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ABSTRACT

Title of dissertation: NONLINEAR INTERACTION BETWEEN
A FREQUENCY SIGNAL AND NEIGHBORING
DATA CHANNELS IN A COMMERCIAL
OPTICAL FIBER COMMUNICATION SYSTEM

Patrick Sykes, Master of Science, 2018

Dissertation directed by: Dr. Curtis Menyuk, Professor
Computer Science and Electrical Engineering

We theoretically investigate the feasibility of transmitting a frequency signal in

an interstice of the data channels in a commercial wavelength division multiplexed

optical fiber communications system. We will give an overview of some different

measures used for frequency stability. We also list the typical optical impairments

that affect light propagating in an optical fiber and how the impairments can induce

phase noise in a frequency signal. The phase noise on the frequency signal due to

the optical impairments can be limited by restricting the optical power, bandwidth,

and center frequency of the signal. The primary source of phase noise is cross-phase

modulation (XPM) between the frequency signal and its neighboring data channels.

We calculate the first order structure functions and Allan deviation of the phase

noise resulting from XPM as the averaging time varies using typical commercial

system parameters. We find that the instability added by this effect is comparable to

experimentally observed instabilities in research networks, suggesting that frequency

transfer over commercial networks without occupying an entire data channel should

be feasible.



Nonlinear Interaction between a

Frequency Signal and Neighboring Data

Channels in a Commercial Optical Fiber

Communication System

by

Patrick Sykes



c© Copyright by
Patrick Sykes

2018



Acknowledgments

This thesis was a tremendous effort that I never thought possible. This effort

came from the support of many people.

I want to thank my family who have always been there. My mother Clarice for

her encouragement and support as I pursued graduate research. My brother Sean

for paving the way. My sister Michelle for the many funny times. Their families

for all the love. And my nephew John Ryan and my nieces, Clara and Valeksa, for

being the greatest inspiration. My family made me into the person that I am today.

I especially want to thank my girlfriend Tamara Molina. Her encouragement

helped me finish this thesis. She has also taught me a lot about communication.

And discussing scientific things with her always reminds me that I do need, and will

always have, practice explaining difficult scientific subjects.

I want to thank the guys in my lab for being great friends, Chaoran, Jerry,

Ehsan, and Zhen. I want to put a special thank you to Chaoran for helping me set

up my defense presentation, and helping me get my paperwork finished.

Finally I want to thank my advisor Dr. Curtis Menyuk for his constant sup-

port, patience, and understanding. Dr. Menyuk provided me time when I was

experiencing health problems and opportunities when I wasn’t. One opportunity

sparked my interest in time and frequency which eventually became this thesis. He

also provided the great experiences of working on projects at APL and ARL. And

for shaping me into the great electromagnetic waves teaching assistant that I am. I

will be forever thankful for his influence.



Table of Contents

List of Figures iv

List of Tables iv

1 Introduction 1

2 Phase and Frequency Stability Measures 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Power Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Allan Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Structure Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Converting between different measures . . . . . . . . . . . . . . . . . 16

2.5.1 Allan variance to the second-order structure function: . . . . . 17
2.5.2 PSD to structure functions: . . . . . . . . . . . . . . . . . . . 17
2.5.3 PSD to Allan variance: . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Chapter remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Optical Fiber Impairments 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Coupled Propagation Equations . . . . . . . . . . . . . . . . . . . . . 21
3.3 Multiple Data Channels . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Optical Impairments . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.1 Attenuation and Amplified Spontaneous Emission (ASE) Noise 26
3.5.2 Chromatic Dispersion . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.3 Self-Phase Modulation (SPM) . . . . . . . . . . . . . . . . . . 28
3.5.4 Four-Wave Mixing (FWM) . . . . . . . . . . . . . . . . . . . . 29
3.5.5 Rayleigh Scattering . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.6 Brillouin and Raman Scattering . . . . . . . . . . . . . . . . . 30
3.5.7 Cross-Phase Modulation (XPM) . . . . . . . . . . . . . . . . . 32

3.6 Phase distortion of the frequency signal due to XPM . . . . . . . . . 32
3.7 Chapter Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ii



4 Results 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Without Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Effect of Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Varying the Frequency Separation . . . . . . . . . . . . . . . . . . . . 44
4.6 Comparison to Frequency Transfer Experiments . . . . . . . . . . . . 46
4.7 Chapter Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Conclusion 48
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Bibliography 50

iii



List of Figures

2.1 Schematic illustration of the power spectral density in which different
powers of f appear. Based on [1]. . . . . . . . . . . . . . . . . . . . 12

