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The polarization effects of polarization mode dispersion, polarization-dependent

loss, and polarization-dependent gain can strongly impact the performance of optical

fiber communications systems. These effects, combined with gain saturation in the

amplifiers, couple many channels together in a wavelength-division-multiplexed sys-

tem. Thus, when investigating the performance degradation theoretically, it is not

currently feasible to use full computer simulations. One must use a reduced model,

such as the reduced Stokes model that was developed earlier by Wang and Menyuk. In

this Ph.D. dissertation, I report two contributions that I made with the collaboration

of my colleagues to the field of optical fiber systems modeling. These contributions



can be used in combination with the reduced Stokes model to accurately and ef-

ficiently compute the penalty produced by the polarization effects in optical fiber

systems. First, my colleagues and I developed an importance sampling technique to

accurately determine the probability density functions for the Q-penalty and from

that, the outage probability. The results differ significantly from those previously

obtained using Gaussian extrapolations. Second, we developed an accurate receiver

model. Prior work used an ad hoc model, while my work introduces a model based

on a calculation of the first- and second-order moments of the current probability

density functions with realistic optical and electrical filters. In addition, the receiver

model that we developed properly accounts for the effect of partially polarized noise

in the performance of the system, while previous work did not. We validated the

reduced Stokes model in combination with the receiver model by comparison to full

time-domain simulations. To do so, we introduced a new validation procedure that

ensured that we were comparing the same fiber realizations in both the full and the

reduced models. We also validated the results experimentally at the University of

Maryland Baltimore County. The validation work shows a good agreement with the

models.
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Chapter 1

Introduction

The rapid advance of optical fiber communications systems has revolutionized telecom-

munications on a global scale and has played a major role in the advent of the in-

formation era. The invention of the laser diode in the 1960s [1], [2], low loss op-

tical fiber in the 1970s [3], and the erbium-doped fiber amplifier in the 1980s [4]

allowed engineers to develop long-haul optical fiber communications systems. Terres-

trial and trans-oceanic optical fiber systems currently transport the great majority

of inter-metropolitan and international voice and data traffic in the world. Theoreti-

cal capacities in optical fiber communication systems are tens of THz. Nonetheless,

four major impairments—nonlinearity, chromatic dispersion, polarization effects, and

amplified-spontaneous-emission noise—limit the capacities and transmission distances

of optical fiber communications systems [5]. Among these effects, polarization effects

are the only ones that can produce randomly varying signal distortions and power

penalties that can lead to system outages on a time scale that varies between mil-

liseconds and hours [6]. A penalty in an optical fiber communications system is a

performance degradation that increases the probability of error in the decoded signal.

1
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This dissertation is concerned with investigating polarization effects, as well as their

interactions with other transmission and receiver effects and gain saturation in the

amplifiers.

The three principal polarization effects are polarization mode dispersion (PMD),

polarization-dependent loss (PDL), and polarization-dependent gain (PDG) [7], [8].

PMD is primarily due to the randomly varying birefringence in optical fibers [9],

although birefringent components can make an important contribution in some sys-

tems [10]. The beat length due to the birefringence in fibers and the autocorrelation

length of the birefringence variations are on the order of tens of meters. As a con-

sequence, the polarization state at any frequency changes on a scale of tens of me-

ters [11]. This variation is rapid compared to typical dispersive and nonlinear length

scales, which vary from tens to thousands of kilometers. By itself, this variation has

no deleterious effect on communications systems. However, neighboring frequencies

in the signal undergo slightly different variations, and, as a consequence, two fre-

quencies that are initially in the same polarization state will ultimately drift apart

in polarization. The rate at which this drift occurs is proportional to the frequency

separation. Hence, frequencies that are far apart drift apart in polarization state

faster. In particular, PMD will cause the polarization states of different channels in

a wavelength-division-multiplexed (WDM) system to drift apart long before the fre-

quencies inside a single channel drift apart. We refer to the drift of the polarization

states of different WDM channels as inter-channel PMD. When PMD is large enough

to depolarize the frequency components within an individual channel, it can lead to

waveform distortions. We refer to the polarization drift of the frequencies inside a
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single channel as intra-channel PMD.

There has been considerable interest in intra-channel PMD in the optical commu-

nications research community in recent years because intra-channel PMD can be a

major source of impairments in systems with a per-channel data rate of 10 Gbit/s and

higher [12]. However, even in systems with low to moderate PMD, in which intra-

channel PMD can be ignored, inter-channel PMD can still play a very important role

in WDM systems. In this dissertation, I will be almost exclusively concerned with

systems in which intra-channel PMD can be neglected. However, in my studies of

WDM systems, inter-channel PMD must be taken into account.

The second polarization effect that I will consider, PDL, is primarily due to the

polarization sensitivity of amplifier components—notably the isolators and WDM

couplers [7]. While it is simple to model, its effect can be subtle. In some recir-

culating loop systems, it can lead to partial or total polarization of the noise that

artificially improves the performance of the recirculating loop relative to what would

be observed in a straight-line system. This issue will emerge at several points in this

Ph.D. dissertation.

PDG, the third and final polarization effect that I will consider, is due to polariza-

tion hole burning in the erbium-doped fiber amplifiers (EDFAs) that are commonly

used in optical fiber communications systems. The gain in EDFAs is slightly inhomo-

geneous, and, as a consequence, the gain in the polarization state orthogonal to the

signal is slightly higher than in the polarization state of the signal when the EDFA

is saturated. In single-channel systems, this effect leads to exponential growth of

the noise [13]. This effect can be mitigated by scrambling the polarization state of



4

the signal to reduce the degree-of-polarization (DOP) to nearly zero [14]. In WDM

systems, this effect is typically not important, since inter-channel PMD ensures that

the DOP of the system is close to zero. If one interleaves channels in orthogonal

polarization states at the transmitter, then the DOP will be close to zero throughout

the transmission, and the role of PDG becomes negligible as the number of channels

increases. In an example considered by Wang and Menyuk [8] of a 10 Gbit/s channel

system with a 50 Gbit/s channel spacing, the authors found that PDG is negligible

when the system has more than 10 channels. In this dissertation, I will also take

PDG into account, even though I found that PDG never plays a significant role for

the problems I considered.

Another effect that one must take into account is gain saturation in the amplifiers.

Amplifiers typically operate in a gain saturated regime because, by doing so, they

damp out power fluctuations [5]. However, since we assume that the gain in EDFAs

is nearly constant with frequency, all channels are equally affected by changes in the

gain. As a consequence, all the channels in a WDM system are coupled together.

Schematically, if some channels suffer excess loss due to PDL in a component, then

the total power out of that EDFA will be somewhat diminished and in the next EDFA

the gain will be somewhat higher since this EDFA will be slightly less saturated. All

channels except the ones that suffered excess loss will emerge from this EDFA with

slightly more power than from the previous EDFA. In effect, some channels have

transferred some of their power to the other channels.

Modeling the effect of gain saturation in a WDM system with many channels is a

significant computational challenge because all of the channels interact. This situa-
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tion is quite different from modeling the Kerr effect, which only links together nearby

channels [5]. It is not feasible to model such systems using full time-domain simula-

tions. One typically wants to model the system with many thousands of realizations

to obtain the full probability density function (pdf) of the penalties produced by the

polarization effects. It is not currently feasible to calculate this number of realizations

with full time-domain simulations.

For these reasons, Wang and Menyuk introduced a reduced Stokes model that

follows four signal Stokes parameters and four noise Stokes parameters for each chan-

nel [8]. This model takes into account the phenomena of inter-channel PMD, PDL,

and PDG, as well as gain saturation in the amplifiers. The computation time is a

small fraction of what is required for full time-domain simulations, so that the calcu-

lations described in the previous paragraph become feasible. This reduced model is

based on the assumption that PMD is moderate, so that intra-channel PMD can be

neglected. It is also based on the assumption that PMD, PDL, and PDG in combi-

nation with gain saturation are slow time effects compared to the bit time, so that

they affect all bits equally, and nonlinearity and chromatic dispersion can be ignored.

Due to this difference in time scales, it is assumed that the penalty due to the com-

bination of PMD, PDL, and PDG can be calculated separately from the penalty due

to chromatic dispersion and noise, and that these penalties can be added. Wang and

Menyuk carried out studies in which they found the limits of validity for these as-

sumptions, and they validated the reduced model by comparison to full time-domain

simulations in the limit where the reduced model applies. All current commercial

systems that are not limited by intra-channel PMD fall within this limit. I note,
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however, that the validation carried out by Wang and Menyuk used a receiver model

that did not correctly account for the signal-dependent noise—the beating between

the signal and the noise in photodetectors—in direct detection receivers. Nonetheless,

I showed that the original assumptions made by Wang and Menyuk are true when I

employ an accurate receiver model that I developed, which accurately accounts for

signal-dependent noise at the receiver.

In this Ph.D. dissertation, I describe two contributions that I made with the

collaboration of my colleagues to the field of optical fiber systems modeling. These

contributions are used to extend and to significantly improve the accuracy of previous

work by Wang and Menyuk, as I show in this dissertation. In the first contribution, I

developed an importance sampling technique to accurately calculate the outage prob-

ability due to polarization effects. The outage probability is the probability that the

penalties due to polarization effects will exceed a specified margin—typically 1 dB or

2 dB. This probability is usually required to be very low—typically 10−5 or 10−6. As

a consequence, a direct calculation of the outage probabilities using standard Monte

Carlo simulations is not currently feasible even with the reduced model. Instead,

Wang and Menyuk [8] used Gaussian extrapolation [15]. In this dissertation, I de-

scribe an importance sampling technique that I developed to calculate the exact pdf

of the penalty and, from that, the outage probability due to polarization effects. Us-

ing this technique, I found that Gaussian extrapolation can lead to significant errors

in the computation of the outage probability [16]. Importance sampling is a method

for biasing Monte Carlo simulations that is described in [17]. However, to success-

fully apply importance sampling, the biasing technique must be appropriate for each
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particular problem.

My second contribution is the introduction of a new accurate receiver model. The

receiver model that I developed accurately relates the optical signal-to-noise ratio

and the polarization states of the signal and the noise of a channel at the receiver

to the Q-factor. The Q-factor is a widely used performance indicator that is highly

correlated to the bit-error ratio. Wang and Menyuk related the optical signal-to-noise

ratio of a channel to the Q-factor by using an ad hoc extension of the receiver model of

Marcuse [18] and Humblet and Azizog̃lu [19]. Additionally, the number of noise modes

used by that model was determined in an ad hoc fashion; it was assumed that the

extinction ratios were perfect; and the partial polarization of the noise at the receiver

was neglected. Wang and Menyuk used the same receiver model in both their reduced

model and full model simulations. So, the validity of the receiver model was never

tested. I found that the performance of a channel has a strong dependence on the

relative polarization states of signal and noise when the noise is partially polarized.

Here, I describe a method based on one by Winzer, et al. [20] to calculate the

exact first- and second-order moments of the pdf for the marks and the spaces, given

realistic optical and electrical filters, that my colleagues and I extended to allow for

arbitrarily polarized noise. With this approach, one can accurately calculate the Q-

factor and, consequently, the Q penalty. For systems without pattern dependencies,

the Q-factor is defined as the ratio of the difference between the mean currents of

marks and spaces to the sum of the standard deviations of the marks and spaces due

to noise [18]. In Sec 5.2, I describe how one can accurately compute the Q-factor

in the presence of pattern dependencies. The enhancement factor, which was intro-
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duced by Wang and Menyuk in an ad hoc manner, is a parameter that determines

how efficiently a given pulse format and receiver configuration convert optical signal-

to-noise ratio into electrical signal-to-noise ratio prior to the decision circuit. In this

dissertation, I show how the enhancement factor can be exactly taken into account.

Moreover, I show how one can take into account arbitrary extinction ratios and ac-

curately account for the polarization states of signal and noise when computing the

performance degradation due to polarization effects. This model yields very good

agreement with experiments [21]–[23].

In addition, I present a new procedure for validating the reduced model using

full model simulations. In [8], Wang and Menyuk essentially compared the optical

signal-to-noise ratios at the receiver for both models, since the polarization states of

the signal and noise were not accounted for. In the comparison, Wang and Menyuk

used different fiber realizations for the reduced and the full models. As a consequence,

they could only verify consistency with the two models to within the statistical error

of the full model. This statistical error was large because the number of realizations

that can be kept in the full model is small. In the new procedure presented here,

I used the same fiber realizations for both the reduced model and the full model.

The same statistical fluctuations are thus present in both models, and any deviation

between the two is due to nonlinear polarization rotation in the full model. In fact,

I demonstrated that the deviation is small for realistic systems.

In collaboration with Dr. Carter’s research group at the University of Maryland

Baltimore County (UMBC), we carried out a series of experiments that validated the

receiver model that I developed when combined with the reduced Stokes model. The
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receiver model was validated using back-to-back and fiber recirculating loop studies.

A key prediction of the new receiver model is that the relationship between the

optical signal-to-noise ratio (OSNR) and the Q-penalty is not unique when the noise

is partially polarized. Our experimental results verified this prediction. The reduced

model was also validated at UMBC for single-channel soliton systems.

The remainder of this Ph.D. dissertation is organized as follows: In Chapter 2, I

describe how I model the polarization state of light, and I also describe the polariza-

tion effects that can lead to impairment in optical fiber communication systems. In

Chapter 3, I describe the equations of the full time-domain model and the reduced

Stokes model that I use in this dissertation. In addition, I describe the algorithms that

I use to numerically solve these equations. In Chapter 4, I derive a receiver model that

provides an explicit relationship between the Q-factor and the optical signal-to-noise

ratio in optical fiber communication systems for arbitrary pulse shape, realistic re-

ceiver filters, and arbitrarily polarized noise. My colleagues and I validate the receiver

model that I developed by comparison to Monte Carlo simulations and back-to-back

experiments. I also define the enhancement factor and three other parameters that

explicitly quantify the relative performance of different modulation formats in a re-

ceiver. In Chapter 5, I describe the technique that I developed that uses Monte Carlo

simulations with importance sampling to compute the probability density function of

the Q-factor and the outage probability for a channel in a WDM optical fiber commu-

nication system due to the combination of PDL, inter-channel PMD, and PDG. I also

show how to combine multiple distributions using importance sampling with biased

polarization-induced penalty to compute the outage probability due to polarization
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effects. In Chapter 6, I present results from fiber recirculating loop experiments that

validate the use of the reduced Stokes model with the accurate receiver model that I

introduced in Chapter 4.



Chapter 2

Polarization effects and gain saturation

2.1 Polarization state representations

The state of polarization of light is defined by the time evolution of the orientation

of the electric-field vector E(r, t), a three-vector whose elements depend on both the

time t and the position r. For monochromatic light, the three components of E(r, t)

vary sinusoidally in time with different amplitudes and phases. If the direction of

propagation is parallel to the z-axis, the electric-field vector of a monochromatic

wave of angular frequency ω propagating in an isotropic media with refractive index

n is given by [24]

E(z, t) = Re {(Exx̂ + Eyŷ) exp [i(kz − ωt)]} , (2.1)

where Ex and Ey are the complex envelopes of the electric-field in the x and y direc-

tions, respectively, k = ωn/c is the wavenumber, and ω is the angular frequency. The

parameter c is the speed of light in vacuum.

In optical fibers the light is mostly confined to the core due to total internal reflec-

tion of the light rays in the core-cladding boundary [24]. In single-mode fibers, which

11
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are used in modern day optical-fiber communications systems, the difference between

the refractive indexes of the core and the cladding is so small that the guided light

rays are nearly paraxial—parallel to the fiber axis. The longitudinal components of

the electric and the magnetic fields are small compared to the transverse components.

As a consequence, light waves are approximately transverse electromagnetic waves,

and the two transverse components of the electric field, which are linearly polarized,

are sufficient to completely characterize the polarization state of light. The evolution

of the electric field vector in (2.1) generally traces out an ellipse in a plane that is

transverse to the direction of propagation. The state of polarization of the light is

characterized by either the Jones vector or the Stokes parameters, both of which are

determined by the transverse components of the electric field.

The Jones vector is a complex valued two-vector that consists of the complex

envelopes of the transverse components of the electric field vector in (2.1). The Jones

vector completely characterizes the intensity, the phase, and the polarization state of

a monochromatic wave, and is typically represented as [25]

E =

[

Ex

Ey

]

, (2.2)

where Ex and Ey are the complex envelopes of two orthogonal transverse components

of the electric field whose intensity is equal to |Ex|2 + |Ey|2. Typically, Ex and Ey

represent the envelopes of the electric field in the horizontal and the vertical linear

polarization states, respectively, which form a particular basis of orthogonal polariza-

tion states. For this reason, in this chapter I define [1, 0]t and [0, 1]t as normalized

Jones vectors in the horizontal and the vertical polarization states, respectively, unless
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otherwise stated, where t is the transpose operator. However, any pair of normalized

Jones vectors that are orthogonal to the direction of propagation and to each other

can determine an arbitrary basis of Jones vectors. In the basis used in (2.2), the

normalized Jones vectors
[

1/
√

2, −i/
√

2
]t

and
[

1/
√

2, i/
√

2
]t

represent the right and

the left circular polarization states, respectively, which are a linear combination of

the horizontal and the vertical polarization states. These two polarization states are

circular because the time evolution of the electric field vector of the light traces out a

circle transverse to the propagation direction. All possible normalized Jones vectors

correspond to all possible degrees of ellipticity of the time evolution of the electric

field vector. The normalized Jones vector representation of the polarization state of

light is not unique. A normalized Jones vector represents the phase of monochromatic

light, as well as its polarization. For example, both normalized Jones vectors [1, 0]t

and [i, 0]t represent the horizontal polarization state. The phase of the monochro-

matic waves must be taken into account when using full time-domain models of the

light propagation in optical fibers. For this reason, Jones vectors are useful when

running full time-domain simulations, as I will show in Sec. 3.1.1. We note that the

complete Jones vector has intensity information, as well as phase and polarization

state information. The normalized Jones vector does not have intensity information.

