a function of the eye-opening penalty for a

system with mean DGD of 30 ps. (i) Dashed line (MMC) and triangles (IS):

Uncompensated system. (ii) Dot-dashed line (MMC) and circles (IS): System

with a single-section compensator. (iii) Solid line (MMC) and diamonds (IS):

System with a three-section compensator. The error bars show the confidence

interval for the MMC results.

only compensate for first-order PMD [19], so that the dominant source of penalty

after compensation is the second-order PMD of the transmission line. Hence, it is

expected that MMC and importance sampling give similar results. I showed similar

results in Chapter 4. My colleagues and I also observed good agreement between the

MMC and importance sampling results for the three-section compensator. This level

of agreement indicates that three-section compensators that compensate for the first

two orders of the Taylor expansion of the transmission line PMD produce residual

third and higher orders of PMD that are significantly correlated with the first- and

second-order PMD of the transmission line. That is why the use of importance
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sampling to bias first- and second-order PMD is sufficient to accurately compute the

outage probability in systems where the first two orders of PMD of the transmission

line are compensated.

Significantly, we observed that the performance improvement with the addition of

two sections, from the single-section compensator to the three-section compensator, is

not as large as the improvement in the performance when one section is added, from

the uncompensated to the single-section compensator. The diminishing returns that

we observed for increased compensator complexity is consistent with the existence

of correlations between the residual higher orders of PMD after compensation and

the first two orders of PMD of the transmission line that are compensated by the

three-section compensator.

Figures 6.3–6.5 quantify the correlation between the lower and higher orders of

PMD. In Fig. 6.3, I show the conditional expectation of the magnitude of second-

order of PMD both before and after the three-section compensator given a value of

the DGD of the transmission line. In these figures, the DGD |τ | is normalized by

the mean DGD 〈|τ |〉 and |τ ω| is normalized by 〈|τ ω|〉 to obtain results that are inde-

pendent of the mean DGD and of the mean of the magnitude of second-order PMD.

We observed a large correlation between |τ | and |τ ω| before compensation, while af-

ter compensation |τ ω| is significantly reduced and is less correlated with the DGD,

demonstrating the effectiveness of the three-section compensator in compensating for

second-order PMD. In Figs. 6.4 and 6.5, I show the conditional expectation of the

magnitude of the third-order PMD and of the fourth-order PMD, respectively, before

and after the three-section compensator, given a value of the DGD of the transmission
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Figure 6.3: Conditional expectation of the magnitude of the normalized

second-order PMD, |τ ω|, given a value of the DGD of the transmission line,

|τ |. Conditional expectation before (dashed) and after (solid) the three-

section compensator.

line. In both cases, we observed a high correlation of the third- and the fourth-order

PMD with the DGD before and after compensation. In addition, we observed a sig-

nificant increase of these higher-order PMD components after compensation, which

leads to a residual penalty after compensation that is correlated to the original first-

and second-order PMD.

In Fig. 6.6, I show contour plots of the conditional expectation of the penalty with

respect to the first- and second-order PMD for a system with a three-section PMD

compensator [74]. These results show that the residual penalty after compensation

is significantly correlated with the first- and second-order PMD. The correlation be-

tween the higher orders of PMD with the DGD that I show in Figs. 6.3–6.5 can be

estimated from the concatenation rule [49], which explicitly indicates a dependence
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Figure 6.4: Conditional expectation of the magnitude of the normalized third-

order PMD, |τ ωω|, given a value of the DGD of the transmission line, |τ |.
Conditional expectation before (dashed) and after (solid) the three-section

compensator.

of the higher-order PMD components on the lower order components. The increase

in these higher-order components after compensation is also due to our choice of the

operating point of this compensator, which is set to compensate only for first- and

second-order PMD, regardless of the higher-order PMD components. It is possible

that this three-section PMD compensator would perform better if all 7 parameters

of the compensator are adjusted to achieve the global penalty minimum. However,

finding this global optimum is unpractical due to the large number of local optima

in such a multidimensional optimization space, as my colleagues and I found in our

investigation of single-section PMD compensators [50]. On the other hand, the com-

pensation of first- and second-order PMD using the three-section compensator that

we studied here, which was proposed by Zheng, et al. [74], can be implemented in

practice.
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Figure 6.5: Conditional expectation of the magnitude of the normalized

fourth-order PMD, |τ ωωω|, given a value of the DGD of the transmission

line, |τ |. Conditional expectation before (dashed) and after (solid) the three-

section compensator.

In this chapter, I showed that both multiple importance sampling and MMC can

be used with all the compensators that we investigated to reduce the computation

time for the outage probability due to PMD in optical fiber communication systems.