3.1 Desired frequency domain placement of the frequency signal. . . . . 20

4.1 Data channel optical power variance vs. fiber length. . . . . . . . . . 38
4.2 (a) Mean of φ vs. fiber length (b) Variance of φ vs. fiber length. . . . 39
4.3 Phase deviation without attenuation. . . . . . . . . . . . . . . . . . . 40
4.4 Allan deviation without attenuation. . . . . . . . . . . . . . . . . . . 40
4.5 Data channel optical power variance vs. fiber length. . . . . . . . . . 41
4.6 (a) Mean of φ vs. fiber length (b) Variance of φ vs. fiber length. . . . 42
4.7 Phase deviation with attenuation. . . . . . . . . . . . . . . . . . . . . 43
4.8 Allan deviation with attenuation. . . . . . . . . . . . . . . . . . . . . 44
4.9 Phase deviation vs. group velocity difference. . . . . . . . . . . . . . 45

List of Tables

3.1 Summary of the limits on the frequency signal imposed by the optical
impairments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



Chapter 1: Introduction

Improvements in optical frequency references allow them to be more precise than

current atomic clock standards at microwave frequencies [2–4]. It is expected that

this greater precision will ultimately lead to a redefinition of the second, as well as

greater precision and accuracy in timekeeping [3]. It is desirable for many applica-

tions to transmit time and frequency from highly accurate and precise references,

like those at the National Institute of Standards and Technology (NIST) or the

US Naval Observatory (USNO), to distant locations. However, the transmission

medium distorts the time and frequency data—degrading their accuracy and preci-

sion.

Numerous systems require accurate timekeeping, including Global Positioning

System (GPS) satellites and receivers, transaction logging, and some basic science

experiments [5]. Techniques and systems exist for time and frequency transfer in

wireless communication systems. A commonly-used method is two-way satellite

time and frequency transfer, which makes it possible for two laboratories to use a

satellite as a common link to synchronize their clocks. These wireless systems are

typically accurate to within 1–10 ns [6], which is sufficient for many applications, but

far less accurate than the best primary references [7, 8]. Additionally, satellites are
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physically inaccessible, which makes hardware maintenance and upgrades difficult

and also makes the satellites vulnerable to attack. Fiber optics are a potential

substitute for land-based transfer, especially if one can take advantage of the existing

fiber telecommunications infrastructure.

Research networks are increasingly transmitting time and frequency signals

along with data over fiber optic communication systems. These networks include the

Réseau Fibré Métrologique à Vocation Européenne (REFIMEVE+) in France [9],

PIONIER in Poland [10], and the White Rabbit networks used at the CERN acceler-

ator sites and GSI’s Facility for Antiproton and Ion Research [11]. A larger European

optical time and frequency distribution network called CLONETS is planned [12].

The REFIMEVE+ project has demonstrated frequency transfer over optical fibers

with an instability of 10−16 at 1 s and 10−19 at 104 s over a distance of 1480 km [9].

These systems place the frequency signal in a wavelength channel that is used for

data transmission.

In a typical optical communication system, there are many data channels

centered at different optical wavelengths, which is a technique called wavelength

division multiplexing (WDM). Each channel has some finite bandwidth so that they

do not overlap in the frequency domain. In this thesis, we will be considering the

possibility of transmitting a frequency signal in the interstices of the WDM channels.

We will examine the limits that fiber impairments impose on this frequency signal in

a long-haul system. A number of different physical effects impair signal transmission

in optical fibers [13]. Signal impairments include amplified spontaneous emission

(ASE) noise from amplifiers, dispersion, and the Kerr nonlinearity [13]. Scattering

2



nonlinearities, due to the Rayleigh, Brillouin, and Raman effects, can also impair

the signal [13, 14]. Preliminary work indicates that this frequency signal can be

transmitted with both a narrow bandwidth (. 100 MHz) and low power (. 10 µW)

compared to a data channel [15]. The bandwidth of a data channel in a long-haul

system is typically 10− 100 GHz [16], while the typical power in a terrestrial long-

haul system for a WDM channel is 0 dBm (1 mW) at the transmitter and less than

−10 dBm (0.1 mW) prior to an amplifier as the signal attenuates. In this case, we

will show that the most important impairment that the frequency signal suffers is

due to cross-phase modulation between the frequency signal and the neighboring

data channels. In this thesis, we will quantify the impact of cross-phase modulation

on the frequency signal and determine the limits that it imposes.