The Stokes parameters are the components of a real-valued four-vector that com-

pletely characterizes the intensity and the polarization state of either a monochro-

matic light wave or the superposition of light waves at different frequencies. If at

least two frequency components of the light have different normalized Jones vectors,

the light is said to be partially polarized. Therefore, the Stokes parameters can also
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represent the polarization state of partially polarized light. The Stokes parameters

S = [S0, S1, S2, S3]
t of monochromatic light can be computed from the elements of

the Jones vector as [26]

S0 = E† σ0 E, S1 = E† σ3 E, S2 = E† σ1 E, S3 = −E† σ2 E, (2.3)

where

σ0 =

[

1 0

0 1

]

, σ1 =

[

0 1

1 0

]

, σ2 =

[

0 −i
i 0

]

, σ3 =

[

1 0

0 −1

]

, (2.4)

are the Pauli matrices [27]. We also define a Stokes vector that consists of the last

three Stokes parameters,

S =





S1

S2

S3



 . (2.5)

The Stokes parameters of an arbitrary number of monochromatic light waves with

different frequencies are equal to the sum of the Stokes parameters S0,ωi
and Sωi

of

each frequency component with angular frequency ωi,

S0 =
∑

i

S0,ωi
; S =

∑

i

Sωi
. (2.6)

The polarized component of the light can be represented by the normalized Stokes

vector, which is a three-vector s = S/ |S| that consists of the Stokes vector divided

by its magnitude. The normalized Stokes vectors [1, 0, 0]t and [−1, 0, 0]t represent

the horizontal and the vertical polarization states, respectively, while [0, 0, 1]t and

[0, 0, −1]t represent the circular right and the circular left polarization states, re-

spectively. Each possible normalized Stokes vector represents a unique polarization
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state and corresponds to a point on the surface of a unit sphere that is referred to

as the Poincaré sphere. Points on the equator of the sphere correspond to linear

polarizations; the two poles correspond to circular polarizations; intermediate points

correspond to various degrees of ellipticity. The length of the Stokes vector, |S|, rep-

resents the intensity of the polarized component of the light. The difference between

the total intensity of the light and the intensity of the polarized component of the

light represents the intensity of the unpolarized component of the light, S0 − |S|.

The degree-of-polarization (DOP) of the light is the ratio of the intensity of the

polarized component of the light to total intensity of the light. The DOP can be

expressed in terms of the elements of the Stokes vectors and the Stokes parameters

as

DOP =
|S|
S0

=

√

S2
1 + S2

2 + S2
3

S0

. (2.7)

Unpolarized light has a DOP equal to 0, while completely polarized light has DOP

equal to 1. The light is partially polarized when the DOP is a number between 0 and 1.

The Stokes vector completely characterizes the state of polarization of the light only

if the light is completely polarized. If the light is partially polarized or unpolarized,

all four Stokes parameters are required to characterize the state of polarization of the

light.

2.2 The transmission matrix of optical devices

Both the polarization state and the intensity of light can be modified after the light

passes through an optical device. The effect that an optical device produces on both
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the polarization state and the intensity of light can be modeled either by a frequency-

dependent Jones matrix or by a Müller matrix. In this Ph.D. dissertation, I indicate

a Jones matrix with an overbar and the corresponding Müller matrix without an

overbar. For example, the Jones matrix T̄ of a device produces the same effect on the

input Jones vector that the corresponding Müller matrix T of the device produces

on the input Stokes parameters. The output Jones vector Eout of a given device is

related to the input Jones vector Ein by the equation [24]

Eout = T̄Ein, (2.8)

where T̄ the 2 × 2 complex valued Jones matrix of the device.

The Müller matrix of a device is either a real-valued 3 × 3 or a 4 × 4 matrix. We

use the former only when the device does not affect the intensity of the light in a

way that is dependent on its polarization state. The 3 × 3 Müller matrix relates the

output Stokes vector to the input Stokes vector through an equation of the form

Sout = TSin, (2.9)

which is equivalent to the Jones matrix T̄ defined in (2.8).

If a device produces a change in both the polarization state and the intensity

of the light, this device must be modeled by a 4 × 4 Müller matrix, which relates

the output Stokes parameters to the input Stokes parameters. The output Stokes

parameters Sout of this device are related to the input Stokes parameters S in by the

equation,

Sout = T S in. (2.10)
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Once a 3 × 3 Müller matrix of a device is known, assuming that the device can be

mathematically represented by such a matrix, its corresponding 4 × 4 Müller matrix

can be obtained using the relationship,

T4×4 =











det1/3 (T3×3) 0 0 0

0

0

0

T3×3











. (2.11)

If, however, a 4×4 Müller matrix of a device is known, it is only possible to represent

this device using a 3×3 Müller matrix if the first row and the first column of the 4×4

Müller matrix are equal to the first row and the first column of the matrix that is on

the right-hand side of (2.11), which is equivalent to the earlier statement that to be

represented by the 3 × 3 Müller matrix, the device must not change the intensity of

the light in a way that is dependent on the input polarization state. A 3 × 3 Müller

matrix can produce polarization-independent gain or loss, which is represented by

det1/3 (T3×3) in (2.11).

Once the Jones Matrix T̄ of a device is known, the Müller matrix T of this device

can be computed using (2.3). Since the output Jones vector of this device is related

to the input Jones vector by Eout = T̄Ein, as in (2.8), one can substitute (2.8) into

(2.3) to express the components of the output Stokes parameters as

S0,out =
(

T̄Ein

)†
σ0

(

T̄Ein

)

, S1,out =
(

T̄Ein

)†
σ3

(

T̄Ein

)

,

S2,out =
(

T̄Ein

)†
σ1

(

T̄Ein

)

, S3,out = −
(

T̄Ein

)†
σ2

(

T̄Ein

)

,

(2.12)

where the matrices σ0, σ1, σ2, and σ3 are the Pauli matrices defined in (2.4). Equa-

tion (2.12) can be re-expressed so that the effect produced by the matrix T̄ is separated
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from the input Jones vector Ein, to obtain

S0,out = E
†
in

(

T̄
† σ0 T̄

)

Ein, S1,out = E
†
in

(

T̄
† σ3 T̄

)

Ein,

S2,out = E
†
in

(

T̄
† σ1 T̄

)

Ein, S3,out = −E
†
in

(

T̄
† σ2 T̄

)

Ein.

(2.13)

The four rows of the Müller matrix T that corresponds to the Jones matrix T̄ are

obtained using (2.13) by solving each of the four independent sets of linear equations

given by the matrices

T̄
† σ0 T̄ = β

(0)
0 σ0 + β

(0)
1 σ3 + β

(0)
2 σ1 − β

(0)
3 σ2,

T̄
† σ3 T̄ = β

(1)
0 σ0 + β

(1)
1 σ3 + β

(1)
2 σ1 − β

(1)
3 σ2,

T̄
† σ1 T̄ = β

(2)
0 σ0 + β

(2)
1 σ3 + β

(2)
2 σ1 − β

(2)
3 σ2,

T̄
† σ2 T̄ = β

(3)
0 σ0 + β

(3)
1 σ3 + β

(3)
2 σ1 − β

(3)
3 σ2.

(2.14)

Once the coefficients β in (2.14) are computed, one can express the Müller matrix

that relates the output Stokes parameters to the input Stokes parameters as

T =











β
(0)
0 β

(0)
1 β

(0)
2 β

(0)
3

β
(1)
0 β

(1)
1 β

(1)
2 β

(1)
3

β
(2)
0 β

(2)
1 β

(2)
2 β

(2)
3

β
(3)
0 β

(3)
1 β

(3)
2 β

(2)
3











, (2.15)

so that Sout = T S in, as in (2.10).

The Jones matrix of a linear polarizer, which is a device that transmits only the

horizontal polarization state, is given by

T̄ =

[

1 0

0 0

]

. (2.16)

This device transforms a given input Jones vector [Ex, Ey]
t to the output Jones

vector [Ex, 0]t. Therefore, a linear polarizer affects both the polarization state and
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the intensity of the light that passes through the device. The 4 × 4 Müller matrix of

this device is given by

T =











1/2 1/2 0 0

1/2 1/2 0 0

0 0 0 0

0 0 0 0











, (2.17)

which transforms any given input Stokes parameters [S0, S1, S2, S3]
t into the output

Stokes parameters [S0/2 + S1/2, S0/2 + S1/2, 0, 0]t.

A polarization rotator, on the other hand, is a device that rotates the plane of

polarization of a plane wave around the propagation axis without modifying the

intensity of the wave. For example, the rotation matrix

T̄ =

[

cos θ − sin θ

sin θ cos θ

]

, (2.18)

transforms a linearly polarized wave with Jones vector [cos θ1, sin θ1]
t into a linearly

polarized wave with Jones vector [cos θ2, sin θ2]
t, where θ2 = θ1 + θ. The 3× 3 Müller

matrix of this polarization rotator is given by

T =





cos 2θ − sin 2θ 0

sin 2θ cos 2θ 0

0 0 1



 , (2.19)

which is equivalent to the Jones matrix T̄ in (2.18). The Müller matrix in (2.19)

produces a rotation on the Poincaré sphere by the angle 2θ about the S3-axis.
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2.3 Polarization mode dispersion

2.3.1 Physical origin of polarization mode dispersion

It has been known for many years that all single-mode optical fibers are actually bi-

modal due to the presence of birefringence, which breaks the two-fold degeneracy of

the HE11 mode [28]. The birefringence difference between the two local eigenmodes

is very weak in absolute terms—typically, ∆n/n ' 10−7. However, the wavelength of

light is very small, λ ' 1.55 µm, so that typical beat lengths are on the order of 3 to

30 meters. The beat length is the length in which the phase difference between the

polarization eigenmodes changes by 2π at a given wavelength, such as 1.55 µm. This

scale, which is typically tens of meters, is very small compared to typical dispersive

scale lengths, nonlinear scale lengths, and system lengths, all of which are typically

hundreds or even thousands of kilometers. At the same time, the orientation of the

axes of birefringence changes randomly over length scales that vary from a fraction

of a meter to a hundred meters, depending on the fiber type. Since the magnitude of

an effect is inversely proportional to its scale length, the birefringence should be con-

sidered large but rapidly varying, relative to the system scale lengths of interest [29].

Birefringence is a linear effect that changes the phase difference between the light

components that propagate in the two local eigenmodes of the fiber, thereby chang-

ing the polarization state of light. The phase difference between the light components

that propagate in the two local eigenmodes of polarization is frequency dependent.

Over a restricted wavelength range the deviation of the phase difference between the

two polarization components of the light varies linearly with frequency. The length
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scale on which a single frequency changes its polarization state equals the length scale

on which the orientation of the optical fiber birefringence changes, which is also the

same order of magnitude as the beat length [11]; so, the polarization state of the light

is also rapidly changing with distance. By contrast, the changes in the polarization

states for all frequencies in the communication band of a typical WDM optical fiber

system are nearly identical, so that the polarization states in two different frequencies

drift apart slowly if they start out the same [29]. It is this differential drift that is

the physical source of polarization-mode dispersion (PMD).

The length scale on which the differential drift of the evolution of the polarization

states inside a communication band occurs varies over a wide range, since it depends

on the bandwidth as well as the properties of the optical fiber; however, typical values

range from tens of kilometers to tens of thousands of kilometers. When the differential

drift is large enough to affect the polarization states inside the bandwidth of a single

wavelength channel, the pulses can spread in the time domain. This pulse spreading

can lead to an increase in the bit-error ratio, where the bit-error ratio is the probability

of error in the decoded bit at the receiver. This effect becomes more important as

the data rate of a single channel increases because the bandwidth of a single channel

increases with the data rate. In this dissertation, I focus on systems whose PMD is

small enough so that it does not produce significant waveform distortions. In these

systems, the mean of the accumulated differential-group delay of the transmission line

does not exceed 10% of the bit period [30], [31]. These systems include present-day

trans-oceanic fiber transmission systems operating at 10 Gbit/s per channel and long-

haul terrestrial communications systems that use low-PMD optical fibers that were
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deployed after 1990. However, PMD still has an important effect on these systems

since it causes the polarization states of different wavelength channels to gradually

drift apart, as I will describe in the next section.

2.3.2 Modeling of polarization mode dispersion

PMD is caused by the randomly varying strength and the orientation of the axis of

birefringence in optical fibers [9]. Poole and Favin [32] and others [11], [33] showed

that a model that consists of a concatenation of a large number of sections of constant

birefringence is sufficient to model the PMD statistics if the polarization state is

randomly rotated prior to each section. This random rotation produces a random

coupling of the light in the two local principal states of polarization of a birefringent

section, which are the local fiber modes. Marcuse, et al. [27] analyzed the coarse-step

method, which uses large birefringent section lengths to model PMD in optical fibers.

They showed that the length of the sections could be much larger than both the beat

length and the correlation length without affecting the PMD statistics. If we consider

only the linear PMD term in the the coupled nonlinear Schrödinger equation [34], the

Jones matrix F̄ (ω) of an optical fiber that consists of N constant birefringent sections

may be written as [27]

F̄ (ω) =

N
∏

n=1

P̄ S̄n, (2.20)

where S̄n is a unitary Jones matrix that produces the random mode coupling in the

n-th section, and P̄ models the propagation through a constant birefringent section.

To efficiently solve the Manakov-PMD equation using the coarse-step method [27],
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we randomly rotate the polarization states uniformly on the Poincaré sphere at the

beginning of each section. Therefore, we define the Jones matrix S̄n as

S̄n =

[

cos (ξn/2) exp[i (ψn + φn) /2] i sin (ξn/2) exp[i (ψn − φn) /2]

i sin (ξn/2) exp[−i (ψn − φn) /2] cos (ξn/2) exp[−i (ψn + φn) /2]

]

, (2.21)

which models the random mode coupling prior to the n-th birefringence section. The

parameters ξn, ψn, and φn are random variables that are independent at each n and

from each other. In (2.21), the probability density functions (pdf) of the angles ψn

and φn are uniformly distributed between 0 and 2π, while the pdf of the quantities

cos ξn are uniformly distributed between −1 and 1. The Jones matrix

P̄ =

[

exp(−iωb′∆z) 0

0 exp(iωb′∆z)

]

, (2.22)

models the transmission through a birefringent section, where ∆z is the length of

the n-th section, and ω is the angular frequency. The parameter b′ is the linear

birefringence per unit length, which is given by [27]

b′ =
DPMD

2 ∆
1/2
z

, (2.23)

where DPMD is the PMD coefficient (in ps/km1/2).

The 3×3 Müller matrix Sn equivalent to the Jones matrix S̄n in (2.21) is comprised

of elementary rotations around the x-axis and the y-axis [35], [36] of the Poincaré

sphere,

Sn = Rx (ψn)Ry (ξn) Rx (φn) . (2.24)

Consequently, the matrices S̄n in (2.21) correspond to uniformly distributed rota-

tions on the Poincaré sphere. The Müller matrix P equivalent to the Jones matrix
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P̄ in (2.22) is simply a rotation around the x-axis of the Poincaré sphere: P =

Rx (−2ωb′∆z). The 4 × 4 Müller matrix that is equivalent to (2.24) can be defined

from the 3 × 3 Müller matrix as in (2.11).

2.4 Polarization-dependent loss

Some devices produce a polarization-dependent attenuation on the input light, which

leads to polarization-dependent loss (PDL). Physical effects that produce PDL include

bulk dichroism (polarization-dependent absorption), fiber bending, angled optical in-

terfaces, and oblique reflection [7]. In optical fiber communication systems, there

are several sources of PDL: optical connectors, couplers, isolators, circulators, and

demultiplexers [7].

The differential attenuation α produced by the PDL of a device is defined as

α =
Pmin

Pmax
, (2.25)

where Pmin and Pmax are the minimum and maximum optical power that are measured

at the output of the device under test, given that polarized light is launched in all

possible polarization states at the input of the device. It follows that 0 ≤ α ≤ 1.

The effect of PDL is to cause excess loss in one of two orthogonal polarization

states. Using the Jones vector notation, one can define the transmission matrix of a

PDL element with the highest loss in arbitrary polarization state as

S̄PDL = R̄
−1
PDL

[

1 0

0 α1/2

]

R̄PDL, (2.26)



25

where the matrix R̄PDL is a unitary Jones matrix that rotates the polarization state

with highest loss to the vertical polarization state [0, 1]t. Therefore, a PDL element

whose highest loss is in the vertical polarization state has the polarization rotation

matrix R̄PDL equal to a 2 × 2 identity matrix.

The effect of PDL on the Stokes parameters of the light S = [S0, S1, S2, S3]
t is

given by the 4 × 4 Müller matrix

SPDL = R
−1

PDL











(1 + α) /2 (1 − α) /2 0 0

(1 − α) /2 (1 + α) /2 0 0

0 0 α1/2 0

0 0 0 α1/2











RPDL, (2.27)

where the matrices SPDL and RPDL are equivalent respectively to the matrices S̄PDL

and R̄PDL in (2.26).

2.5 Polarization-dependent gain

There are two kinds of polarization-dependent gain (PDG) in erbium-doped fiber

amplifiers (EDFAs). The first kind is induced by laser diode pumping, which can

produce a polarization sensitive excitation of the erbium atoms if the pump laser is

polarized. The gain difference between the polarization state with maximum and with

minimum gain due to this kind of PDG is about 0.12 dB; however, this kind of PDG

is nearly eliminated in practical systems by pumping in two orthogonal polarization

states. The second kind of PDG is due to the polarization-dependent saturation of the

EDFA, which is also known as polarization-hole burning. The polarization-dependent

saturation produces a larger gain in the light component that is in the polarization
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state that is orthogonal to the polarized component of the light. This effect is pro-

portional to the DOP of the incoming light. The intensity and the polarization state

of the polarized component of the light are represented by the Stokes vector S. The

PDG coefficient gPDG is only about 0.07 dB for an EDFA with 3 dB of gain compres-

sion, but it becomes larger as the amplifier goes deeper into gain compression [37].

An amplifier with 3 dB of gain compression produces a gain in the signal that is 3 dB

smaller than when the gain is unsaturated.

In single-channel systems, the presence of PDG in EDFAs can significantly degrade

the optical signal-to-noise ratio (OSNR) in the transmission because the noise that

is orthogonal to the polarization state of the signal is enhanced. However, the effect

of PDG is negligible in modern-day WDM systems [8], since it is common to launch

neighboring channels in orthogonal polarization states to mitigate both the PDG and

the nonlinear interaction between the channels, and PMD tends to randomize the

polarization state of the channels so that the overall DOP remains at a low level.

Therefore, the DOP and, consequently, the PDG effect is small throughout the entire

transmission line.