Importance sampling in which both the first- and second-order PMD are biased can

be used to efficiently compute the outage probability even with a three-section PMD

compensator in which both first- and second-order PMD are compensated, which is

consistent with the existence of a large correlation between first- and second-order

PMD of the transmission line and higher orders of PMD after compensation. We

directly verified the existence of these correlations. In contrast to what I presented in

Chapter 4, where importance sampling was used to validate the results with MMC,

in this chapter, I used MMC to validate the results obtained with importance sam-

pling. We used MMC to validate the results obtained with importance sampling
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Figure 6.6: Three-section compensated system. The dotted lines are contour

plots of the joint pdf of the normalized |τ | and |τ ω| from the bottom to the
top of the plot, are at 3 × 10−n, with n = 1, · · · , 7 and 10−m, with m =

1, · · · , 11. The solid lines are contour plots of the conditional expectation of

the eye-opening penalty in dB from the bottom to the top of the plot, are at

0.1, 0.2, 0.3, 0.4, 0.5, 0.6.

because MMC can be used to compute penalties induced by all orders of PMD and

not just penalties correlated to first- and second-order PMD as is the case with the

importance sampling method. I showed that MMC yields the same results as im-

portance sampling, within the statistical errors of both methods. Finally, I showed

that the three-section compensator offers less than twice the advantage (in dB) of

single-section compensators. We attribute the diminishing returns with increased

complexity to the existence of correlations between the first two orders of PMD prior

to compensation and higher orders of PMD after compensation.



Chapter 7

Conclusions

Polarization mode dispersion is a major source of impairments in optical fiber com-

munication systems. Since PMD is a random process, Monte Carlo simulations are

often used to compute PMD-related probability distribution functions. However, the

large PMD penalties of interest to system designers cannot be efficiently computed

using standard Monte Carlo simulations, since they are very rare. Advanced Monte

Carlo methods such as importance sampling and the multicanonical Monte Carlo are

statistical methods that make the computation of rare penalties feasible.

In this dissertation, I described the contributions that I made with the collabo-

ration of my colleagues to the field of optical fiber communications. I showed how

to apply advanced Monte Carlo techniques of importance sampling and MMC to ac-

curately and efficiently estimate penalties induced by PMD in uncompensated and

compensated systems. These techniques make more efficient use of Monte Carlo sim-

ulations to compute the probability of rare events that lead to penalties of interest to

system designers. Using these two advanced Monte Carlo methods, my colleagues and

I evaluated the performance of PMD compensators and compared the efficiency of im-
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portance sampling and MMC to compute penalties in different types of compensated

systems. We also applied importance sampling to compare the penalty resulting from

first-order and all-order PMD models, demonstrating the importance of accurately

modeling PMD including higher orders. We showed that evaluating the performance

taking into account only first-order PMD produces a good approximation to the true

eye-opening penalty of uncompensated systems when the penalty is low. However,

when the penalties are high, this model overestimates the penalty for outage proba-

bilities in the range of interest for systems designers, which is typically in the range

from 10−6 to 10−5.

We also concluded that importance sampling in which only the DGD is biased

is sufficient to accurately calculate the uncompensated penalties and their pdfs, but

it is not sufficient to accurately calculate the compensated penalties and their pdfs.

To study compensated systems where second-order PMD also plays a role it is nec-

essary to use an importance sampling method capable of biasing both the DGD and

the length of the frequency derivative of the polarization dispersion vector. The use

of importance sampling in which both the DGD and magnitude of the second-order

PMD are biased allowed us to conclude that the performance of single-section fixed-

and variable-DGD compensators is comparable. In addition, the performance of a

variable-DGD compensator that minimizes the residual DGD at the central frequency

of the channel is significantly worse than the performance of a fixed- or a variable-

DGD compensator that maximizes the eye opening, which indicates the importance

of higher-order PMD in determining the penalty since a feedback signal is better cor-

related to the PMD-induced penalty when extracting more values of the polarization
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dispersion vector over the spectrum of the channel.

We compared the two advanced Monte Carlo methods of importance sampling and

MMC for calculating outage probabilities in systems with single-section and multi-

section PMD compensators. We showed that both methods can be used to speed up

the computation of outage probability due to PMD in optical fiber communication

systems with all the compensators that we investigated and that multiple impor-

tance sampling can be used to efficiently compute the outage probability even with

a three-section PMD compensator in which both first- and second-order PMD are

compensated, which demonstrates the existence of a large correlation between first-

and second-order PMD of the transmission line and higher orders of PMD after com-

pensation. We also showed that the three-section compensator that we studied offers

less than twice the advantage (in dB) of single-section compensators. We attributed

the diminishing returns with increased complexity to the existence of correlations be-

tween the first two orders of PMD prior to compensation and higher orders of PMD

after compensation.

Error estimates are essential to verify the accuracy of results obtained with any

Monte Carlo method. In this dissertation, I showed how to estimate the statistical

errors when using importance sampling and multicanonical Monte Carlo methods.

My colleagues and I used standard error estimation procedure and first-order error

propagation method to estimate the error in importance sampling simulations. The

MMC method, on the other hand, is iterative and highly nonlinear, which induces a

web of correlations in the samples. Therefore, one cannot apply to MMC standard

error analysis that are traditionally used for simulations with uncorrelated samples.
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We developed an efficient numerical method to estimate statistical errors when using

MMC, which we refer to as the transition matrix method. The transition matrix

method allowed us to efficiently estimate the statistical errors from a single standard

MMC simulation. We applied this method to estimate errors in the pdf of the DGD

and in the outage probability of uncompensated and compensated systems with PMD.

We anticipate that the transition matrix method will allow one to estimate errors

with any application of MMC including the computation of the pdf of the received

voltage in optical communication systems [69] and the computation of rare events in

coded communication systems [73].
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