The individual data channels are modulated to transmit information. Ex-

amples of modulation formats are on-off keying (OOK), binary phase shift keying

(BPSK), quadrature phase shift keying (QPSK), and differential phase shift keying

(DPSK) [13]. An OOK signal is the simplest modulation format. A binary 0 is

represented by the absence of power in a time slot and a binary 1 is represented by

some non-zero power that is sufficiently large so that noise does not lead to an un-

acceptable probability of confusing 0’s and 1’s. There cannot be a sharp transition

from a 0 to a 1 and vice versa because a communication channel can only occupy a

limited bandwidth. In practice, each bit occupies a time slot where its value is held

for a short time. The signal can start building up to a 1 from a 0 in the preceding

time slot and then decay back to a 0 in the following time slot. Thus, the physical

representation of the bits overlaps with neighboring bits, and the amount of over-
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lap is characterized by a roll-off parameter. This overlap can lead to intersymbol

interference [17].

A frequency signal has periodic zero crossings. However, fiber impairments

can alter the timing of the zero crossings. These phase shifts broaden the frequency

that is transmitted so that it is no longer a pure tone. We will show that the

most important optical impairment is due to cross-phase modulation between the

frequency signal and neighboring data channels. We then find the distribution of the

amplitude of the data channels in order to calculate their variance and their impact

on the variance of the frequency signal. The distribution of the amplitude of the

channel is mainly influenced by dispersion. We calculate the effect of dispersion on

an OOK signal, and we then calculate the variance of the data channel intensities

as a function of distance. Given this variance, we can then calculate the phase and

frequency variance of the frequency channel.

Chapter 2 introduces methods for measuring the frequency instability of oscil-

lators. We present the reasoning behind different measures of time instability. We

discuss issues with some of the usual statistical measures, such as the mean and

variance, that are used to treat stationary processes. We reveal the relations be-

tween each of the measures. We focus in particular on the second structure function

and Allan deviation for the measure of phase and frequency instability, respectively.

Chapter 3 is an overview of the common impairments that a signal experiences

in an optical fiber. The impairments will affect both a data channel and the fre-

quency signal. Here, the limits that the impairments impose on frequency transfer

will be investigated. These impairments determine the power and frequency require-
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ments for the frequency signal. After eliminating the negligible impairments, we

demonstrate that cross-phase modulation is the principal non-environmental source

of frequency spread in the frequency channel.

Chapter 4 describes the phase noise computations. We perform statistical

and time analyses of the phase noise to determine the variance of the frequency

fluctuations.

Chapter 5 contains our conclusions and a discussion of future directions.
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Chapter 2: Phase and Frequency Stability Measures

2.1 Introduction

Timekeeping requires a periodic event that can be counted and a time reference

point. In order to synchronize two clocks, it is necessary to match the frequency of

the periodic event and transfer the reference point. Figuring out the reference point

requires calculating an approximate delay due to propagation, which can be achieved

by transmitting a time point and then waiting to receive confirmation from the other

system. The White Rabbit Project achieves synchronization by using Synchronous

Ethernet for syntonization, and the IEEE 1588 Precision Time Protocol [11] to

determine the initial time point.

However, no frequency source is perfect; there are initialization errors, manu-

facturing flaws, and environmental influences. Environmental sources for oscillator

instability include pressure, temperature, and magnetic fields [18]. This thesis inves-

tigates the instabilities caused by optical impairments from the fiber medium and

amplifiers. Environmental effects or issues inherent to the oscillator source have

been treated in other studies [18–20].
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A frequency source can be represented as

uc(t) = [U0 + ε(t)] sin[ω0t+ φ(t)] (2.1)

where U0 is the amplitude and ε(t) is amplitude fluctuation. The quantity ω0 = 2πf0

is the nominal angular frequency, and φ(t) is the phase fluctuation. The amplitude

fluctuation must be much less than the nominal amplitude, |ε(t)| � |U0|; similarly,

the frequency fluctuation, given by the time derivative of the phase, φ̇ ≡ dφ/dt,

must be much less than the nominal angular frequency, |φ̇| � |ω0|. Otherwise, the

frequency signal is too heavily distorted to be useful.