The effect of PDG is similar to the effect of PDL; however, with PDG the polar-

ization state with excess gain is dependent on the polarization state of the incoming

light. Using the Jones vector notation, one can define the transmission matrix of a

PDG element as

S̄PDG = R̄
−1
PDG

[

1 0

0 g1/2

]

R̄PDG, (2.28)

where g is the polarization dependent gain, and R̄PDG is a Jones matrix that rotates

the polarization state of the incoming light to the horizontal polarization [1, 0]t. As
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a consequence, the polarization state that is orthogonal to the polarization state of

the incoming light is transformed to the vertical polarization (0, 1), which undergoes

an excess gain. The polarization dependent gain g is given by [7],

log10 g =
1

10
(PDG × DOP) , (2.29)

where DOP here refers to the degree-of-polarization of the incoming light. Note that

g > 1, since PDG > 0. The Müller matrix that describes the effect of PDG on

the Stokes parameters S = [S0, S1, S2, S3]
t of the incoming light is similar to the

corresponding Müller matrix for the PDL in (2.27),

SPDG = R
−1
PDG











(1 + g) /2 (1 − g) /2 0 0

(1 − g) /2 (1 + g) /2 0 0

0 0 g1/2 0

0 0 0 g1/2











RPDG. (2.30)

The Müller matrices SPDG and RPDG in (2.30) are equivalent to the Jones matrices

S̄PDG and R̄PDG in (2.28), respectively.

2.6 Gain saturation

In long-haul WDM systems, the combined effects of PMD, PDL, PDG, and the gain

saturation in the optical amplifiers produce performance fluctuations that can lead

to outages. PMD causes the polarization states of different WDM channels to drift

apart. Then, the channels undergo different attenuations as they pass through the

PDL elements in the optical amplifiers. The optical amplifiers are designed to operate

in the saturated regime, which mitigates for the average power fluctuations in the

transmission line. Because the gain saturation is a frequency independent effect, the
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excess loss that some channels undergo due to the PDL elements are not compensated

by the optical amplifiers, so that the optical power of the channels that undergo excess

loss due to PDL is effectively transfered to the other channels. As a consequence,

different channels have different optical signal-to-noise ratios prior to the receiver. In

addition, the PDL elements partially polarize the noise, which significantly affects

the performance of each channel.

The gain in erbium-doped fiber amplifiers (EDFAs) depends on a large number of

parameters, such as the erbium-ion concentration, amplifier length, core radius, and

pump power [38]. A three-level rate-equation is commonly used to model EDFAs,

since stimulated emission terminates in the ground state in EDFAs. However, the

evolution of the optical power in EDFAs can be approximated by the differential

equation [39],

dP (z)

dz
=

g0P (z)

1 + P (z)/Ps
, (2.31)

where g0 is the unsaturated differential gain, Ps is the intrinsic saturation power of

the erbium-doped fiber, and P (z) is the signal power at a distance z along the erbium-

doped fiber in the amplifier. The saturated gain G of an amplifier with length L is

given by

G =
Pout

Pin

, (2.32)

where Pin = P (z = 0) and Pout = P (z = L). An amplifier is said to operate at

3 dB gain compression when the gain G is 3 dB smaller than the small signal gain

(Pout � Ps). The gain of a given amplifier increases with the reduction of the input

power Pin of this amplifier. This increase in the gain recovers on the order of 0.6 dB

of the power for every 1 dB reduction of the input power due to excess losses in the
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previous stages when the gain compression is about 5 dB [10]. The gain saturation

in optical amplifiers effectively produces an automatic gain control that partially

compensates for the power fluctuations along the transmission.

Wang and Menyuk [8] used a gain saturation model that is simpler than the one

in (2.31). In their model, the output power of an EDFA is assumed to be virtually

independent of the input power, except for the added spontaneous-emission noise.

Once the target output power Pout,target is defined, in the absence of random power

fluctuations, the gain of an amplifier with input power Pin can be obtained from the

expression [38],

Pout,target = GPin + 2nsp(G− 1)
∑

m

hν(m)B(m), (2.33)

where nsp is the spontaneous emission factor, G is the amplifier gain, which com-

pensates for the losses in the fiber, and hν(m) and B(m) are the energy of a single

photon and the optical bandwidth of the m-th channel, respectively. The parameter

h is the Planck’s constant [38], and ν(m) is the central frequency of the m-th channel.

Using (2.33), one can compute the saturated gain, which is given by

G =
Pout,target + 2nsp

∑

m hν
(m)B(m)

Pin + 2nsp

∑

m hν
(m)B(m)

. (2.34)

In the saturation model in (2.34), each amplifier recovers all the power fluctuation

at the input of the amplifier, which can be caused by excess losses in the previous

stages. On the other hand, the saturation model in (2.31) recovers only about 0.6 dB

for every 1 dB of power reduction in the input due to excess losses. However, my

colleagues and I numerically verified that both models produce similar results when
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the number of amplifiers is large and the optical amplifers are set up to compensate

for the average losses in the system. For this reason, we used the gain saturation

model in (2.34) throughout the work reported in this dissertation unless otherwise

stated.



Chapter 3

Optical fiber transmission models

3.1 Full time-domain model

3.1.1 Manakov-PMD equation

Light propagation in optical fibers is described by the coupled nonlinear Schrödinger

(CNLS) equation, its extensions, and its reductions [34]. Menyuk and Wai [11] de-

veloped the Manakov-PMD equation,

i
∂Ψ

∂z
− 1

2
β ′′∂

2Ψ

∂t2
− i

6
β ′′′∂

3Ψ

∂t3
+

8

9
n2k0 |Ψ|2 Ψ − i

γ (z)

2
Ψ = −i b′ σ̄ ∂Ψ

∂t
, (3.1)

which is a reduction of the CNLS equation, in which nonlinear PMD is ignored as is

appropriate in communications systems [27]. The Jones vector Ψ is the electric field

envelope transformed to a basis that freezes the evolution of the polarization state of

the field Ψ at the center frequency [27]. The parameter b = (β1−β2) is the difference

between the propagation constants of the fast mode β1 and the slow mode β2 of the

fiber, and the primes represent derivatives with respect to the angular frequency ω,

where β ′′ = β ′′
1 ≈ β ′′

2 is the chromatic dispersion and β ′′′ is its frequency derivative.

The quantity b′ that I define here is the continuous analog of the quantity b′ that I

31
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previously defined after (2.22) for the coarse step method [27]. The parameter γ(z)

is the attenuation, and n2 is the nonlinear coefficient of the fiber [34]. The term

on the right-hand side of (3.1) corresponds to the usual linear PMD, where σ̄ is a

unitary Jones matrix that is related to the orientation of the randomly varying axes

of birefringence [29]. The derivation of the Manakov-PMD equation was based on the

observation that while single frequency, continuous wave (CW) light at low intensity

undergoes a rapid random evolution on the Poincaré sphere, the trajectories on the

Poincaré sphere of different frequencies in the bandwidth of a typical communication

signal drift apart slowly. One efficient technique to solve the Manakov-PMD equation

is the coarse-step method, where the polarization states are scattered uniformly on

the Poincaré sphere at the beginning of each step and the birefringence strength and

orientation is kept constant within each step. I described this technique in Sec. 2.3.2.

The steps can be orders of magnitude larger than the length scale over which the

birefringence orientation changes in optical fibers, as long as it is still short compared

to the nonlinear and dispersive scale lengths. Thus, solving for Ψ using the coarse-

step method is much faster than solving for Ψ using a method that resolves the details

of the variations of the signal’s state of polarization.

Equation (3.1) is based on the Jones representation of the electric field envelope.

This representation is appropriate when carrying out studies in which the time-domain

is resolved. Later in this chapter I will introduce a reduced model in which I average

over the time domain of each wavelength channel. In this case, a Stokes parameter

representation is appropriate, since in general the degree-of-polarization (DOP) within

a single wavelength channel does not equal one.
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3.1.2 Split-step Fourier method

The Manakov-PMD equation (3.1) is a coupled nonlinear partial differential equation

that does not generally have analytical solutions. A numerical approach is necessary

to solve the Manakov-PMD equation. A commonly used method to solve this equation

and its reductions is the split-step Fourier method [38]. In this Chapter, I show how

to apply the split-step Fourier method to solve the Manakov-PMD equation. Since

the split-step Fourier method is efficient and flexible, I applied this method to solve

the full time-domain transmission model in this dissertation.

The Manakov-PMD equation in (3.1) can be represented as

∂Ψ

∂z
=

(

D̂ + N̂

)

Ψ, (3.2)

where D̂ is a linear differential matrix operator that accounts for PMD, dispersion

and attenuation and N̂ is a nonlinear matrix operator that accounts for the fiber

nonlinearity. The operators D̂ and N̂ are given by

D̂ =

(

− i

2
β ′′ ∂

2

∂t2
+

1

6
β ′′′ ∂

3

∂t3
− γ

2

)

Ī − ib′σ̄
∂

∂t
(3.3)

and

N̂ = i
8

9
n2k0 |Ψ|2 Ī, (3.4)

where Ī is the identity matrix. The formal solution of the first-order nonlinear dif-

ferential equation in (3.2) for the propagation of the field from z to z + ∆z is given

by

Ψ(z + ∆z) = exp
[

∆z

(

D̂ + N̂

)]

Ψ(z). (3.5)
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However, it is not practical to solve (3.5) numerically because D̂ is a linear oper-

ator in which frequency-domain field components of the field evolve independently

but time domain components are coupled together, while N̂ is a nonlinear operator

in which time-domain field components evolve independently but frequency-domain

components are coupled together. The linear and the nonlinear operators are non-

commuting operators that act together throughout the fiber, as described in (3.5).

However, one can obtain an approximate solution for Ψ after the field propagates

small distance ∆z through the fiber by assuming that the operators D̂ and N̂ are sep-

arable. In addition, we assume that the strength and the orientation of the birefrin-

gence is constant throughout the distance ∆z. More precisely, one can propagate (3.2)

from z to z+∆z in three steps using the symmetrized split-step Fourier method that

mathematically corresponds to

Ψ(z + ∆z) = exp

(

∆z

2
D̂

)

exp
(

∆zN̂

)

exp

(

∆z

2
D̂

)

Ψ(z). (3.6)

In the first step, the linear operator acts alone (N̂ = 0) propagating from z to z+∆z/2

after the input field Ψ(z) undergoes a uniformly distributed rotation on the Poincaré

sphere as in (2.21) to model the random mode coupling due to PMD using the coarse-

step method. After this random rotation, we assume that the local birefringence

orientation defined by σ̄ corresponds to the horizontal and the vertical polarization

states. More precisely,

σ̄ =

[

1 0

0 −1

]

. (3.7)

Since the operator D̂ is linear, the propagation of (3.2) from z to z+ ∆z/2 can be

efficiently carried out in the frequency domain because each frequency component of
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the field Ψ evolves independently. More specifically,

Ψ(z + ∆z/2, t) = exp

(

∆z

2
D̂

)

Ψ(z, t) = F−1

{

exp

[

∆z

2
D̂(ω)

]

F [Ψ(z, t)]

}

, (3.8)

where F [·] and F−1 {·} denote the forward and inverse Fourier transform, and

D̂(ω) =

(

i

2
β ′′ω2 +

i

6
β ′′′ω3 − γ

2

)

Ī − ib′ωσ̄ (3.9)

is the linear differential operator in (3.3) acting on a monochromatic plane wave of

frequency ω. In order to be consistent with our choice of negative carrier frequencies

in (2.1), we must define the Fourier transform, so that

F [g(t)] ≡
∫ +∞

−∞

dt g(t) exp(iωt), (3.10)

F−1 {G(ω)} =

∫ +∞

−∞

dω

2π
G(ω) exp(−iωt). (3.11)

I note that while this convention is standard in the physics literature, it is opposite

of the convention that is used in most of the electrical engineering literature. Both

conventions are used in the optical communications literature. A thorough discussion

of this issue may be found in Menyuk, et al. [40]. An important practical issue in

the numerical implementation of (3.8) is that the usual convention for fast Fourier

transforms [41] corresponds to the opposite signs in (3.10) and (3.11). Thus, the

Fourier transform that is defined in (3.10) corresponds to the inverse fast Fourier

transform, and vice versa.

In the second step, the nonlinearity acts alone (D̂ = 0) starting with the result

of the first step to propagate Ψ from z to z + ∆z. Therefore, the propagation of

the nonlinear operator of (3.2) from z to z + ∆z can be efficiently carried out in
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the time domain because each component of the field Ψ in the time domain evolves

independently. Specifically, one finds

Ψ(z + ∆z) = exp
(

∆z N̂

)

Ψ(z). (3.12)

Finally, in the third step the dispersion acts alone once again (N̂ = 0) starting with

the result of the second step to propagate Ψ from z + ∆z/2 to z + ∆z as in (3.8).

The symmetry of the numerical evaluation of the linear and nonlinear operators in the

symmetrized split-step Fourier algorithm produces a numerical result that has second-

order accuracy with respect to the step size ∆z [38]. Consequently, the use of the split-

step Fourier method in combination with the fast Fourier transform [41] can be up

to two orders of magnitude faster than simple finite-difference implementations with

the same accuracy [38]. While more sophisticated implementations of finite difference

methods can produce comparable speeds to the split-step Fourier method [42], these

implementations are complex and cannot deal easily with changes in the dispersion

relations.

3.2 Reduced Stokes Model

Wang and Menyuk [8] introduced a reduced Stokes model to efficiently compute the

penalty produced by the combined effects of inter-channel PMD, PDL, and PDG, as

well as gain saturation in the amplifiers. Since we are interested in the evolution of

the polarization state of an entire optical channel, the reduced model follows only

the evolution of the Stokes parameters of each channel in a WDM system. We first

define E(z, t) to be the sum of the complex envelopes of all the channels in the time
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domain,

E(z, t) =

M
∑

m=1

E(m)(z, t) exp
[

ik(m)z − iω(m)t
]

, (3.13)

where k(m) and ω(m) are the central wavenumber and frequency of the m-th channel,

measured with respect to the central wavenumber and frequency of E(z, t). The

variable E(m)(t) is the corresponding wave envelope. The Stokes parameters of the

m-th channel are defined by

S
(m)
0 (z) =

1

T

∫ t2

t1

[

∣

∣E(m)
x (z, t)

∣

∣

2
+

∣

∣E(m)
y (z, t)

∣

∣

2
]

dt

S
(m)
1 (z) =

1

T

∫ t2

t1

[

∣

∣E(m)
x (z, t)

∣

∣

2 −
∣

∣E(m)
y (z, t)

∣

∣

2
]

dt

S
(m)
2 (z) =

2

T

∫ t2

t1

Re
[

E(m)
x (z, t)E(m)∗

y (z, t)
]

dt

S
(m)
3 (z) =

2

T

∫ t2

t1

Im
[

E(m)
x (z, t)E(m)∗

y (z, t)
]

dt

(3.14)

where T = t2 − t1 is the interval of integration for the computation of the Stokes

parameters, E
(m)
x and E

(m)
y are the complex wave envelopes in two orthogonal po-

larization state, and the ∗ indicates complex conjugate. I assume that the interval

T is sufficiently large compared to the bit period so that the Stokes parameters are

independent of the bit pattern. The parameter S
(m)
0 gives the total power of the

channel, while the vector magnitude
∣

∣S(m)
∣

∣ gives the polarized power in the channel,

where S(m) =
[

S
(m)
1 , S

(m)
2 , S

(m)
3

]t

. The unpolarized power is the difference between

the total power and the unpolarized power, S
(m)
0 −

∣

∣S(m)
∣

∣. I associate the Stokes

parameters of each channel with the central frequency of the channel ω(m). In the
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reduced model, one must keep track of the evolution of the four Stokes parameters for

the signal S
(m)
signal and four Stokes parameters for the noise S

(m)
noise for each individual

channel. It is necessary to follow the noise and signal parameters separately so that

one can compute both the polarized and unpolarized components of the signal and

of the noise at the receiver for each channel.

To model PMD, PDL, and PDG in the system I use the 4×4 Müller matrices that

I described in Sec. 2.2. A system realization is simulated using the reduced Stokes

model by concatenating the Müller matrices of the elements of the system to relate

the output Stokes parameters of all the channels to their corresponding input Stokes

parameters for a given random realization of the random mode coupling due to PMD.

In addition to PDL and PDG, the EDFAs add unpolarized optical noise to the system

that is dependent on the amplifier gain. Therefore, an EDFA will also produce the

following change in the Stokes parameters of the noise:

S
(m)
0,noise,after = GS

(m)
0,noise,before + 2nsp(G− 1)B(m)hν

S
(m)
noise,after = GS

(m)
noise,before,

(3.15)

where nsp is the spontaneous emission factor, G is the amplifier gain, which compen-

sates for the losses in the fiber, hν is the energy of a single photon, and B(m) is the

optical bandwidth of the m-th channel. The gain G is determined using the gain

saturation model that I described in Sec. 2.6.

The reduced Stokes model only gives the optical signal-to-noise ratio (OSNR) and

the polarization states of the signal and the noise of each channel in the receiver.

However, one must compute the Q-factor in order to compute the Q-penalty due to
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the polarization effects. In addition to the OSNR and the polarization states of the

signal and the noise, a receiver model must also account for the modulation format

and the shapes of the optical and the electrical filters in the receiver to compute the

Q-factor and, consequently, the Q-penalty produced by the polarization effects in

each channel. In Chapter 4, I describe the receiver model that I developed, which

can be used in combination with the reduced Stokes model to accurately compute

penalties due to the combination of polarization effects and gain saturation in the

amplifiers.



Chapter 4

Accurate receiver model

4.1 Performance measures

A fundamental problem in the design of optical fiber transmission systems is to achieve

a desired bit-error ratio (BER), with a given outage probability, after a signal is

transmitted through the system. The outage probability is the probability that the

penalty due to one of the system impairments, such as the polarization effects, exceeds

a specified margin. Typically, optical fiber transmission systems are designed to

operate with a BER below 10−9. To work properly, these systems must operate

with a BER substantially smaller than 10−9 to reduce the probability of exceeding

this BER limit. As a consequence, direct BER measurements may require hours

of transmission experiments [15], and direct BER computation may require days

of standard Monte Carlo simulations [43]. Since direct BER measurements can be

difficult to make, a widely used performance measure is the Q-factor [18]. The Q-

factor is a function of the means and the standard deviations of the received electric

currents in the marks and in the spaces [44], which can be viewed experimentally in

the time domain using an oscilloscope; it can be used to give an approximate value

40
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for the BER under the assumption that the electric currents in the marks and in

the spaces at the receiver are both Gaussian-distributed. Even though the actual

distributions of the marks and of the spaces are generalized χ2 distributions, rather

then being Gaussian distributions, this approach can provide a good estimate of the

BER in many cases [15], [19]. The optical signal-to-noise ratio (OSNR) is another

commonly used performance indicator that is even easier to measure than the Q-

factor [19], [30]. However, the relationship between the OSNR and the Q-factor is

not straightforward, since the Q-factor depends on the shape of the optical pulses

after transmission, the relationship between the Stokes vectors of the signal and the

noise, and on the characteristics of the receiver.

The design and performance evaluation of optical fiber communication systems

relies just as much on the accuracy and efficiency of receiver models as it does on

accurate and efficient modeling of the transmission line [20]. Accurate receiver mod-

eling is especially important when comparing modulation formats. Marcuse [18] and

Humblet and Azizog̃lu [19] derived widely used approximate expressions for the Q-

factor as a function of the signal-to-noise ratio (SNR) of the electric current and as

a function of the OSNR, respectively. In both [18] and [19], the authors assume that

the receiver consists of a rectangular optical filter, a square-law photodetector, and an

integrate-and-dump electrical filter. They also assume that the optical signals have a

perfect extinction ratio and that the optical noise is Gaussian and white prior to the

optical filter.

I generalize Marcuse’s and Humblet and Azizog̃lu’s results by deriving a formula

for the Q-factor in terms of the OSNR for an optical signal in a single polarization
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state and an arbitrary pulse shape immediately prior to the receiver and an arbitrary

optical extinction ratio in the spaces, for arbitrary optical and electrical filters in the

receiver, and for arbitrarily polarized noise. To do so, I calculate the moments of

the electric current in the receiver, using an approach that was introduced earlier

by Winzer, et al. [20] to calculate the BER. In [20], Winzer et al. investigated the

performance advantage of impulsive amplitude-shift-keyed formats. They limited

their study to systems with unpolarized optical noise.

I extend the method in [20] to account for arbitrarily polarized noise. The polar-

ization state of the noise can be significantly affected by the presence of polarization-

dependent components, such as components with polarization-dependent loss (PDL)

and polarization-dependent gain (PDG) [7]. I will demonstrate that, for a fixed

OSNR, the Q-factor can vary widely depending both on the degree of polarization

(DOP) of the noise and on the angle between the Stokes vectors of the signal and the

noise. The formula for the Q-factor that I present in this dissertation can be used in

combination with reduced models of the transmission line to accurately quantify how

the performance of the system depends on the combined effects of polarization-mode

dispersion (PMD), PDL, PDG, and the gain saturation of optical amplifiers. I will

also show that the use of a receiver model that does not account for the polariza-

tion state of the noise, as in [8], leads to an inaccurate computation of the outage

probability due to polarization effects.

In order to correctly account for the pulse shape in the formula for the Q-factor, I

define an enhancement factor. This factor explicitly quantifies how efficiently the

combination of a pulse shape and a receiver translates the OSNR into the SNR
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of the electric current in the receiver. I validate the formula for the Q-factor by

comparison with both experiments and Monte Carlo simulations. I also use the for-

mula for the Q-factor to explicitly quantify the advantage in the receiver of using a

chirped return-to-zero (CRZ) modulation format rather than a return-to-zero (RZ)

or a non-return-to-zero (NRZ) format with the same mean optical power and receiver

characteristics [45]. Just as in [18] and [19], the computational cost of computing

the Q-factor using the formula that I propose is orders of magnitude less than the

cost of accurately computing the Q-factor in the time domain using Monte Carlo

simulations. However, this model does not take into account nonlinear signal-noise

interactions during transmission that can both amplify and color the noise prior to

the receiver in long-haul fiber transmission systems [43], [46].

In Sec. 4.2, I derive the formula for the Q-factor. In (4.39), I express the Q-factor

in terms of the SNR of the electric current, and in (4.51), I express the Q-factor in

terms of the OSNR and the polarization state of the noise relative to that of the

signal. In Appendix A, I show the derivation of the integral expressions that I use

in this chapter. In Secs. 4.3 and 4.4, I present a validation of the receiver model

discussed in Sec. 4.2 by comparison to Monte Carlo simulations of the receiver and

back-to-back experiments, respectively. In both sections, the validation is performed

with unpolarized optical noise and with partially polarized noise prior to the receiver.

Finally, in Sec. 4.5, I use the receiver model to compare the performance of different

modulation formats.
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4.2 Receiver model

4.2.1 Electric current in the receiver

In this section, I derive an expression that relates the Q-factor to the OSNR, and

I introduce the enhancement factor. The enhancement factor quantifies the relative

performance of different modulation formats and receivers [8]. I begin by recalling

the expressions for the mean and variance of the electrically filtered current in the

receiver as in [20], which I generalize to account for arbitrarily polarized optical noise.

I emphasize that one cannot simply compute the variance of the electric current

due to the noise beating with itself by summing the variance of the current that

is produced by the noise component that is co-polarized with the signal with the

variance of the current that is produced by the noise component that is orthogonal

to the polarization state of the signal. This approach is not correct because the

components of the noise that are parallel and perpendicular in Jones space to the

signal may be correlated if the noise is partially polarized. For example, if the noise

is completely polarized in the +45◦ linear polarization state, which corresponds to the

unit Jones vector
(

1/
√

2, 1/
√

2
)

, the noise can also be represented as the sum of two

components with the same power in the horizontal and the vertical linear polarization

states. Nonetheless, one cannot compute the variance of the electric current due to

noise by summing the variances of the current that are produced by the noise in the

horizontal and the vertical polarization components because these two components are

not uncorrelated in general. However, the coherency matrix of the noise is a Hermitian

matrix, which implies that there is always an orthogonal basis for Jones space in
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which the two orthogonal components of the noise are uncorrelated. Therefore, one

may derive formulae for the mean and the variance of the electric current in the

receiver by expressing both the signal and the noise in an orthonormal basis for Jones

space in which the two orthogonal components of the noise are uncorrelated. In this

basis, the variance of the electric current due to the noise is equal to the sum of the

variances of the current that are produced by each of the two orthogonal polarization

components of the noise.

At the receiver, I assume that the noise from the optical amplifiers is the dominant

source of noise, as is the case in an optical communications system with an optically

preamplified receiver [39]. Prior to the optical filter in the receiver, I assume that

the signal is polarized and that the noise is a Gaussian white noise process that has

been generated by optical amplifiers. I let es(t) and en(t) denote the Jones vectors of

the electric field envelopes of the signal and noise respectively prior to the receiver,

where t is time. Since most optical transmission systems have polarization-dependent

components that can affect the polarization state of the noise, I assume that the

optical noise entering the receiver has an arbitrary polarization state.

The receiver model that I use consists of an optical filter with a transfer function

Ho(ω) and corresponding impulse response ho(t), a square-law photodetector, and an

electrical filter with a transfer function He(ω) and corresponding impulse response

he(t). The transfer function He(ω) can account for linear effects in other electrical

components of the receiver, including the photodetector. Then the electrical current

at the detection point in the receiver is given by

i (t) = R |[es(t) + en(t)] ∗ ho(t)|2 ∗ he(t), (4.1)
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where R is the responsivity of the photodetector and the convolution of two arbitrary

functions g(t) and h(t) is defined by g(t) ∗ h(t) =
∫ +∞

−∞
g(τ)h(t− τ)dτ .

4.2.2 Noise correlation

I assume that the optical noise prior to the optical filter at the receiver is a Gaussian

white noise process that has been generated by optical amplifiers. Therefore, the

optical noise is delta-correlated with independent and identically distributed real and

imaginary Gaussian probability density functions with zero mean [47]. Hence, the

autocorrelation function of the optical noise is given by

〈en(t) · e∗
n(t′)〉 = NASE δ (t− t′) , (4.2)

where v · w∗ = v1 w
∗
1 + v2 w

∗
2 is the standard Hermitian inner product of two Jones

vectors v = [v1, v2]
t and w = [w1, w2]

t, which is independent of the choice of or-

thonormal basis of Jones space. The bracket 〈·〉 indicates an average over all noise

realizations, and NASE is the total power spectral density of the noise prior to the

receiver. The effect of the optical filter on the input light is mathematically equivalent

to the convolution of the impulse response of the optical filter ho(t) with the Jones

vector of the input light. Therefore, the optically filtered noise eno
(t) can be defined

as eno
(t) = en(t) ∗ ho(t). Using (4.2) and the impulse response of the optical filter

ho(t), I find that the autocorrelation function of the optically filtered noise eno
(t) is

given by

〈eno
(t) · e∗

no
(t′)〉 = NASE ro (t′ − t) , (4.3)
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where

ro(τ) =

∫ +∞

−∞

ho(τ
′) h∗o(τ + τ ′)dτ ′, (4.4)

is the autocorrelation function of the optical filter. The quantity

ro(0) =

∫ +∞

−∞

|ho(τ
′)|2 dτ ′ (4.5)

is the power-equivalent spectral width of the optical filter [24], which we also denote

by Bo.

To account for the effect of the polarization-dependent components along the

transmission, I must first derive expressions for the autocorrelation function of the

noise in the two orthogonal polarization state components that are uncorrelated.

To do so, I compute the temporal coherency matrix [24], which is a 2 × 2 complex

Hermitian matrix that mathematically describes both the time correlation and the

polarization state of light. Assuming that the optical noise entering the receiver has

an arbitrary polarization state, the temporal coherency matrix Jn(τ) of the optically

filtered noise is defined by

Jn(τ) =

[

〈eno,x
(t) e∗no,x

(t+ τ)〉 〈eno,x
(t) e∗no,y

(t+ τ)〉
〈eno,y

(t) e∗no,x
(t+ τ)〉 〈eno,y

(t) e∗no,y
(t + τ)〉

]

, (4.6)

where eno,x
(t) and eno,y

(t) are the components of the Jones vector of the optically

filtered electric field of the noise eno
(t) in an orthonormal basis {âx, ây} of Jones

space, and τ is a time delay between the field components. I assume that the noise

process is stationary. Therefore, Jn(τ) does not depend on the time t. Assuming

that the differential-group delay between two orthogonal components of the complex

envelope of the noise field due to PMD in the transmission line is small compared to
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the width of the impulse response of the optical filter ho(t), the PMD will not cause a

significant depolarization of the polarized component of the noise in the bandwidth of

the optical filter. As a consequence, all the elements of the temporal coherency matrix

Jn(τ) have approximately the same time delay dependence ro(τ) given by (4.3). In

this case, the state of polarization of the filtered noise can be represented by the

coherency matrix Jn = Jn(0) of the optically filtered noise defined as [25]

Jn =

[

〈eno,x
(t) e∗no,x

(t)〉 〈eno,x
(t) e∗no,y

(t)〉
〈eno,y

(t) e∗no,x
(t)〉 〈eno,y

(t) e∗no,y
(t)〉

]

, (4.7)

and the temporal coherency matrix becomes

Jn(τ) =
ro(τ)

ro(0)
Jn. (4.8)

The elements Jnxx
= 〈eno,x

(t) e∗no,x
(t)〉 and Jnyy

= 〈eno,y
(t) e∗no,y

(t)〉 in (4.7) are the

intensity of the filtered noise in the âx and ây polarizations, respectively, while Jnxy
=

〈eno,x
(t) e∗no,y

(t)〉 is a measure of the correlation between the components of the electric

field in the âx and ây polarizations [25]. The optical intensity of the filtered noise Itot

is equal to the trace of the matrix Jn,

Itot = Tr Jn = Jnxx
+ Jnyy

= 〈eno,x
(t) e∗no,x

(t)〉 + 〈eno,y
(t) e∗no,y

(t)〉 = NASEBo, (4.9)

and the degree of polarization of the filtered noise is given by

DOPn =
Ipol

Itot
=

(

1 − 4 Det Jn

(Tr Jn)2

)1/2

, (4.10)

where Ipol is the optical intensity of the polarized part of the filtered noise [25]. Note

that the quantities Ipol, Itot and DOPn do not depend on the choice of orthonormal

basis of Jones space.
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The polarization state of the optically filtered noise can also be characterized

by the Stokes parameters Sn = [Sn0
, Sn1

, Sn2
, Sn3

]t of the noise, where Sn0
is the

average power of the noise after it is filtered by an optical filter in the receiver. In

Chapters 2 and 3, I showed how the Stokes parameters of the light can be computed

from the Jones vector. The filtered noise can be decomposed as the sum of a polarized

part with Stokes parameters [|Sn| , Sn1
, Sn2

, Sn3
]t and an unpolarized part with Stokes

parameters [Sn0
− |Sn| , 0, 0, 0]t, where Sn is the Stokes vector of the filtered noise.

The DOP of the noise is the power ratio of the polarized part of the noise to the total

noise that I introduced in (4.10), which can be expressed using the Stokes parameters

by DOPn = |Sn| /Sn0
. The Stokes parameters of the optically filtered noise can be

expressed in terms of the noise coherency matrix by the formula

Sn0
= Jnxx

+ Jnyy
,

Sn1
= Jnxx

− Jnyy
,

Sn2
= Jnxy

+ Jnyx
,

Sn3
= i

(

Jnyx
− Jnxy

)

.

(4.11)

Since the coherency matrix Jn is Hermitian, there is an orthonormal basis {â1, â2} of

Jones space in which Jn is diagonal with Jn11
≥ Jn22

[25]. This basis simply consists

of the unit length eigenvectors of Jn. In the corresponding frame for Stokes space,

the Stokes vector of the filtered noise is Sn = [Sn0
DOPn, 0, 0]t. Consequently, in

Jones space the unit vectors â1 and â2 are respectively parallel and perpendicular to

the polarized part of the filtered noise. In the basis {â1, â2}, the electric field of the
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filtered noise is given by

eno
(t) = eno,1

(t) â1 + eno,2
(t) â2, (4.12)

where the components eno,1
(t) and eno,2

(t) of the filtered noise are uncorrelated, since

Jn is diagonal. Moreover, in this basis, (4.10) simplifies to

DOPn = (Jn1 1
− Jn2 2

) / (Jn1 1
+ Jn2 2

) . (4.13)

Using (4.6)–(4.10) and (4.13), I find that

Jn1 1
(τ) =

1

2
(1 + DOPn)NASE ro(τ),

Jn2 2
(τ) =

1

2
(1 − DOPn)NASE ro(τ),

(4.14)

and Jn1 2
(τ) = 0. Therefore, the autocorrelation functions of the components of the

optically filtered noise are

〈eno,1
(t) e∗no,1

(t′)〉 =
1

2
(1 + DOPn)NASE ro (t′ − t) (4.15)

and

〈eno,2
(t) e∗no,2

(t′)〉 =
1

2
(1 − DOPn)NASE ro (t′ − t) , (4.16)

while the cross correlation is

〈eno,1
(t) e∗no,2

(t′)〉 = 0, (4.17)

where NASE is the total power spectral density of the noise prior to the receiver that

was introduced in (4.2).
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4.2.3 Moments of the electric current

Since I am assuming that the signal is polarized, I can express the Jones vector of

the optically filtered signal eso
(t) = es(t) ∗ ho(t) as eso

(t) = eso
(t) êso

, where eso
(t)

is a scalar field and êso
is a unit Jones vector. The expression for eso

(t) in the basis

{â1, â2} is

eso
(t) = eso

(t) (êso
· â∗

1) â1 + eso
(t) (êso

· â∗
2) â2. (4.18)

Physically, the term eso
(t) (êso

· â∗
1) â1 is the component of the Jones vector of the

filtered signal that is in the same polarization state as the polarized part of the noise,

while eso
(t) (êso

· â∗
2) â2 is the component of the Jones vector of filtered signal that is

orthogonal to the polarized part of the noise.

I now substitute the expressions for eno
(t) and eso

(t) in (4.12) and (4.18) into (4.1)

to obtain

i (t) = R
{

∣

∣(êso
· â∗

1) eso
(t) + eno,1

(t)
∣

∣

2
+

∣

∣(êso
· â∗

2) eso
(t) + eno,2

(t)
∣

∣

2
}

∗ he(t). (4.19)

In order to compute the mean 〈in〉(t) and the variance σi
2(t) of the current at any

time t, I use the statistical properties of the optically filtered noise that I described

earlier in this section. In Appendix A, I present a detailed derivation of the integral

expressions of the mean and the variance of the electric current in (4.22), (4.24),

and (4.32).

Combining (4.15)–(4.17) with (4.19), I find that

〈i〉(t) = is(t) + 〈in〉(t), (4.20)
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where 〈·〉(t) is the average over the statistical realizations of the noise at time t, and

is(t) = R |eso
(t)|2 ∗ he(t) (4.21)

is the electric current due to the signal. Furthermore,

〈in〉(t) = 〈in〉 = RNASEBo (4.22)

is the mean current due to noise, which is time-independent, since the optical noise

is a stationary random process. The parameter Bo is the power-equivalent spectral

width [24] of the optical filter. If, for example, the noise has a power spectral density

of 1 W/Hz, then after passing an optical filter with power-equivalent spectral width

Bo (in Hz) the optical power is exactly equal to Bo (in W), regardless of the shape of

the optical filter. As a consequence, the power-equivalent spectral width is a measure

of the optical bandwidth that is more useful for the study of optical noise statistics in

this context than other more traditional bandwidth measures, such as the full-width

at half maximum and the root-mean-square width. In (4.22), I have neglected the gain

and attenuation in the optical filter and in the electrical circuit of the receiver, since

they do not affect the SNR. Therefore, the absolute value of the transfer functions of

the optical and the electrical filters have the value 1 at the central frequency of the

channel, |Ho(0)| = |He(0)| = 1. Therefore, Bo = ro(0) =
∫ +∞

−∞
|ho(τ)|2dτ .