No clock can give a meaningful time until it is compared to another clock;

for instance, a wall clock should match in some way with the position of the sun

(which we can consider to be a natural clock). If a clock is fast or slow, it is only

in reference to another clock used as a standard. Any attempt to measure the

stability of a clock can only be done with respect to some reference source. The

readings of many different clocks can be collected and averaged to provide such a

reference [21,22].

Consider two different clocks with internal frequency sources that produce

sinusoidally oscillating signals proportional to

sin [2πf1t+ φ1(t)] and sin [2πf2t+ φ2(t)] , (2.2)

7



with phase terms

ψ1(t) = 2πf1t+ φ1(t) and ψ2(t) = 2πf2t+ φ2(t), (2.3)

respectively. The time t that is produced by each clock is a derived quantity that is

calculated by counting every instance that the phase term equals a particular value

Ψ. There are two times tn1 and tn2 that correspond to n counts of Ψ for each phase

term, ψj(tnj) = nΨ. The time difference between the two is

tn1 − tn2 =
nΨ

2π

[
f2 − f1

f1f2

]
−
[
φ1(tn1)

2πf1

+
φ2(tn2)

2πf2

]
. (2.4)

Suppose one clock is more accurate and precise than the other, so that we can treat

it as a reference, and we can attribute all of the error to the other. Consider the first

clock as the reference. The terms in the right brackets represent a phase drift, so

that if we suppose that any long-term drift in the system is compensated, then we

only have a short-term phase instability, which we assume has zero mean. Averaging

over several of these matched phase terms, we have

∆t = 〈tn1 − tn2〉 =
nΨ

2πf1

f2 − f1

f2

=
∆f

f
T, (2.5)

where ∆t is the time deviation, T = nΨ/(2πf1) is a total time, and ∆f/f is the

fractional frequency uncertainty. This procedure does not work for the most accurate

and precise clocks, since there is no “better” clock that can be used as a reference.

For the best clocks that are used as time and frequency standards, it is necessary
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to compare the times from several clocks of the same type. It is then possible

to statistically infer the fractional frequency uncertainty [18]. A typical atomic

clock based on the cesium standard has a fractional frequency uncertainty of about

3× 10−15, corresponding to a time deviation of ±1 sec in 10 million years [23].

Most of the literature on time and frequency control uses the fractional fre-

quency y(t) and the phase time x(t) [24–26],

y(t) =
ω(t)− ω0

ω0

=
φ̇(t)

ω0

, x(t) =

∫ t

0

y(τ)dτ =
φ(t)

ω0

, (2.6)

where ω(t) = ω0 + φ̇(t) is the instantaneous frequency. However, it is useful for

our theoretical study to work mainly with φ and φ̇. Using φ and φ̇ emphasizes the

phase and frequency deviations of the signal and is more convenient in theoretical

work, whereas the fractional frequency and phase time are better suited for physical

measurements.

Since the errors have a random component, the use of statistical measures

like the power spectral density (PSD) is necessary. In general, the variations in

time and frequency measurements cannot be described as a stationary process and

defining a variance in the usual sense is not possible [18,25]. This difficulty led to the

invention of the Allan variance [18,25]. Structure functions are another approach to

characterising phase and frequency variations [27]. In this chapter, we will describe

these different approaches and then show the relationships among them.
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2.2 Power Spectral Density

The PSD of the phase or frequency are the fundamental measures of phase or fre-

quency instability. The PSD provides the contributions of the Fourier frequency

components for the random error. We will show in Sec. 2.5 how to convert from the

PSD to the structure functions and the Allan variance; however, converting back to

the PSD is frequently not possible.

For any of the quantities w = x, y, φ, or φ̇ the autocorrelation function is

defined as

Rw(τ) = 〈w(t)w(t+ τ)〉 = lim
T→∞

1

T

∫ T

0

w(t)w(t+ τ)dt, (2.7)

and the corresponding PSDs are the Fourier transforms of the autocorrelation func-

tions,

Sw(ω) = 2

∫ ∞
0

Rw(τ) cos(ωτ)dτ, (2.8)

Rw(τ) =
1

π

∫ ∞
0

Sw(ω) cos(ωτ)dω. (2.9)