Following a similar procedure used in the derivation of (4.22), I find that the

variance of the current at any time t has the form

σi
2(t) = 〈i2〉(t) − 〈i〉2(t) = σ2

ASE−ASE + σ2
S−ASE(t). (4.23)
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The first term on the right side of (4.23) is the variance of the current due to the

noise beating with itself at the receiver—the noise-noise beating. The variance of the

current due to the noise-noise beating is given by

σ2
ASE−ASE =

1

2
R2N2

ASE

IASE−ASE

ΓASE−ASE
, (4.24)

where

ΓASE−ASE =
1

1 + DOP2
n

, (4.25)

and

IASE−ASE =

∫ +∞

−∞

|ro(τ)|2 re(τ)dτ. (4.26)

Here, the expression

re(τ) =

∫ +∞

−∞

he(τ
′) he(τ + τ ′)dτ ′ (4.27)

is the autocorrelation function of the electrical filter. The noise-noise beating factor

ΓASE−ASE is the ratio between the variance of the current due to noise-noise beating

in the case that the noise is unpolarized and the actual variance of the current due

to noise-noise beating. The second term on the right side of (4.23) is the variance of

the current due to the beating between the signal and the noise at the receiver—the

signal-noise beating. The variance of the current due to the signal-noise beating is

given by

σ2
S−ASE(t) =

1

2
R2NASE

[

(1 + DOPn) |êso
· â∗

1|2 + (1 − DOPn) |êso
· â∗

2|2
]

IS−ASE(t),

(4.28)

where

IS−ASE(t) = 2

∫ +∞

−∞

eso
(τ)he(t− τ)

∫ +∞

−∞

e∗so
(τ ′)he(t− τ ′)ro(τ − τ ′)dτ ′dτ. (4.29)
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The integral expressions in (4.26) and (4.29) may be derived following a procedure

similar to the one in [20]. The terms |êso
· â∗

1|2 and |êso
· â∗

2|2 are the relative intensities

of the components of the field eso
(t) êso

that are respectively parallel and perpendic-

ular in Jones space to the polarized part of the optically filtered noise. These terms

can be represented in Stokes space as

|êso
· â∗

1|2 =
1

2

(

1 + ss · s(p)
n

)

, (4.30)

and

|êso
· â∗

2|2 =
1

2

(

1 − ss · s(p)
n

)

, (4.31)

where ss and s
(p)
n are the normalized Stokes vectors of the signal and the polarized

part of the noise respectively. The dot products on the right-hand sides of (4.30)

and (4.31) are the standard dot product between two real three vectors, which can also

be mathematically represented by the definition given after (4.2). Substituting (4.30)

and (4.31) into (4.28) one finds that

σ2
S−ASE(t) = R2NASE ΓS−ASE IS−ASE(t), (4.32)

where

ΓS−ASE =
1

2

[

1 + DOPn

(

ss · s(p)
n

)]

, (4.33)

is the signal-noise beating factor, which is the fraction of the noise that beats with

the signal.

4.2.4 Clock recovery

To define the sampling time, I recover the clock throughout this dissertation using

algorithms based on ones described by Trischitta and Varma [48]. For RZ systems,
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the sampling time is set equal to the time at which the phase of the 10 GHz tone of the

electrical current is equal to zero or a multiple of 2π. This method is implemented in

receivers with the use of a narrowband electrical bandpass filter centered at 10 GHz.

In NRZ systems, on the other hand, the 5 GHz tone could, in principle, be used to

recover the clock. However, the 5 GHz tone in NRZ systems is not as strong as the

10 GHz tone in RZ systems. To recover the clock in NRZ systems, I delay the bit

stream by half bit slot and subtract it from the original stream, the result of which

is then squared. The resulting signal has a strong tone at 10 GHz. The sampling

time is set equal to the time at which the phase of the tone is equal to π/2. In this

dissertation, I only study systems that operate at 10 Gbit/s. However, these clock

recovery algorithms can be applied to systems with different bit rates by rescaling

the frequency of the tone that is used to recover the clock.

4.2.5 The Q-factor and the enhancement factor

I now use the expressions for the mean and the variance of the current that I derived in

Sec. 4.2.3 to derive a general expression for the Q-factor as a function of the OSNR. I

follow a procedure that is similar to the one described in [18], but I use the exact mean

and the exact variance of the electric current. I start with the standard time-domain

definition of the Q-factor,

Q =
〈i1〉 − 〈i0〉
σ1 + σ0

(4.34)

as in [18], which is related to the BER by

BER = erfc(Q/
√

2)/2 ≈ exp(−Q2/2)/(
√

2πQ), (4.35)
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provided that the electric currents in the marks and in the spaces are Gaussian dis-

tributed.

In this section, I will assume that there are no patterning effects, either in trans-

mission or in the receiver. Consequently, the current of each mark obeys the same

probability density function, regardless of the neighboring bits, as does the current

of the spaces. In Sec 5.2, I extend these results to describe how one can accu-

rately compute the Q-factor in the presence of pattern dependencies. After clock

recovery, as described in Sec. 4.2.4, the detection times of the marks may be writ-

ten t1j
, j = 1, . . . , N1, where N1 is the number of marks. Likewise, the detec-

tion times of the spaces may be written t0j
, j = 1, . . . , N0, where N0 is the num-

ber of spaces. The assumption that there are no patterning effects implies that

is(t11
) = is(t12

) = . . . = is(t1N1
) ≡ is(t1), where is(t1) is the common value of

all the is(t1j
). Similarly, one may write σ2

S−ASE(t1j
) ≡ σ2

S−ASE(t1), j = 1, . . . , N1,

and is(t0j
) ≡ is(t0), σ

2
S−ASE(t0j

) ≡ σ2
S−ASE(t0), j = 1, . . . , N0. Substituting (4.20)

and (4.23) into (4.34), I now obtain

Q =
[is(t1) + 〈in〉] − [is(t0) + 〈in〉]

(

σ2
S−ASE(t1) + σ2

ASE−ASE

)1/2
+

(

σ2
S−ASE(t0) + σ2

ASE−ASE

)1/2
, (4.36)

where t1 and t0 are sampling times of a mark and a space, respectively. To determine

the sampling times, I used the clock recovery algorithm that I described in Sec. 4.2.4.

By rearranging (4.36), the Q-factor can be expressed in terms of the SNR of a

mark,

SNR1 =
is(t1)

〈in〉
, (4.37)
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and the extinction ratio of the electric current in the receiver,

αe =
is(t0)

is(t1)
, (4.38)

as

Q =
(1 − αe) SNR1M

1/2

(K1 SNR1 + 1)1/2 + (K0 αe SNR1 + 1)1/2
, (4.39)

where

K0 =
〈in〉 σ2

S−ASE(t0)

is(t0) σ
2
ASE−ASE

(4.40)

and

K1 =
〈in〉 σ2

S−ASE(t1)

is(t1) σ2
ASE−ASE

. (4.41)

We call K0 and K1 the signal-noise beating parameters for the marks and spaces,

respectively, because they are directly proportional to the ratio between the variance

of the current due to the signal-noise beating and the variance of the current due to

the noise-noise beating. The parameter

M =
〈in〉2

σ2
ASE−ASE

(4.42)

is the effective number of noise modes. I use this terminology because M is a general-

ization of the number of noise modes parameter that was introduced by Marcuse [18].

In that work, Marcuse found that only a finite number of noise Fourier components—

noise modes—contribute to the electric current due to noise in a receiver with a

rectangular optical filter and an integrate-and-dump electrical filter.

The parameters K0, K1 and M are unitless, and do not depend on the average

power of the signal, nor on the average power of the noise. To separate out the
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dependence of these three parameters on the polarization state of the noise I use (4.24)

and (4.32) to express K0 and K1 as

K0 = 2 ΓS−ASE ΓASE−ASE κ0, (4.43)

and

K1 = 2 ΓS−ASE ΓASE−ASE κ1, (4.44)

where

κ0 =
RBo IS−ASE(t0)

is(t0) IASE−ASE
, (4.45)

and

κ1 =
RBo IS−ASE(t1)

is(t1) IASE−ASE
. (4.46)

If the noise is either unpolarized or completely co-polarized with the signal, then

K0 and K1 are equal to κ0 and κ1 respectively, since then 2 ΓS−ASE ΓASE−ASE = 1.

Similarly, I obtain M = ΓASE−ASE µ, where

µ =
2B2

o

IASE−ASE
(4.47)

is equal to M in the case where the noise is unpolarized. Then, the Q-factor can be

expressed as

Q =
(1 − αe) SNR1 (ΓASE−ASE µ)1/2

(2 ΓS−ASE ΓASE−ASE κ1 SNR1 + 1)1/2 + (2 ΓS−ASE ΓASE−ASE κ0 αe SNR1 + 1)1/2
.

(4.48)

In this formula, the dependence on the polarization state of the noise is accounted

for by the noise-noise beating factor ΓASE−ASE defined in (4.25) and the signal-noise

beating factor ΓS−ASE given in (4.33). These factors have values in the range 1/2 ≤
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ΓASE−ASE ≤ 1 and 0 ≤ ΓS−ASE ≤ 1. If the noise is unpolarized, ΓASE−ASE = 1 and

ΓS−ASE = 1/2. If the noise is completely co-polarized with the signal, ΓASE−ASE = 1/2

and ΓS−ASE = 1.

The expression for the Q-factor in (4.48) separates the effects of the polarization

state of the noise and of the signal from the pulse shape and the receiver charac-

teristics. However, the Q-factor is given as a function of the signal-to-noise ratio of

the marks SNR1 in the receiver, which also depends on the pulse shape and on the

characteristics of the receiver. Thus, it is appropriate to express the Q-factor in terms

of a quantity that does not depend on the pulse shape nor on the receiver, such as

the OSNR. I define the OSNR by

OSNR =
〈|es(t)|2〉t
NASEBOSA

, (4.49)

where 〈|es(t)|2〉t is the time-averaged noiseless optical power per channel prior to the

optical filter, and BOSA is the power-equivalent spectral width of an optical spectrum

analyzer that is used to measure the optical power of the noise. This definition of

OSNR is consistent with the definition in [5], [30] and agrees with the OSNR value

that can be obtained directly from an optical spectrum analyzer whose resolution

bandwidth is large compared to the bandwidth of the signal, provided that the signal

power in the resolution bandwidth of the optical spectrum analyzer is much larger

than the noise power in the same bandwidth (OSNR � 1).

In order to express the Q-factor as a function of the OSNR, I define the enhance-

ment factor ξ as the ratio between the signal-to-noise ratio of the electric current

of the marks SNR1 and the OSNR at the receiver. The enhancement factor can be
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expressed as

ξ =
SNR1

OSNR
=
is(t1)

〈in〉
NASEBOSA
〈

|es(t)|2
〉

t

= ξ′
BOSA

Bo

, (4.50)

where ξ′ = is(t1)/
[

R 〈|ein(t)|2〉t
]

is the normalized enhancement factor, which is equal

to ξ when BOSA = Bo. The enhancement factor quantifies how efficiently the com-

bination of the pulse shape and receiver translates the OSNR into the SNR of the

electric current of the marks in the receiver.

Substituting (4.50) into (4.48), I finally obtain an exact expression that relates

the Q-factor directly to the OSNR and to the polarization states of the optical noise

and of the signal prior to the receiver:

Q =
(1 − αe) ξOSNR (ΓASE−ASE µ)1/2

(2 ΓS−ASE ΓASE−ASE κ1 ξOSNR+1)1/2+(2 ΓS−ASE ΓASE−ASE κ0 αe ξOSNR+1)1/2
.

(4.51)

The optical pulse shape prior to the receiver and the shapes and bandwidths of the

optical and electrical filters in the receiver are taken into account in the determination

of the values for κ0, κ1 and µ, as given in (4.45)–(4.47).

4.2.6 Comparison with previous formulae for the Q-factor

In an optical fiber system with the NRZ modulation format that consists of perfectly

rectangular pulses with perfect optical extinction ratio (αo = 0), unpolarized optical

noise, and a receiver that consists of a rectangular optical filter and an integrate and

dump electrical filter, the formula (4.48) for Q becomes

Q =
SNR1

(κ1 SNR1 + 1)1/2 + 1

√
µ, (4.52)
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where κ1 = 2, which is the same as the formula for Q in [18]. Using (4.51) and (4.52),

I can express the Q-factor in terms of the OSNR as

Q =
ξOSNR

(κ1 ξOSNR + 1)1/2 + 1

√
µ, (4.53)

where κ1 = 2 and ξ = 2, which is the same as the formula for Q in [30] for the same

system that I considered in (4.52). In (4.53), ξ = 2 because the average optical power

in this system is equal to half of the average optical power in the marks.

4.2.7 Numerical efficiency

To efficiently compute the parameters κ0, κ1, and µ, one can use Fourier transforms to

numerically compute the multiple integrals in (4.26) and (4.29). From the convolution

theorem, one obtains

IASE−ASE =

∫ +∞

−∞

∣

∣

∣

∣

F−1
τ

{

∣

∣

∣
H̃o

∣

∣

∣

2
}

∣

∣

∣

∣

2

F−1
τ

{

|He|2
}

dτ, (4.54)

where H̃o(ω) = Ho(−ω), and Fτ [·] and F−1
τ { · } denote the forward and inverse

Fourier transform with respect to τ , while

IS−ASE(t) = 2F−1
t

{

He Fτ

[

eso
(τ)F−1

τ

{

∣

∣

∣
H̃o

∣

∣

∣

2

Fτ ′

[

e∗so
(τ ′)he(t− τ ′)

]

}]}

. (4.55)

4.3 Receiver model validation with Monte Carlo

simulations

I now present a validation of formula (4.51) for computing the Q-factor from the

OSNR by comparison with two sets of Monte Carlo simulations in which the Q-factor
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is computed using the standard time domain formula Q = (〈i1〉 − 〈i0〉) / (σ1 + σ0). In

the first set of validation simulations, I used a back-to-back 10 Gbit/s optical system

with unpolarized optical noise, and in the second set of simulations, I used another

back-to-back 10 Gbit/s system with partially polarized optical noise. Since my study

was focused on the combined effect that the pulse shape and the receiver have on the

system performance, I did not include transmission effects here, such as those due to

nonlinearity and dispersion.
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Figure 4.1: Comparison of the formula (4.51) for the Q-factor as a function of

the OSNR with the time domain Monte Carlo method of computing the Q-

factor for an RZ raised cosine format. The power-equivalent spectral width of

the OSA was 25 GHz. For the Monte Carlo simulations, the statistics of the

Q-factor were obtained using 100 Q-samples each with 128 bits. The solid

line shows the result using (4.51). The dashed line and the two dotted lines

show the mean Q-factor for all 100 Q-samples and the confidence interval for

a single Q-sample, defined by the mean Q-factor plus and minus one standard

deviation computed using the time domain Monte Carlo method.

In Fig. 4.1, I show the Q-factor versus the OSNR for an RZ raised cosine format

with a 50% duty cycle and an optical extinction ratio of 18 dB. The electric field
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of an RZ raised cosine pulse is given by es(t) = [P0 cos2(πt/T )]
1/2

, where P0 is the

peak power and T is the bit period. Unpolarized optical noise was added prior to the

receiver using a Gaussian noise source that has a constant spectral density within the

spectrum of the optical filter. The receiver consisted of a Gaussian-shaped optical

filter with a full-width at half maximum (FWHM) of 124 GHz and a fifth-order low-

pass electrical Bessel filter with a 3 dB width of 8.5 GHz. The power-equivalent

spectral width [24] of the optical spectrum analyzer equaled 25 GHz. The parameters

in (4.51) for this system are ξ = 0.6, αe = −18 dB, κ0 = κ1 = 3, µ = 21.23,

ΓASE−ASE = 1, and ΓS−ASE = 1/2.

In Fig. 4.1, I show the results using (4.51) with a solid line. My colleagues and

I obtained these results using only a single mark and a single space of the transmit-

ted bit string. I show the results for the time-domain Monte Carlo method with a

dashed line. We obtained these results by averaging over 100 samples of the Q-factor,

where for each sample the means and standard deviations of the marks and spaces

were estimated using 128 bits. To determine the sampling time for marks and spaces,

we used the clock recovery algorithm that I described in Sec. 4.2.4. The agreement

between the two methods is excellent, except for the statistical error in the compu-

tation of the Q-factor using the Monte Carlo method. The numerical estimator of

the standard deviation of the current due to noise is a biased estimator [49], which

contributes to the statistical error in the estimation of the Q-factor using Monte Carlo

simulations. The region between the dotted lines in Fig. 4.1 is the confidence interval

for the computation of the Q-factor using the time domain Monte Carlo method for

a string with 128 bits. The confidence interval, defined by the mean Q-factor plus
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and minus one standard deviation of the Q-factor, gives an estimate of the error in

the computation of the Q-factor using the time domain Monte Carlo method with a

single string of bits. Since we used 100 strings, the actual uncertainty in Fig. 4.1 is

ten times smaller. In Fig. 4.1, the time domain Monte Carlo method has a relative

statistical uncertainty larger than 15% with a single string when Q = 6.
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Figure 4.2: Comparison of the formula (4.51) with the time domain Monte

Carlo method for computing the Q-factor as a function of the OSNR for

the RZ raised cosine format for different noise polarization states with

DOPn = 0.5. These results are for a horizontally polarized optical signal.

The power-equivalent spectral width of the optical spectrum analyzer was

25 GHz. The curves show the results obtained using (4.51) and the symbols

show the results obtained using Monte Carlo simulations. The solid curve

and the circles show the results when the polarized part of the noise is in

the horizontal linear polarization state. Similarly, the dashed curve and the

squares, and the dotted curve and the triangles show the results when the po-

larized part of the noise is in the left circular and vertical linear polarization

states, respectively.

For the second set of simulations, I used partially polarized noise. In Fig. 4.2,

I plot the Q-factor versus the OSNR for a horizontal linearly-polarized RZ raised



65

cosine signal with an optical extinction ratio of 18 dB. I used a 10 Gbit/s back-

to-back system and added partially polarized noise with DOPn = 0.5 prior to the

receiver. The receiver and the optical spectrum analyzer bandwidth were the same as

that used for Fig. 4.1. In Fig. 4.2, the curves show the results obtained using (4.51)

and the symbols show the results obtained using Monte Carlo simulations. The solid

curve and circles show the results when the polarized part of the noise is in the

horizontal linear polarization state. In this case the noise is co-polarized with the

signal. Similarly, the dashed curve and the squares, and the dotted curve and the

triangles show the results when the polarized part of the noise is in the left circular

and vertical linear polarized states, respectively. The agreement between (4.51) and

Monte Carlo simulations is excellent. When DOPn = 0.5, the Q-factor varies by about

60% as we vary the polarization state of the noise. This variation occurs because the

signal-noise beating factor ΓS−ASE in (4.33) depends on the angle between the Stokes

vectors of the signal and the polarized part of the noise. The parameters in (4.51) for

this system are the same ones in Fig. 4.1, except that ΓASE−ASE = 0.8 and ΓS−ASE = 1

for the solid line, ΓS−ASE = 0.5 for the dashed line, and ΓS−ASE = 0.25 for the dotted

line.

4.4 Receiver model validation with experiments

I now present a validation of formula (4.51) for computing the Q-factor from the

OSNR by comparison with two sets of back-to-back 10 Gbit/s experiments. These

experiments were carried out primarily by Yu Sun and Hua Jiao in the Optical Fiber

Communications Laboratory at the University of Maryland Baltimore County. In
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the first set of experiments, the noise is unpolarized (DOPn ≈ 0). In the second

set of experiments, for which the noise is partially polarized (DOPn ∈ [0, 1]), one

finds a strong dependence of the Q-factor on the polarization state of the noise when

the noise is partially polarized. In both cases, the experiments agree well with the

simulations.
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Figure 4.3: Comparison of the Q-factor as a function of the OSNR obtained

using (4.51) with experimental results for different modulation formats and

receivers. The power-equivalent spectral width of the OSA was 25 GHz. The

curves show the results obtained using (4.51) and the experimental results

are shown using symbols. The solid curve and circles show the results for an

RZ format without the electrical filter. The dashed curve and the squares

show the results for an NRZ format with an electrical filter with a 3 dB width

of 7 GHz. The dotted curve and the triangles show the results for the NRZ

without the electrical filter.

In Fig. 4.3, I plot the Q-factor versus the OSNR obtained using both simulations

and experiments for RZ and NRZ signals with unpolarized optical noise (DOPn <

0.05) that is generated by an erbium-doped fiber amplifier (EDFA) without input

power [23]. In the transmitter, we generated a 10 Gbit/s pulse train using an electro-
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absorption modulator (EAM). The data was encoded on the pulse train using an

electro-optic modulator (EOM). For the NRZ signal, the EAM was bypassed. To

avoid pattern dependences in the EOM modulator that was used to encode the data,

we used the fixed pattern 01010101. Therefore, these results provide a baseline for

future studies that will include pattern dependences. The RZ pulse was Gaussian-

shaped with a FWHM of 23 ps, and the NRZ pulses had a rise time of 34 ps. The

optical extinction ratio was 18 dB for the RZ signal and 12 dB for the NRZ signal.

At the receiver, an optical preamplifier increased the signal and noise power so that

the optical noise dominated the electrical noise. The total power into the 20 GHz

photodetector was kept fixed at −2 dBm by tuning an attenuator. The FWHM of the

Gaussian optical filter was 187 GHz, and either a 7 GHz electrical Bessel filter or no

electrical filter was used in the receiver. The power-equivalent spectral width of the

optical spectrum analyzer was 25 GHz. A high-speed sampling oscilloscope was used

to measure the Q-factor at the same time that the OSNR was measured. In Fig. 4.3,

the curves show results obtained using (4.51), and the symbols show the experimental

results. The solid curve and circles show the results for the RZ format without the

electrical filter. The dashed curve and squares show the results for the NRZ format

with the electrical filter, and the dotted curve and triangles show the results for the

NRZ format without the electrical filter. In Fig. 4.3, the parameters in (4.51) for the

RZ signal without the electrical filter are αe = −18 dB, ξ = 0.74 (ξ ′ = 5.9), µ = 17.7,

and κ0 = κ1 = 3.17. The parameters for the NRZ signal without electrical filter

are αe = −11.9 dB, ξ = 0.24 (ξ ′ = 2), µ = 17.7, κ0 = 2.79, and κ1 = 2.82. The

parameters for the NRZ signal with the electrical filter are αe = −11.3 dB, ξ = 0.24
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(ξ′ = 1.9), µ = 38.8, κ0 = 2.68, and κ1 = 2.88. Since the noise is unpolarized, one

obtains ΓASE−ASE = 1 and ΓS−ASE = 1/2.
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Figure 4.4: Comparison of the Q-factor as a function of the degree of polar-

ization of the noise DOPn obtained using (4.48) with experiments for different

polarization states of the signal and of the noise. The solid curve shows the

result obtained using (4.48) and the circles show the experimental results

when the Jones vectors of the signal and the polarized part of the noise are

orthogonal. The dashed curve shows the result obtained using (4.48), and

the squares show the experimental results when the signal is co-polarized

with the polarized part of the noise.

In the second set of experiments, we investigated the effect of partially polarized

noise on the system performance. In Fig. 4.4, I plot the maximum and the minimum

values of the Q-factor as a function of the degree of polarization of the noise at the

receiver DOPn. These simulation and experimental results are for an RZ signal with

optical noise added by two erbium-doped fiber amplifier without input power [21].

The RZ pulse was Gaussian-shaped with a FWHM of 23 ps. In the simulations, we

used a perfect optical extinction ratio. The receiver consisted of a photodetector, an
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optical filter, and an electrical amplifier. We used the method described in [15] to

obtain the Q-factor from the BER margin measurements. Bergano, et al. [15] showed

that the Q-factor obtained from BER margin measurements is well-correlated to the

BER. The first optical amplifier generated unpolarized noise, and the noise generated

by the second optical amplifier was polarized by passing it through a polarizer and a

polarization controller. The degree of polarization of the noise DOPn was controlled

by adjusting two variable attenuators that follow the two optical amplifiers. The

direction on the Poincaré sphere of the normalized Stokes vector s
(p)
n of the polarized

part of the noise was adjusted by the polarization controller that follows the polarizer.

The SNR of the electric current of the marks SNR1, which was defined in (4.37), was

fixed at 10.9 dB. The FWHM of the Gaussian optical filter was 187 GHz, and the

electrical bandwidth of the receiver was 10 GHz. In the experiment, for each value of

DOPn, we varied the angle between the Stokes vectors of the signal and the polarized

part of the noise and recorded the maximum value Qmax, and minimum value Qmin of

the Q-factor. In the simulations, I obtained Qmax by choosing the Stokes vectors of

the signal and the polarized part of the noise to be antiparallel, ss · s(p)
n = −1, so that

the corresponding Jones vectors are orthogonal to each other. Similarly, I obtained

Qmin by choosing the Stokes vectors ss and s
(p)
n to be parallel, so that ss · s(p)

n = +1.

In Fig. 4.4, the curves show results obtained using (4.48), and the symbols show

the experimental results. The solid curve and circles show the maximum value of

the Q-factor versus DOPn, while the dashed curve and squares show the minimum

value of the Q-factor. As the DOP of the noise increases from 0 to 1, one observes

a dramatic increase in the range [Qmin, Qmax] of the Q-factor. For this receiver, the
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parameters in (4.48) are µ = 38.6, κ1 = 1.7, κ0 = 0, and αe = 0. When the noise is

unpolarized (DOPn = 0), one has ΓASE−ASE = 1 and ΓS−ASE = 1/2. When the noise

is completely polarized (DOPn = 1), one has ΓASE−ASE = 1/2, so that ΓS−ASE = 1

when the noise is co-polarized with the signal and ΓS−ASE = 0 when the polarization

state of the noise is orthogonal to the signal. The results that I show in Figs. 4.2

and 4.4 illustrate the significant impact that partially polarized noise can have on

the performance of an optical fiber transmission system. Typical values for the PDL

per optical amplifier in optical fiber systems range from 0.1 dB to 0.2 dB [10], which

can partially polarize the optical noise in the transmission line. In a prototypical

trans-oceanic system described in [8], which has 270 amplifiers with 0.15 dB of PDL

per amplifier, the average noise DOP at the receiver is equal to 0.15. However, the

noise DOP in that trans-oceanic system exceeds 0.3 with a probability larger than

10−3.

4.5 Modulation format comparisons

In this section, I describe the use of (4.51) to compare the back-to-back performance

of three formats—CRZ, RZ, and NRZ—using the same receiver. To separate out

the effect of partially polarized noise from the modulation format in the system per-

formance, my colleagues and I only considered unpolarized noise in this study. We

found that the CRZ format outperforms both the RZ and the NRZ formats because

the CRZ format has a larger enhancement factor. We also found that the RZ format

outperforms the NRZ format for the same reason.
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In Fig. 4.5, I use (4.51) to plot the Q-factor versus the OSNR for the CRZ, RZ,

and NRZ formats. The optical noise is unpolarized. The electric field of a CRZ pulse

is given by

es(t) =
[

P0 cos2(πt/T )
]1/2

exp [iAπ cos(2πt/T )] , (4.56)

where A = −0.6 is the chirp parameter, P0 is the peak power, and T is the bit

period [50]. To minimize the width of the pulses prior to the receiver, we transmitted

the CRZ signal through dispersive fiber with a total dispersion of −126 ps/nm [50]

in the simulations. The receiver consisted of a Gaussian-shaped optical filter with a

full-width at half maximum of 124 GHz and a fifth-order electrical Bessel filter with

a 3 dB spectral width of 8.5 GHz. The power-equivalent spectral width of the optical

spectrum analyzer was 50 GHz. The RZ pulse shape was determined by setting A = 0.

The rise time of an NRZ pulse was 30 ps. We compared the performance of these

formats using both a perfect extinction ratio and an optical extinction ratio of 18 dB.

With a finite extinction ratio, for the CRZ and the RZ formats we used the same

pulse shapes in the spaces as in the marks but with a lower power, while the NRZ

format was constructed by low-pass filtering a two-level step function. In Fig. 4.5, the

solid, dashed and dotted curves show the results for the CRZ, RZ, and NRZ formats

respectively, all with a perfect extinction ratio. The solid curve with circles, dashed

curve with squares, and dotted curve with triangles show the corresponding results

with an optical extinction ratio of 18 dB.

In Fig. 4.6, I compare the shapes of an isolated mark for the three formats prior

to the receiver. The solid, dashed and dotted curves are results for the CRZ, RZ, and

NRZ formats, respectively. The parameters used in (4.51) for the formats that my
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Figure 4.5: A performance comparison of the Q-factor as a function of the

OSNR for three modulation formats using (4.51). The parameters of the

formats are given in Table 4.1. The power-equivalent spectral width of the

optical spectrum analyzer was 50 GHz. The solid, dashed, and dotted curves

show the results for the CRZ, RZ and NRZ formats respectively, all with a

perfect extinction ratio. The solid curve with circles, the dashed curve with

squares, and the dotted curve with triangles show the corresponding results

with an optical extinction ratio of 18 dB.

colleagues and I simulated are shown in Table 4.1. The currents in the formula (4.38)

for the αe can be determined from the optical extinction ratio αo using (4.21). The

enhancement factor (4.50) is larger for the CRZ format than for the RZ format and

is larger for the RZ format than for the NRZ format, due to the decrease in the pulse

duration prior to the receiver, as shown in Fig. 4.6. Thus, for the results shown in

Fig. 4.5, and also for those in [20], the primary reason the RZ format has a better

back-to-back performance than the NRZ format using the same receiver is because

the RZ format has a larger enhancement factor ξ. For the same reason, the CRZ

format has a better performance than the RZ format. Fig. 4.5 shows a substantial
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Figure 4.6: The shapes of an isolated mark for the different formats prior to

the receiver whose performance comparison is shown in Fig. 4.5. The solid,

dashed and dotted curves are results for the CRZ, RZ, and NRZ formats,

respectively.

degradation in the system performance for the three systems that we studied when

we used an optical extinction ratio of 18 dB, rather than a perfect extinction ratio. A

finite extinction ratio penalizes the system by transferring part of the optical intensity

from the marks to the spaces, which reduces the enhancement factor and produces

signal-noise beating in the spaces according to (4.51). In [18], [19], and [30], κ1 = 2

since the electrical filter was approximated by an integrate-and-dump filter. For

the receiver that we studied, the use of this approximation would underestimate the

signal-noise beating coefficient of the NRZ format by 29%. In addition, the use of an

integrate-and-dump filter would make the enhancement factor a format-independent

quantity, which could underestimate the enhancement factor of the CRZ format that

we studied by 52%.
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Format αo (dB) ξ′ ξ K1 K0 M

CRZ −∞ 4.20 0.80 3.48 0 21.23

CRZ −18 4.13 0.78 3.48 2.99 21.23

RZ −∞ 3.21 0.61 3.05 0 21.23

RZ −18 3.16 0.60 3.05 3.04 21.23

NRZ −∞ 2.12 0.40 2.83 0 21.23

NRZ −18 2.05 0.39 2.83 2.74 21.23

Table 4.1: Parameters of the modulation formats used in Figs. 4.5 and 4.6.



Chapter 5

Importance sampling for the

polarization-induced penalty

5.1 Computation of outage probability

A major goal in the design of wavelength-division-multiplexed (WDM) optical fiber

communications systems is to minimize the probability of channel outages due to

polarization effects. System designers commonly allocate a prescribed margin to

polarization effects, such as 2 dB, with a fixed probability that the margin will be

exceeded, such as 10−5, corresponding to approximately five minutes per year. When

this margin is exceeded an outage is said to occur. Because outages are extremely

rare, it has been difficult to study them theoretically using standard Monte Carlo

simulations and experimentally using laboratory and field experiments.

Wang and Menyuk [8] proposed the reduced Stokes model as a tool to compute the

evolution of the optical signal-to-noise ratio (OSNR) and the polarization states of the

signal and noise for each channel in long-haul optical fiber communications systems,

which I described in Chapter 3. For a given fiber realization, one may calculate the

Q-factor from the OSNR and the polarization states of the signal and noise using

75
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the receiver model that I introduced in Chapter 4. First, one computes the Q-factor

when PDL and PDG are present and when they are absent for a fixed level of PMD.

From that, one may determine the Q-penalty in dB due to these effects, where the

Q-penalty is defined to be the difference between the Q-factor in dB without PDL and

PDG and the Q-factor in dB when all the polarization effects are included. One then

defines the outage probability due to the polarization effects to be the probability

that the Q-penalty exceeds an allowed margin, such as 1 or 2 dB. This margin, which

is specified during the design of the system, determines the tolerance limit of the

operation of the system.

The reduced Stokes model decreases the computational time of simulations of the

polarization effects by several orders of magnitude when compared to a full time-

domain simulation. Even so, until now, efficient computation of outage probabilities

has only been carried out using numerical extrapolation with a Gaussian function [8]

to estimate the tails of the probability density function (pdf) of the Q-penalty. With

the collaboration of my colleagues, I developed an importance sampling technique

[51] to resolve the tails of the pdf of the Q-penalty and thereby efficiently compute

outage probabilities as small as 10−6 [16] using a fraction of the computational time

required by standard Monte Carlo simulations. In addition, we have been able to

determine the error that one can make in the computation of the Q-penalty when the

polarization states of the signal and noise are not accounted for in the receiver.

In Sec. 5.2, I present a validation of the reduced Stokes model that I described in

Chapter 3 in combination with the accurate receiver model that I derived in Chapter 4

by comparison to full time-domain simulations. In Sections 5.3 and 5.4, I show how
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the probability of a rare event can be efficiently computed using Monte Carlo simu-

lations with an importance sampling technique that my colleagues and I developed.

Using this technique, one can compute outage probabilities using a small fraction of

the time required by standard Monte Carlo simulations. We validated this impor-

tance sampling technique by comparison with extensive Monte Carlo simulations. In

Sec. 5.5, I show how the outage probability due to the polarization effects depends

on the polarization-dependent loss (PDL) per optical amplifier, based on simulations

with the reduced Stokes model and the accurate receiver model. I also show the

relative variation in the results that we obtained using Monte Carlo simulations with

importance sampling.

5.2 Reduced Stokes model validation

In order to compute outage probabilities using the reduced Stokes model, my col-

leagues and I had to first validate the implementation of the reduced model by com-

parison to a full time-domain model using the Manakov-PMD equation [27] that I

described in Chapter 2. Figures 5.1(a) and 5.1(b) show numerical results of the mean

of the Q-penalty ∆Q in dB and its standard deviation, respectively, as a function of

the PDL per optical amplifier for the full and the reduced models. I define Q in dB

as QdB = 20 log10(Q), as in [15]. The system that we studied had eight 10 Gbit/s

return-to-zero channels spaced 1 nm (124 GHz) apart. The total propagation distance

was 8, 910 km, with an amplifier spacing of 33 km. Therefore, there were 270 optical

amplifiers in the system. The PDG was equal to 0.06 dB per optical amplifier. For

the full model, the fiber’s nonlinear coefficient n2 was 2.6 × 10−20 m2/W, the fiber’s
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effective area was 80 µm2, and the optical signal consisted of a string with 64 bits

obtained using the pseudo-random bit string (PRBS) algorithm [52]. The periodic

dispersion map consisted of one section of dispersion-shifted fiber whose dispersion

was −2 ps/nm-km at 1550 nm and whose length was 264 km, followed by a sec-

tion of single mode fiber whose dispersion was 16 ps/nm-km and whose length was

33 km. In both sections, the dispersion slope was equal to 0.07 ps/nm2-km. The

residual dispersion in each of the channels was compensated using symmetric pre-

and post-dispersion compensation. Since the full simulations require a large amount

of computer time, we only compared the mean and the standard deviation of the

Q-penalty, and we only used 20 random fiber realizations with the same mean DGD.

To compare the two models I used the same fiber realizations in both the full and the

reduced model simulations to avoid the statistical uncertainty in the computation of

the mean and the standard deviation of the Q-penalty. In addition, we used the same

set of fiber realizations for each PDL value. Therefore, the only uncertainty in the

comparison comes from the nonlinear polarization rotation in the full time-domain

simulations. In [8], a similar comparison was carried out, except that the receiver

model did not account for the polarization state of the noise in the receiver. There-

fore, the comparison in [8] was essentially a comparison of signal-to-noise ratios in

the two models, rather than a comparison of Q-factors. In addition, the random fiber

realizations used in the full and the reduced model were independently generated.

The use of different fiber realizations in the full and reduced models significantly con-

tributed to the uncertainty in the comparison. In Fig. 5.1, the agreement between the

full model and the reduced model with 20 Monte Carlo samples is good. The reduced
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model slightly overestimates the standard deviation of the Q-penalty in Fig. 5.1, be-

cause the reduced model neglects the slight depolarization that a channel suffers due

to PMD. Consequently, with the reduced model, an entire channel can be aligned with

the high-loss axis of a PDL element, whereas that is not the case with the full model

since the channel will suffer some depolarization due to PMD. We did not compute

more than 20 Monte Carlo samples per PDL in the full model simulations because

the full model requires an extensive amount of computer time. When we increased

the number of realizations in the reduced model to 103, the agreement was still very

good.