Evaluating Rw(τ) at τ = 0 yields the second moment of w,

Rw(0) = 〈[w(t)]2〉 =

∫ ∞
0

Sw(ω)dω, (2.10)

which we refer to as the signal power. If we compare the PSD of two different

sources, then the one with the lower signal power will typically have less error.
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The PSDs for each of our quantities are related. We find

Sφ̇(ω) = ω2Sφ(ω), (2.11a)

Sy(ω) =
ω2

ω2
0

Sφ(ω), (2.11b)

Sx(ω) =
1

ω2
0

Sφ(ω). (2.11c)

The oscillator noise can typically be decomposed into a power series Sφ(ω) =∑4
k=0 hkω

−k [26]. The term proportional to ω0 is referred to as white phase noise,

the term proportional to ω−1 is referred to as flicker phase noise, and the term

proportional to ω−2 is referred to as random walk phase noise. The term proportional

to ω−3 is referred to as flicker frequency noise, and the term proportional to ω−4 is

referred to as random walk frequency noise [7, 24, 28, 29]. Since Sφ̇(ω) = ω2Sφ(ω),

the powers in the series increase by 2 for Sφ̇(ω). Figure 2.1 shows the different noise

regions for the PSDs of the fractional frequency y and the phase noise φ.

2.3 Allan Variance

The distribution of the frequency errors is difficult to determine because it is typ-

ically nonstationary. Nonstationary processes may have divergent statistical mea-

sures, specifically the variance. Moreover, if there is a true convergent variance,

the sample variance from finitely many measurements may not converge to the true

variance of the process as the number of samples and the time over which they

are measured goes to infinity. The Allan variance is the mean of sample variances
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Figure 2.1: Schematic illustration of the power spectral density in which different
powers of f appear. Based on [1].
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calculated over an interval. The definition is based on the fractional frequency y

and phase time x; however, we will express it in terms of the phase φ. We use an

averaged quantity of the fractional frequency defined as

ȳk =
1

τ

∫ tk+τ

tk

y(t)dt, (2.12)

which is frequently used in the literature [24].

The N -sample mean is defined as

µ =
1

N

N∑
k=1

ȳk. (2.13)

The N -sample mean can then be used to compute the N -sample variance,

σ2
S(N) =

1

N − 1

N∑
k=1

(ȳk − µ)2 =
1

N − 1

N∑
k=1

(
ȳk −

1

N

N∑
i=1

ȳi

)2

. (2.14)

The Allan variance σ2
A [25] is the mean of the sample variances over all time,

σ2
A(N, τ) = 〈σ2

S(N)〉 =

〈
1

N − 1

N∑
k=1

(
ȳk −

1

N

N∑
i=1

ȳi

)2〉
. (2.15)

In general, the Allan variance utilizes N samples, where N can have any integer

value greater than 1, but typically the N = 2 two-sample Allan variance is used, for

which

σ2
A(2, τ) =

1

2
〈[ȳk+1 − ȳk]2〉. (2.16)
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It is not possible to average over all time; so, one computes the Allan variance from

a total set of M samples. One then obtains

σ2
A(τ,M) =

1

2(M − 1)

M−1∑
k=1

(ȳk+1 − ȳk)2 (2.17)

where it is understood that N = 2 in the definition of σ2
A(τ,M). The averaged

fractional frequency is related to the phase by the relationship ȳk = [φ(tk + τ) −

φ(tk)]/(ω0τ). Hence, the Allan variance may be written in terms of the phase as

σ2
A(τ) =

1

2

〈[
φ(tk + 2τ)− φ(tk + τ)

ω0τ
− φ(tk + τ)− φ(tk)

ω0τ

]2〉
. (2.18)

Since the fractions in the average are similar to the discrete derivative, we see that

the Allan variance defined in this way refers to the short-term frequency instability,

i.e. φ̇/ω0.

The Allan deviation is usually plotted in the literature and is the square root

of the Allan variance. Allan deviation is typically denoted σy(τ), σA(τ), or ADEV.

2.4 Structure Functions

The definitions of the structure functions are based on studies that Kolmogorov per-

formed on turbulence [27]. The oscillator phase φ(t) can be written as the statistical

process

φ(t) = ω0t+
N∑
k=2

Ωk−1

k!
tk + ψ(t) + φ0 (2.19)
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where ψ(t) is the short-term phase fluctuation, which can be considered a stationary

process, and φ0 is a constant. The remaining terms take into account the long-term

phase drift. This long-term drift is the source of nonstationarity. The structure

functions can be used to remove the long-term drift from φ(t).