My colleagues and I computed the Q-factor from the full time and frequency

domain model using the Manakov-PMD equation [27] in combination with a procedure

introduced in [20]. We used a step size of 0.5 km to numerically solve the Manakov-

PMD equation. In [20], the BER was computed by averaging the probability of errors

in all the marks and spaces of the bit string, since each bit in the string can suffer

significant nonlinear polarization rotation and, therefore, suffer a different impairment

due to the signal-noise beating. Using the Gaussian approximation, the BER in a

string with N0 spaces and N1 marks sampled with the sampling time offset ts is given

by

BER(ts, ith) =
1

N0

N0+N1
∑

j=1

I0(ts + jT ) erfc

[

ith − i(ts + jT ) − 〈in〉√
2σi(ts + jT )

]

+
1

N1

N0+N1
∑

j=1

I1(ts + jT ) erfc

[

i(ts + jT ) + 〈in〉 − ith√
2σi(ts + jT )

]

,

(5.1)
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Figure 5.1: Validation of the reduced Stokes model. I show the (a) mean and

(b) standard deviation of the Q-penalty ∆Q in dB as a function of the PDL

per optical amplifier. The dotted lines are results of full model simulations

with 20 samples of fiber realizations. The dashed lines are results of reduced

model simulations with 20 samples. The solid lines are results of reduced

model simulations with 103 samples.

where 〈in〉 and σi(t) are respectively the mean and the instantaneous standard devia-

tion of the electric current due to optical noise, which were defined in (4.22) and (4.23),

respectively. The function I0(t) is 1 if the bit is a space and 0 otherwise. The func-

tion I1(t) is given by 1 − I0(t). The bit period T is equal to 100 ps. To determine

the sampling time for marks and spaces, we used the clock recovery algorithm that I

described in Sec. 4.2.4. Using (5.1), we determined the decision threshold ith as the
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value that minimizes the BER, which we computed using a zero-finding algorithm.

Once the BER was obtained, we computed the corresponding Q-factor by solving the

transcendental equation that relates the Q-factor to the BER,

BER =
1

2
erfc

(

Q√
2

)

. (5.2)

Since the term on the right-hand side of (5.2) varies exponentially with Q, we solved Q

for a given BER by computing the logarithm of the terms in each side of this equation.

Therefore, we computed the Q-factor by searching for the root of the equation

log10 (BER) − log10

[

1

2
erfc

(

Q√
2

)]

= 0 (5.3)

using Brent’s root search method [53].

5.3 Importance sampling

Importance sampling is a well known technique in statistics that makes a more efficient

use of Monte Carlo simulations to compute the probability of rare events. For the

problem of computing the outage probability due to the polarization effects for a given

channel in a WDM system, the rare events that interest us are those for which the Q-

penalty is close to the allowed margin in a given channel. This value is typically large

compared to the average or expected value of the Q-penalty. To successfully apply

importance sampling to this problem, one needs some knowledge of which random

realizations of the fiber PMD produce these large Q-penalties. These random fiber

realizations are those for which the Stokes vector of the signal in a given channel is

more likely to be aligned with the high-loss axes of the PDL elements than with the

low-loss axes.
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The basic idea of Monte Carlo simulations with importance sampling is to bias

the pdfs of the sources of randomness so that the rare events of interest occur more

frequently than they would in standard Monte Carlo simulations and then to weight

the samples by the likelihood that the biased random quantities would actually appear

in standard Monte Carlo simulations. My colleagues and I observed that the use of

a single biased distribution with importance sampling is insufficient to resolve the

histogram of the penalty produced by the polarization effects in the configuration

space. Thus, it is necessary to combine the statistical results from several biased

distributions, since each distribution statistically resolves a different region in the

configuration space. However, the biased distributions that do not statistically resolve

a given region in the configuration space can significantly degrade the accuracy of the

estimation of the probability in that region if they are inadequately combined with

the other distributions. This effect is particularly evident in the computation of the

penalty because the angles between the polarization state of the channel and the

high-loss axes of the PDL elements in each amplifier that we bias are not the only

quantities that determine the penalty. The direction of the normalized Stokes vectors

of the signal in other channels throughout the transmission line and the angle between

the normalized Stokes vector of the signal and the normalized Stokes vector of the

polarized part of the noise in a given channel at the receiver also influence the penalty.

Using importance sampling, the probability PI of an event defined by the indicator

function I(x), whose value is either 0 or 1, can be mathematically expressed by [54]

P̂I =

J
∑

j=1

1

Mj

Mj
∑

i=1

I(xj,i)wj(xj,i)Lj(xj,i), (5.4)
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where

Lj(xj,i) =
p(xj,i)

p∗j(xj,i)
(5.5)

is the likelihood ratio of the i-th sample xj,i drawn from the j-th biased distribution,

and Mj is the number of samples drawn from the j-th biased distribution p∗j(x).

The term p(x) is the pdf of the j-th unbiased distribution, and J is the number of

different biased distributions. The weights wj(x) allow one to combine different biased

distributions. In this application, the random vector x corresponds to the random

realization of the fiber PMD, which is determined by the random mode coupling

transformations between the birefringent sections, and the unbiased pdf is known a

priori. The indicator function I is chosen to compute the probability of having the

Q-penalty within a given range, such as a bin in a histogram.

An efficient technique to combine the samples from multiple biased distributions

is the balanced heuristic method [54], which my colleagues and I used for the work

reported in this dissertation. The balanced heuristic weight assigned to the sample x

drawn from the j-th distribution is given by

wj (x) =
MjL

−1
j (x)

∑J
k=1MkL

−1
k (x)

. (5.6)

The idea behind the balanced heuristic method is that samples are weighted accord-

ing to the likelihood that each biased distribution produces samples in that region;

distributions that are more likely to put samples there are weighted more heavily.

The computation of the balanced heuristic weight for any given sample requires that

the likelihood ratio of all the biased distributions be evaluated for that sample. In

other words, the likelihood ratio of all J biased distributions have to be evaluated
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for the i-th sample drawn from the j-th distribution, even though this sample was

obtained using only the biased pdf of the j-th distribution.

A confidence interval for the estimator of the probability PI of the indicator func-

tion I(x) in (5.4) can be defined from the estimator of the variance of P̂I , which is

given by

σ̂2
P̂I

=

J
∑

j=1

1

Mj (Mj − 1)

Mj
∑

i=1

[

I(xj,i)wj(xj,i)Lj(xj,i) − P̂Ij

]2

, (5.7)

where

P̂Ij
=

1

Mj

Mj
∑

i=1

I(xj,i)wj(xj,i)Lj(xj,i), (5.8)

is the contribution of the samples drawn from j-th biased distribution to the esti-

mator P̂I. The confidence interval of the estimator P̂I is defined to be the interval
(

P̂I − σ̂P̂I
, P̂I + σ̂P̂I

)

. The relative variation equals σ̂P̂I
/P̂I. The key to the derivation

of (5.7), which we will present in [55], was to realize that the product between the in-

dicator function I(x) and its corresponding weight wj(x)L(x) is the random variable

in the standard expression of the variance [49] for the j-th distribution. Then, the

variances produced by all the independent biased distributions are added to obtain

the expression for the variance of the estimator P̂I in (5.7).

5.4 Importance sampling for the polarization-in-

duced penalty

The key issue in applying importance sampling is to choose the biased pdf p∗(x). In

the reduced model, the PDL is lumped in the optical amplifiers. So, to compute the
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Figure 5.2: Poincaré sphere with the diagram of the importance sampling

technique for the PDL-induced penalty. The vector RPMD schannel is the nor-

malized Stokes vector of a given channel prior to the n-th PDL element, sPDL

is the normalized Stokes vector that is parallel to the high-loss axis of the

n-th PDL element, and θn is the angle between these two vectors, which I

bias towards zero.

outage probability for a given channel, the appropriate pdfs to bias are the pdfs of the

angles θn between the polarization state of the channel and the polarization state that

undergoes the highest loss due to PDL in the n-th optical amplifier. This procedure

is illustrated in Fig 5.2, where the polarization transformation matrix RPMD of the

last birefringent section of the fiber is biased so that the transformed polarization

state of a given channel RPMD schannel is more likely to be aligned to the high-loss axis

sPDL of the PDL elements in each of the optical amplifiers along the transmission. I

stress that the method is self-validating. If one biases the samples incorrectly, then
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the variance of the results is large.1 By biasing cos θn towards one, one increases the

likelihood that the Q-penalty of the channel will be large. The angles θn are directly

determined by the realization of the random mode coupling in the last birefringent

section of the fiber that precedes the n-th optical amplifier. Thus, the values of

cos θn play the role of the components of the random vector x in (5.4). In standard

Monte Carlo simulations, in which the PMD is modeled using the coarse step method

[27], the cosines of each of the angles θn are uniformly distributed in the interval

[−1, 1]. One can note that an unbiased importance sampling simulation, for which

L(x) = 1, is exactly the same as a standard Monte Carlo simulation. However, in

biased importance sampling one fixes a biasing parameter α and selects the cos θn

from a biased pdf, p∗α(cos θ). In the work reported in this dissertation, my colleagues

and I used the biased pdf

p∗α (cos θ) =
α

1 − e−2α
e−α(1−cos θ), (5.9)

which biases cos θ towards 1 when α is positive and which corresponds to standard

Monte Carlo simulations in the limit α = 0. The likelihood ratio for this pdf is given

by

Lα (cos θ) =
1 − e−2α

2α
eα(1−cos θ). (5.10)

Since the unbiased cos θn are independent random variables, the likelihood ratio for

a biased realization of the fiber PMD is equal to the product of the likelihood ratios

for each of its biased angles. The actual pdf of the Q-penalty is obtained using (5.4)

1There is one important caveat: If two or more disconnected regions in the phase space produce

the same penalty, then it is possible in principle to have low variance and for the result to still be

incorrect. This outcome does not appear to be physically possible for the problem studied here.
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by weighting each fiber sample by its likelihood ratio, which is the likelihood that the

biased fiber realization would actually occur in an unbiased simulation. By using the

balanced heuristic method to combine several Monte Carlo simulations with different

values of the biasing parameter α, one can statistically resolve the pdf of theQ-penalty

in any desired range.

To use importance sampling, one must determine the value of the biasing param-

eter α that enables one to statistically resolve the histogram of the Q-penalty over a

range of Q-penalty values whose probability is on the order of a given target proba-

bility Pα, such as Pα = 10−6. My colleagues and I observed that a biased distribution

efficiently resolves the probability of a given bin in the histogram of the Q-penalty

when the indicator function for this bin has the value 1 for a large proportion of

the biased samples. Therefore, the required value of the biasing parameter α is the

one for which the target probability Pα is equal to the likelihood ratio of the biased

realization of the fiber PMD evaluated at the expected value of the random variable

cos θ with biased pdf p∗α. That is, the bias parameter α satisfies the equation

Pα = LN
α [〈cos θ〉] = LN

α

(

1 + e−2α

1 − e−2α
− 1

α

)

, (5.11)

where N is the number of optical amplifiers, and 〈·〉 is the expectation operator. For

example, P0.3 = 1.5 × 10−2 and P0.6 = 1.8 × 10−7 for N = 80. In Fig. 5.3, I show the

pdf of cos θ for α = 0, which produces unbiased samples, together with α = 0.3 and

α = 0.6. Just as in a standard Monte Carlo simulation, as one increases the number

of samples with the bias parameter α, one increases the size of the interval about Pα

for which the histogram of the Q-penalty is well resolved.
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Figure 5.3: Biased pdf of cos θ defined in (5.9) for different values of bias

strength α. The solid curve shows results for α = 0, which corresponds to

the unbiased pdf. The dashed curve shows results for α = 0.3. The dotted

curve shows results for α = 0.6.

For the importance sampling technique to be efficient it is required that the per-

formance measure, the Q-penalty, be highly correlated with the random variables

that are being biased, the values of cos θn. In other words, given a set of random

values of cos θn, a perturbation in any of the values of cos θn towards 1 should always

produce an increase in the Q-penalty. If this requirement is not met, the statistical

uncertainty of the results may be so large that importance sampling provides little

or no improvement over standard Monte Carlo simulations. For a single channel sys-

tem with PMD and PDL, small values of the angles θn are very highly correlated

to large Q penalties. Moreover, the effect of adding gain saturation and PDG to

such a system is to always increase the Q-penalty. Consequently, my colleagues and I

found that importance sampling is efficient for single channel simulations. However,

in a WDM system, the Q-penalty for a given channel also depends on the angles
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the polarization states of the other channels make with the polarization state with

highest loss due to PDL, as can be illustrated by the following two extreme cases:

I consider a given channel, whose polarization state is aligned with the polarization

state with highest loss due to PDL. In the first case, I suppose that the polarization

states of the other channels are all aligned with the polarization state with lowest

loss due to PDL, so that when the total power is partially restored by each of the

gain-saturated amplifiers, the given channel loses power relative to the other channels

and the largest possible Q-penalty is incurred. In the second case, I suppose that all

the channels are co-polarized, so that the given channel does not transfer any power

to the other channels and therefore incurs a much smaller Q-penalty. When PDG is

included, the variation in the Q-penalty can be even larger for a fixed set of biasing

angles θn, since in this case the penalty also depends on the degree of polarization

(DOP) and on the total polarization state. Therefore, in a WDM system with only

a few channels, the correlation between the Q-penalty and the angles θn is not as

high as in the single channel system and the importance sampling procedure that I

described is not as efficient. On the other hand, since PMD tends to randomize the

polarization states of the channels, one finds that as the number of channels increases

the DOP decreases. Thus, the Q-penalty becomes less dependent on the polarization

states of the other channels and on the PDG, and the importance sampling procedure

becomes more efficient. In the next section, I will show that this procedure is highly

efficient for a WDM system with as few as eight channels.
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5.5 Numerical results

In this section, I describe the outage probabilities due to polarization effects for a

trans-oceanic WDM system by applying importance sampling to resolve the tails

of the pdf of the Q-penalty for the same system that I presented in Sec. 5.2. My

colleagues and I validated the method of computing outage probabilities using Monte

Carlo simulations with importance sampling by making comparisons with extensive

standard Monte Carlo simulations. To obtain these results, we used the reduced model

that I described in Chapter 3 and the receiver model that I described in Chapter 4.

For the results in this chapter, we obtained the final histograms of the Q-penalty by

dividing the range of penalties in dB into 50 bins and by combining all the biased

distributions using the balanced heuristic method that I described in Sec. 5.3.

We simulated a 10 Gbit/s return-to-zero (RZ) system with eight WDM channels

spaced 1 nm (124 GHz) apart. The total propagation distance was 8, 910 km and

the amplifier spacing was 33 km. The PMD was 0.1 ps/km1/2. In Fig. 5.4, I plot

the outage probability as a function of the allowed Q-penalty margin ∆Q. The PDL

was 0.13 dB and the PDG was 0.06 dB per optical amplifier. The solid curve shows

the outage probability that is computed using 104 Monte Carlo simulations with

importance sampling for each biased distribution pα(·) in (5.9) with: α = 0, which

corresponds to unbiased simulations, α = 0.3, α = 0.4, α = 0.5 and α = 0.6. In

Fig. 5.4, a dashed curve shows results of extensive Monte Carlo simulations with a

total of 5 × 106 samples. The agreement with the importance sampling results is

good up to outage probability at which we could obtain in a statistically significant
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Figure 5.4: The outage probability as a function of the allowed Q-penalty

margin ∆Q in dB for an eight channel WDM system. We set PDL = 0.13 dB

and PDG = 0.06 dB per optical amplifier. The solid curve shows results of

5 × 104 Monte Carlo simulations with importance sampling. The dashed

curve shows results of 5×106 standard Monte Carlo simulations. The dotted

curve shows results obtained with the same 5× 104 Monte Carlo simulations

with importance sampling, but assuming that the noise is always unpolarized

at the receiver.

number of samples. We used the same computer and the same program for both the

extensive Monte Carlo simulations and the simulations with importance sampling;

the only difference is that we did not bias the fiber birefringence for the standard

Monte Carlo method. The results with importance sampling required only 1% of

the computational time that was required by extensive Monte Carlo simulations.

The dotted curve shows the outage probability obtained with the same Monte Carlo

simulations with importance sampling, but using the receiver model that assumes

unpolarized noise in the receiver. As a consequence, this model implicitly assumes

that half of the noise beats with the signal in the photodetector, which leads to
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incorrect results. Thus, we conclude that it is very important to properly account for

the polarization states of the signal and the noise in the receiver.

In Fig. 5.5, I plot the outage probability at margins of 1 dB and 2 dB as a function

of the PDL per optical amplifier for the same system as in Fig. 5.4. For these results,

my colleagues and I used Monte Carlo simulations with importance sampling. The

solid curve with circles shows that the PDL per optical amplifier must not exceed

0.11 dB in order for the probability that the Q-penalty exceeds 2 dB be smaller that

10−6. Therefore, if the margin allocated in the design to the penalty produced by

the polarization effects is equal to 2 dB with an outage probability of 10−6, the PDL

per optical amplifier must not be larger than 0.11 dB. If the margin allocated to the

polarization effects is equal to 3 dB, shown with a dashed line with diamonds, the

PDL per optical amplifier can be as large as 0.15 dB with an outage probability of

10−6.
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Figure 5.5: The outage probability as a function of the PDL per optical

amplifier for two Q-penalty margins ∆Q. The solid curve with circles shows

the probability that the Q-penalty exceeds 2 dB. The dashed curve with

diamonds shows the probability that the Q-penalty exceeds 3 dB. The error

bars show the confidence interval for the curves computed using (5.7). The
dotted line shows the 10−6 outage probability level.



Chapter 6

Fiber recirculating loop experiments

6.1 Fiber recirculating loops

Optical fiber recirculating loops are useful tools for laboratory studies of the effects

that limit the performance of optical fiber communications systems [5]. In this chap-

ter, I present an experimental validation of the reduced Stokes model that I described

in Chapter 3 in combination with the receiver model that I derived in Chapter 4 by

comparison with dispersion-managed soliton, optical-fiber recirculating loop experi-

ments.

The evolution of the polarization states in fiber recirculating loops is periodic,

which contrasts with the random evolution of the polarization states due to PMD

in straight-line systems. As a consequence of this periodicity, polarization effects

accumulate faster in fiber recirculating loops than in straight-line systems [56], [57].

To overcome this problem, my colleagues and I use a loop-synchronous polariza-

tion scrambler in both sets of experiments that I describe in this chapter. Loop-

synchronous polarization scramblers are used to rotate the polarization state of the

signal after each round trip of the loop to emulate PMD-induced polarization rota-

94
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tions and, thereby, to break the periodicity of the evolution of the polarization states

during the transmission [56]. In this set of fiber recirculating loop experiments, which

was carried out primarily by Yu Sun at the University of Maryland Baltimore County,

we showed that partially polarized noise due to PDL causes an asymmetrical Q-factor

distribution in the receiver. We also showed that it is very important to account for

the polarization state of the noise at the receiver when computing the performance

of fiber recirculating loop systems.

6.2 Experimental Q-factor distribution

In this section, I show that partially polarized noise due to PDL causes an asym-

metrical Q-factor distribution at the receiver. This asymmetry occurs because the

SNR of the electrical current in the receiver does not completely determine the Q-

factor if the noise is partially polarized. Therefore, it is very important to accurately

model the contribution of the partially polarized noise at the receiver as I described

in Chapter 4.

In Fig 6.1, I show a diagram of the optical fiber recirculating loop that my col-

leagues and I used. This fiber recirculating loop was a dispersion-managed soli-

ton (DMS) system that consisted of 100 km of dispersion-shifted fiber with D =

−1 ps/nm-km, followed by 7 km of single-mode fiber with D = 17 ps/nm-km. We

used a LiNbO3 polarization controller to synchronously scramble the polarization

state of the light in the loop once per round trip, which we controlled using a pro-

grammable waveform generator. The PDG was equal to 0.05 dB per optical amplifier

and the PMD was equal to 0.1 ps/km1/2. The PDL per round trip could be varied
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Figure 6.1: Diagram of the fiber recirculating loop experiment.

from 0.13 dB to 0.6 dB by adjusting the manual polarization controllers inside the

loop. In the DMS loop, the interaction between dispersion and nonlinearity produces

optical pulses that can be transmitted over ultra-long distances without suffering

waveform distortions even in the presence of intra-channel PMD [13], [58]. We prop-

agated a 10 Gbit/s return-to-zero (RZ) modulation format through 94 round trips to

emulate a long-haul undersea system with a total propagation distance of 10, 000 km.

We also employed a polarization scrambler at the transmitter to reduce the effect

of PDG. We chose a slow scrambling rate of 12.6 GHz to simultaneously reduce the

effects of PDG and the amplitude modulation induced by PDL [14].

In Fig. 6.2, I show the pdf of the Q-factor for the DMS fiber recirculating loop that

I showed in Fig. 6.1 with a PDL per round trip of 0.6 dB [22]. In Fig. 6.2, the dotted

bars are experimental results. The solid curve shows the result obtained from Monte

Carlo simulations using the reduced Stokes model with the accurate receiver model

that accounts for the polarization state of the noise at the receiver. The dashed
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Figure 6.2: The pdf of the Q-factor for the DMS fiber recirculating loop at

the University of Maryland Baltimore County with 0.6 dB of PDL per round

trip. The dotted bars show the experimental result with 200 measurements

with different realizations of the transformations produced by a LiNbO3 po-

larization controller. The solid curve shows result obtained from a Monte

Carlo simulation with 105 samples using the reduced Stokes model with the

accurate receiver model that accounts for the polarization state of the noise

at the receiver. The dashed curve shows the result from a Monte Carlo sim-

ulation with 105 samples using the reduced Stokes model with the receiver

model that assumes unpolarized noise at the receiver.

curve shows the result obtained from Monte Carlo simulations using the reduced

Stokes model with the receiver model that assumes that the noise is unpolarized

at the receiver. We observed a very good agreement between the experiments and

the simulations using the accurate receiver model that accounts for the polarization

state of the noise at the receiver that I derived in Chapter 4. The pdf of the Q-

factor in this single-channel experiment has a sharp cut-off at about Q = 8.5. The

receiver model that does not account for the polarization state of the noise predicts a
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substantially larger tail for the large Q values. These large Q values were not observed

in the experiment because they come from realizations of the LiNbO3 polarization

controller that preferentially attenuate the noise that is in the polarization state

orthogonal to the polarization state of the signal. In this case, the optical noise at

the receiver is primarily co-polarized with the signal, which produces a variance of the

current due to the signal-noise beating that is equal to what would be produced in the

presence of an arbitrarily large noise component in the polarization state orthogonal

to the polarization state of the signal. Therefore, the receiver model that does not

account for the polarization state of the noise incorrectly assumes that half of the

optical intensity of the received noise produces signal-noise beating. The use of this

approximation significantly overestimates the probability of obtaining large Q values

for the same reason that it overestimates the penalty due to the polarization effects—

the probability of obtaining low Q values—as I showed in Chapter 5.



Chapter 7

Conclusions

Polarization effects can significantly limit the performance of long-haul terrestrial and

trans-oceanic optical fiber communications systems. Polarization effects can produce

randomly varying signal distortions and power penalties that can lead to system out-

ages on a time scale that varies between milliseconds and hours. Therefore, accurately

computing the penalty produced by the polarization effects is crucial in the design

of long-haul optical fiber communications systems. Wang and Menyuk [8] proposed

the reduced Stokes model as a tool for the computation of the penalty produced by

the polarization effects that is much more efficient than using the full time-domain

model. Even so, it is not currently feasible to accurately compute outage probabili-

ties as low as 10−6 using standard Monte Carlo simulations with the reduced Stokes

model. Moreover, the receiver model used by Wang and Menyuk did not account for

the effect of partially polarized noise in the receiver.

In this dissertation, I have described two contributions that I made with the

collaboration of my colleagues to the field of optical fiber communications systems.

These contributions extend and substantially improve the accuracy of the reduced

99
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Stokes model. I described a technique that uses Monte Carlo simulations with im-

portance sampling that we developed to compute the probability density function

of the Q-factor and the outage probability for a channel in a long-haul, wavelength-

division-multiplexed optical fiber communications system due to the combination

of inter-channel polarization mode dispersion (PMD), polarization-dependent loss

(PDL), and polarization-dependent gain (PDG). This technique allows one to accu-

rately compute outage probabilities as small as 10−6 using the reduced Stokes model

at a fraction of the computational cost required by standard Monte Carlo simulations.

This technique was validated by comparison to extensive Monte Carlo simulations.

I also described an accurate formula that we developed that relates the Q-factor to

the OSNR for amplitude-shift-keyed optical fiber communication systems with arbi-

trary optical pulse shapes, arbitrary receiver characteristics and arbitrarily polarized

noise using an accurate receiver model. Using this formula, we showed how the per-

formance of a system depends on the state of polarization of the noise, which can

be significantly affected by PMD in the optical fiber, PDL, and PDG in the opti-

cal amplifiers. We also defined the enhancement factor and three other parameters

that explicitly quantify the performance of different modulation formats, which can

be useful in receiver optimization studies. We validated this formula by comparison

to back-to-back 10 Gbit/s experiments and Monte Carlo simulations. We also val-

idated the receiver model that I developed in combination with the reduced Stokes

model by comparison to optical fiber recirculating loop experiments. We applied

the proposed receiver model to compare the performance of the chirped return-to-

zero (CRZ), return-to-zero (RZ), and nonreturn-to-zero (NRZ) modulation formats
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with a finite extinction ratio. We observed that the CRZ modulation format outper-

forms both the RZ and the NRZ formats with the same optical power and receiver

characteristics because the CRZ format has the largest enhancement factor for the

receiver that we studied. This method should be applicable to the study of other

amplitude-shift-keyed formats.



Appendix A

Derivation of integral expressions for the

receiver model

In this Appendix, I present a derivation of the integral expressions for the mean and

the variance of the electric current in the receiver given in (4.22), (4.24), and (4.32)

in Chapter 4. For consistency, I use the same definitions introduced in that chapter.

This derivation is based on previous work by Winzer et al. [20] that I extended to

account for arbitrarily polarized noise.

From (4.19), the electric current i(t) in the receiver due to the signal and the noise

can be expressed as the sum of three terms,

i (t) = is(t) + in(t) + isn(t), (A.1)

where

is (t) = R |eso
(t)|2 ∗ he(t) (A.2)

is the electric current due to the noise-free signal,

in (t) = R
{

∣

∣eno,1
(t)

∣

∣

2
+

∣

∣eno,2
(t)

∣

∣

2
}

∗ he(t) (A.3)
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is the electric current due to the noise beating with itself, and

isn (t) = R
[

eso,1
(t) e∗no,1

(t) + e∗so,1
(t) eno,1

(t)

+ eso,2
(t) e∗no,2

(t) + e∗so,2
(t) eno,2

(t)
]

∗ he(t)

(A.4)

is the electric current due to the beating between the signal and the noise. In (A.3)

and (A.4), eso,1
(t) is the Jones vector that mathematically represents the the filtered

noise field that is co-polarized with the polarization state of the polarized component

of the noise, and eso,2
(t) is its orthogonal Jones vector component.

The expression for the variance of the electric current at any time t is given by

σ2
i (t) = 〈i2〉(t) − 〈i〉2(t). (A.5)

To compute the mean and the mean square of the current i(t), I recall the statistical

properties of the optically filtered noise given in (4.15)–(4.17) to write the autocorre-

lation functions of the filtered noise as

〈eno,1
(t) e∗no,1

(t′)〉 =
1

2
(1 + DOPn)NASE ro (t′ − t) (A.6)

and

〈eno,2
(t) e∗no,2

(t′)〉 =
1

2
(1 − DOPn)NASE ro (t′ − t) , (A.7)

where NASE is the total power spectral density of the noise, while the terms

〈eno,1
(t) e∗no,2

(t′)〉 = 〈eno,1
(t) eno,1

(t′)〉 = 〈eno,2
(t) eno,2

(t′)〉 = 0. (A.8)

The lack of correlation between the fields eno,1
(t) and eno,2

(t) follows from an appro-

priate choice of basis {â1, â2} for the Jones vector of the filtered noise. Following the
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same procedure used in the derivation of (A.6) and (A.7), I find that

〈eno,1
(ti) e∗no,1

(tii) eno,1
(tiii) e∗no,1

(tiv)〉 =
1

4
(1 + DOPn)

2N2
ASE

×
[

ro(t
ii − ti) ro(t

iv − tiii) + ro(t
iv − ti) ro(t

iii − tii)
]

,

(A.9)

and

〈eno,2
(ti) e∗no,2

(tii) eno,2
(tiii) e∗no,2

(tiv)〉 =
1

4
(1 − DOPn)2N2

ASE

×
[

ro(t
ii − ti) ro(t

iv − tiii) + ro(t
iv − ti) ro(t

iii − tii)
]

.

(A.10)

Using (A.1) and (A.6)–(A.8), I find that the mean value of the current is given by

〈i〉(t) = is(t) + 〈in〉(t), (A.11)

which implies that

〈i〉2(t) = i2s(t) + 2 is(t) 〈in〉(t) + 〈in〉2(t) (A.12)

and

〈i2〉(t) = i2s(t) + 〈i2n〉(t) + 〈i2sn〉(t) + 2 is(t) 〈in〉(t). (A.13)

In (A.13), I do not include the terms that are proportional to 〈isn〉(t) because 〈isn〉(t)

averages out to zero, since the optical noise field has zero mean. Therefore, I can

express the variance of the current in the receiver as

σ2
i (t) = σ2

ASE−ASE(t) + σ2
S−ASE(t), (A.14)

where

σ2
ASE−ASE(t) = 〈i2n〉(t) − 〈in〉2(t) (A.15)
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is the variance of the current due to the noise-noise beating, and

σ2
S−ASE(t) = 〈i2sn〉(t) (A.16)

is the variance of the current due to signal-noise beating.

To obtain closed form integral expressions for the mean and the variance of the

electric current due to noise in (A.15) and (A.16), respectively, I use the statistical

properties of the noise that I described in (A.6)–(A.10). The convolution of two

arbitrary functions g(t) and h(t) is defined by

g(t) ∗ h(t) =

∫ +∞

−∞

g(τ)h(t− τ)dτ. (A.17)

The limits of all of the integral expressions in this Appendix are from −∞ to +∞,

which for simplicity I suppress in all the subsequent expressions. Substituting (A.17)

into (A.3), I obtain

〈in〉(t) = R

∫

dti
∫

dtii
∫

dtiii〈en1
(ti) e∗n1

(tii) 〉 ho(t
iii − ti) h∗o(t

iii − tii) he(t− tiii)

+R

∫

dti
∫

dtii
∫

dtiii〈en2
(ti) e∗n2

(tii) 〉 ho(t
iii − ti) h∗o(t

iii − tii) he(t− tiii).

(A.18)

Substituting (A.6) and (A.7) into (A.18), I find that

〈in〉 = RNASE

∫

∣

∣ho(t
i)
∣

∣

2
dti

∫

he(t
ii)dtii. (A.19)

Equation (A.19) can be further simplified to

〈in〉 = RNASEBo, (A.20)
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where I define the electrical and the optical filter transfer functions such that |He(0)| =

|Ho(0)| = 1. Therefore, Bo = ro(0) =
∫

|ho(τ)|2dτ is the power-equivalent spectral

width [24] of the optical filter.

Using (A.3), I can express the mean square of in(t) as

〈i2n〉(t) = 〈i2n1
〉(t) + 〈i2n2

〉(t) + 〈i2n12
〉(t), (A.21)

where

〈i2n1
〉(t) =

〈

[

R
∣

∣eno,1
(t)

∣

∣

2 ∗ he(t)
]2

〉

, (A.22)

〈i2n2
〉(t) =

〈

[

R
∣

∣eno,2
(t)

∣

∣

2 ∗ he(t)
]2

〉

, (A.23)

and

〈i2n12
〉(t) = 2

〈[

R
∣

∣eno,1
(t)

∣

∣

2 ∗ he(t)
] [

R
∣

∣eno,2
(t)

∣

∣

2 ∗ he(t)
]〉

. (A.24)

Substituting (A.17) into (A.22)–(A.24), I obtain

〈i2n1
〉(t) = R2

∫

dti
∫

dtii
∫

dtiii
∫

dtiv
∫

dtv
∫

dtvi 〈en1
(ti) e∗n1

(tii) en1
(tiv) e∗n1

(tv)〉

×ho(t
iii − ti) h∗o(t

iii − tii) ho(t
vi − tiv) h∗o(t

vi − tv) he(t− tiii) he(t− tvi),

(A.25)

and 〈i2n2
〉(t), which is the same as (A.25) when one replaces en1

(t) by en2
(t), and

〈i2n12
〉(t) = 2R2

∫

dti
∫

dtii
∫

dtiii
∫

dtiv
∫

dtv
∫

dtvi 〈en1
(ti) e∗n1

(tii)en2
(tiv) e∗n2

(tv)〉

×ho(t
iii − ti) h∗o(t

iii − tii) ho(t
vi − tiv) h∗o(t

vi − tv) he(t− tiii) he(t− tvi).

(A.26)

Substituting (A.6) and (A.7) into (A.26), I obtain

〈i2n12
〉 =

1

2
R2 (1 − DOP2

n)N2
ASEB

2
o . (A.27)
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Likewise, substituting (A.9) and (A.10) into (A.25), I obtain

〈i2n1
〉(t) =

1

4
R2 (1 + DOPn)2N2

ASE

[

B2
o +

∫

dti
∫

dtii
∫

dtiii
∫

dtiv

×
∣

∣ho(t
iii − ti)

∣

∣

2
ho(t

vi − tii) h∗o(t
vi − ti) he(t− tiii) he(t− tiv)

]

.

(A.28)

and

〈i2n2
〉 =

1

4
R2 (1 − DOPn)2N2

ASE

[

B2
o +

∫

dti
∫

dtii
∫

dtiii
∫

dtiv

×
∣

∣ho(t
iii − ti)

∣

∣

2
ho(t

vi − tii) h∗o(t
vi − ti) he(t− tiii) he(t− tiv)

]

.

(A.29)

Substituting (A.27)–(A.29) into (A.21), I also obtain

〈i2n〉 = R2N2
ASE

[

B2
o +

1

2

(

1 + DOP2
n

)

∫

|ro(τ)|2 re(τ)dτ

]

(A.30)

where ro(τ) is the autocorrelation function of the optical filter described in (4.4) and

re(τ) is the autocorrelation function of the electrical filter described in (4.27). The

autocorrelation functions of the filters appear in (A.30) after rearranging the integral

expressions in the second term in the right-hand side of both (A.28) and (A.29).

Finally, substituting (A.20) and (A.30) into (A.15), I obtain a closed-form integral

expression for the variance of the electric current due to the noise-noise beating,

σ2
ASE−ASE =

1

2
R2N2

ASE

(

1 + DOP2
n

)

∫

|ro(τ)|2 re(τ)dτ , (A.31)

which completes the derivation of (4.24).

In order to compute the variance of the electric current due to the signal-noise

beating σ2
S−ASE(t) in (A.16), I compute the mean-square of isn(t) in (A.4), which is
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equal to

〈i2sn(t)〉 = R2
〈[

eso,1
(t) e∗no,1

(t) ∗ he(t)
] [

e∗so,1
(t) eno,1

(t) ∗ he(t)
]〉

+R2
〈[

eso,2
(t) e∗no,2

(t) ∗ he(t)
] [

e∗so,2
(t) eno,2

(t) ∗ he(t)
]〉

.

(A.32)

Substituting (A.9), (A.10), and (A.17) into (A.32), I obtain

σ2
S−ASE(t) = 〈i2sn(t)〉 = R2 (1 + DOPn)NASE

×
∫

dti
∫

dtiies1,o
(ti) e∗s1,o

(tii) ro(t
i − tii) he(t− ti) he(t− tii)

+R2 (1 − DOPn)NASE

×
∫

dti
∫

dtiies2,o
(ti) e∗s2,o

(tii) ro(t
i − tii) he(t− ti) he(t− tii),

(A.33)

which is the variance of the electric current due to the signal-noise beating for an

arbitrarily polarized signal and an arbitrarily polarized noise. The integral expressions

in (A.33) can be rearranged so that

σ2
S−ASE(t) = R2 (1 + DOPn)NASE

×
∫

es1,o
(τ)he(t− τ)

∫

e∗s1,o
(τ ′)he(t− τ ′)ro(τ − τ ′)dτ ′dτ

+R2 (1 − DOPn)NASE

×
∫

es2,o
(τ)he(t− τ)

∫

e∗s2,o
(τ ′)he(t− τ ′)ro(τ − τ ′)dτ ′dτ.

(A.34)

If one assumes that the signal is polarized, then the unit Jones vector that de-

fines the polarization state of the signal ês is time-independent, so that es1,o
(t) =
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(ês · â1) eso
(t) and es2,o

(t) = (ês · â2) eso
(t) are the optically filtered parts of the noise-

free signal decomposed in the â1 and â2 orthogonal polarization states. Using these

results, I can rearrange (A.34) as

σ2
S−ASE(t) = R2NASE

[

(1 + DOPn) |ês · â1|2 + (1 − DOPn) |ês · â2|2
]

×
∫

eso
(τ)he(t− τ)

∫

e∗so
(τ ′)he(t− τ ′)ro(τ − τ ′)dτ ′dτ,

(A.35)

which completes the derivation of (4.28).
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