The first difference equation

∆φ(τ) ≡ ∆φ(t; τ) = φ(t+ τ)− φ(t) (2.20)

is the total phase accumulated over the interval τ . The N -th difference equation is

defined recursively, using

∆Nφ(τ) = ∆N−1 [∆φ(τ)] . (2.21)

If the process φ(t) is a stationary process, the mean of the N -th difference equation

is 0 for all N ≥ 1. The N -th order structure function is then the second moment of

the N -th difference equation,

D
(N)
φ (τ) = 〈[∆Nφ(τ)]2〉. (2.22)

Since the first difference equals the total phase accumulation over the interval τ ,

the function [D
(1)
φ (τ)]1/2 equals the mean phase accumulation. Dividing the first

difference equation by the time difference τ is equivalent to discrete differentiation

in time, so that [φ(t + τ) − φ(t)]/τ is the discrete frequency accumulation over τ ,

and the standard deviation of this term is the mean frequency accumulation [27].
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The random process need not be stationary in order for the difference equation

to be stationary. For example, if the process is the sum of an n-th order polynomial

in time with an additive stationary process, then the M -th difference equation elim-

inates all the polynomial terms whenever M > n, and we are left with the M -th

difference of a stationary process.

For a stationary process, there is a further simplification for the first-order

structure function. Expanding this structure function, we find

〈[φ(t+ τ)− φ(t)]2〉 = 〈φ(t+ τ)φ(t+ τ) + φ(t)φ(t)− 2φ(t+ τ)φ(t)〉. (2.23)

The first two terms on the right-hand-side of the equation are the variance of the

process φ because it is stationary, and we obtain

〈[φ(t+ τ)− φ(t)]2〉 = 2Rφ(0)− 2Rφ(τ), (2.24)

where Rφ(τ) is the autocorrelation function defined in Eq. 2.7. The structure func-

tions can be computed to higher accuracy using less data than the correlation func-

tion [30]. This advantage is particularly noticeable for flicker noise, whose power

spectral density is proportional to ω−1 and is commonly present in oscillators.

2.5 Converting between different measures

The power spectral density (PSD) is the most fundamental measure of frequency

instability. However, sampling the time data points over a sufficiently long time to

16



accurately obtain the PSD at low frequencies can be difficult. In particular, there

may not be enough frequency resolution to obtain the low frequency deviations

proportional to ω−1 [29]. When the PSD is available, the structure functions and

the Allan variance can be obtained from it. The reverse is not generally true,

although it is sometimes possible through the use of Mellin transformations [24,27].

2.5.1 Allan variance to the second-order structure function:

We now show that the Allan variance is proportional to the second-order structure

function. Using the definition of Allan variance in Eq. 2.18, we obtain

σ2
A(2, τ) =

1

2

〈[
φ(tk + 2τ)− φ(tk + τ)

ω0τ
− φ(tk + τ)− φ(tk)

ω0τ

]2〉
=

1

2ω2
0τ

2
〈[φ(tk + 2τ)− 2φ(tk + τ) + φ(tk)]

2〉. (2.25)

The tk are arbitrary when averaging over all time; so, the ensemble average is equal

to the structure function D
(2)
φ (τ) divided by 2ω2

0.

2.5.2 PSD to structure functions:

The relation between the PSD and the structure function depends on the long-

term frequency drift of the oscillator and whether the M -th difference equation is

stationary [27]. If we suppose that the drift is compensated or M > N , where N is

the highest-order polynomial term for the drift, then we find

D
(M)
φ (τ) = 22M

∫ ∞
−∞

sin2M
(ωτ

2

)
Sφ(ω)dω. (2.26)
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2.5.3 PSD to Allan variance:

Since we demonstrated that the Allan variance is proportional to a structure function

in Eq. 2.25, we combine the results from the last two sections, and we obtain

σ2
A(2, τ) =

22

ω2
0τ

2

∫ ∞
−∞

sin4
(ωτ

2

)
Sφ(ω)dω. (2.27)

2.6 Chapter remarks

We will be using the structure functions, specifically D
(1)
φ (τ), as our preferred mea-

sure of instability. The reason for this choice is that it requires fewer samples to

compute the flicker noise, and it is simple to implement and interpret. We will also

use the Allan deviation to characterize the instability because it is a common mea-

sure of frequency instability in the oscillator community, and we can obtain it from

the structure function D
(2)
φ (τ). The phase noise PSD is preferred for experimental

measurements.

18



Chapter 3: Optical Fiber Impairments

3.1 Introduction

Propagation through an optical fiber distorts a frequency signal. Previous work

described the various optical impairments in an optical fiber and their influence on

a frequency signal [15]. In this chapter, we summarize that work and relate it to

our simulations.

The optical fiber communication system transmits information over multiple

data signals separated in the frequency domain in a scheme called wavelength divi-

sion multiplexing (WDM). The data signals have center frequencies that are spaced

10–100 GHz apart and are on the order of 100 THz, in agreement with the ITU stan-

dard [16]. A frequency signal will have a smaller bandwidth than the data signals

and can be included alongside the data traffic. The frequency signal’s bandwidth is

also small enough that we can place the frequency signal between two data signals

that are centered at adjacent center frequencies, as shown in Figure 3.1. However,

placing the frequency signal in this manner leads to nonlinear coupling between

the neighboring data signals and the frequency signal and thus distortion of the

frequency signal.

We will study an optical fiber communication system with multiple WDM
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Figure 3.1: Desired frequency domain placement of the frequency signal.

data channels centered around the wavelength 1530 nm and with a bandwidth of

10 GHz for each channel. The data signals are modulated as non-return-to-zero

on-off-keyed (NRZ-OOK) symbols. The optical fiber is a single-mode fiber in which

light propagation is impaired by second-order dispersion, the Kerr nonlinearity, and

attenuation [13,14]. Brillouin scattering, Raman scattering, and Rayleigh scattering

can also impair light propagation [31].

In this chapter, we first examine coupled propagation equations for a single

data channel and a frequency signal that are separated in the frequency domain.

Then, we generalize the coupled equations to account for multiple data channels and

a single frequency signal. We further examine each of the impairment terms in the

equations, and we will give suitable conditions under which they can be neglected

when calculating the phase stability. We will then show that the impairment due

to cross-phase modulation is the primary optical source of phase instability.
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3.2 Coupled Propagation Equations

We begin by considering the interaction of a single data channel and a frequency

signal and derive their propagation equations. The small bandwidth of an optical

signal compared to the central frequency in an optical fiber allows us to use a slowly

varying envelope approximation for the propagation of light [14]. If we consider

the interaction of a frequency signal with a single data channel, the electric field

becomes a sum of the products of a rapidly varying carrier signal and a slowly

varying envelope,

E(r, t) =
1

2
x̂ [Ed exp(−iωdt) + Ef exp(−iωf t)] + c.c., (3.1)

where x̂ is the direction of polarization, ωj for j = d, f are the carrier frequencies

for a data channel and the frequency signal respectively, and the Ej are the slowly

varying time envelopes. We assume that each of the envelopes may be written as

Ej(r, t) = Fj(x, y)uj(z, t) exp(iβ0jz), (3.2)

where j = d, f corresponds to the appropriate envelope, Fj(x, y) is the distribution

of the fiber mode in the plane normal to the propagation direction, uj(z, t, ) is the

slowly varying amplitude, and β0j is the phase shift associated with propagation

distance. Separating the propagation and transverse directions is justified by the

large discrepancy in the length scales between the transverse and propagation direc-
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tions [14]. We then obtain an equation for each envelope uj in the form of coupled

nonlinear Schrödinger (NLS) equations [14],

∂uj
∂z

+ β1j
∂uj
∂t

+
iβ2j

2

∂2uj
∂t2

+
αj
2
uj =

in2ωj
c

(
fjj|uj|2 + 2fjk|uk|2

)
uj, (3.3)

where j 6= k, j, k = d, f for the two envelopes, β1j = 1/vgj is the corresponding in-

verse group velocity, β2j is the corresponding group velocity dispersion, and αj is the

attenuation. The terms on the right-hand side represent the nonlinear impairment,

n2 is the nonlinear Kerr parameter, and the fjk are the overlap integrals defined as

fjk =

∫∞
−∞

∫∞
−∞ |Fj(x, y)|2|Fk(x, y)|2dxdy∫∞

−∞

∫∞
−∞ |Fj(x, y)|2dxdy

∫∞
−∞

∫∞
−∞ |Fk(x, y)|2dxdy

. (3.4)

Since the system that we consider uses conventional single-mode fibers, the overlap

integrals fjk are all nearly the same. We neglect the differences and write the

integrals as fdd = fdf = fff = 1/Aeff. This approximation allows us to simplify the

right-hand side further by introducing the nonlinear parameter γ = (n2ωj)/(cAeff).

Though the ωj and Aeff have a frequency dependence, this dependence is weak,

and γ remains fairly constant around the 1.5-µm wavelength range that is used for

optical communications [14].

The two coupled equations become

∂ud
∂z

+ β1d
∂ud
∂t

+
iβ2

2

∂2ud
∂t2

+
α

2
ud = iγ

(
|ud|2 + 2|uf |2

)
ud, (3.5a)

∂uf
∂z

+ β1f
∂uf
∂t

+
iβ2

2

∂2uf
∂t2

+
α

2
uf = iγ

(
|uf |2 + 2|ud|2

)
uf . (3.5b)
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It is useful to transform Eqs. 3.5a and 3.5b by using a retarded time. We set

T = t− β1fz and z′ = z. Then, we use the chain rule to obtain

∂uj
∂z

=
∂uj
∂z′

∂z′

∂z
+
∂uj
∂T

∂T

∂z
=
∂uj
∂z′
− β1f

∂uj
∂T

, (3.6a)

∂uj
∂t

=
∂uj
∂z′

∂z′

∂t
+
∂uj
∂T

∂T

∂t
=
∂uj
∂T

, (3.6b)

∂2uj
∂t2

=
∂2uj
∂T 2

. (3.6c)

This transformation removes the term proportional to β1f in Eq. 3.5b, and the

corresponding term in Eq. 3.5a becomes proportional to δ = β1d − β1f = (vgf −

vgd)/(vgfvgd), so that we obtain

∂ud
∂z′

+ δ
∂ud
∂T

+
iβ2

2

∂2ud
∂T 2

+
α

2
ud = iγ

(
|ud|2 + 2|uf |2

)
ud, (3.7a)

∂uf
∂z′

+
iβ2

2

∂2uf
∂T 2

+
α

2
uf = iγ

(
|uf |2 + 2|ud|2

)
uf . (3.7b)

The two terms that are dependent on the optical powers of the signals in

the propagation equations represent two different nonlinear phenomena—self-phase

modulation and cross-phase modulation [14]. Four-wave mixing is a third nonlinear

phenomenon due to the Kerr effect [14, 31]. This phenomenon does not play a role

when only two well-separated frequencies are present, except near the zero dispersion

point, since it will not be phase-matched. However, four-wave mixing can lead to

phase-matched contributions that affect the signal propagation in a system with

multiple data channels.
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3.3 Multiple Data Channels

In the previous section, we showed how two co-propagating signals can nonlinearly

couple, creating parasitic signals and inducing a phase shift on each other. Multiple

data channels will also couple with the frequency signal and each other. Hence, every

data channel in the system can contribute a phase shift to the frequency signal. If

there are n data channels at center frequencies ωk, then we obtain n+1 propagation

equations,

∂udk
∂z′

+ δk
∂udk
∂T

+
iβ2

2

∂2udk
∂T 2

+
α

2
udk = iγ

|udk|2 + 2|uf |2 + 2
n∑

m=1
m 6=k

|udm|2

udk,

(3.8a)

∂uf
∂z′

+
iβ2

2

∂2uf
∂T 2

+
α

2
uf = iγ

(
|uf |2 + 2

n∑
m=1

|udm|2
)
uf . (3.8b)

where the subscript k,m in the data envelopes refers to the kth or mth data channel

and the δk refers to the difference β1k − β1f . The parameters β2, α, and γ can

be treated as constant over the frequency range of our frequency signal and data

channels.

Four-wave mixing now becomes a concern if ωk + ωm = 2ωf and will appear

in the frequency signal if they also satisfy the phase-matching condition β(ωk) +

β(ωm) = 2β(ωf ). If those two conditions are satisfied, then Eq. 3.8b must be

modified to include the four-wave mixing term, 2γu∗fumun. These two conditions

are only simultaneously satisfied when the frequency signal is close to the zero-
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dispersion wavelength [14].

We are now prepared to summarize the optical impairments found in the prop-

agation equations 3.8a and 3.8b. These impairments appear in commercial optical

fiber communication systems and must be limited or compensated to achieve reliable

high-data-rate communications. In contrast to data channels, frequency signals do

not require a large bandwidth. However, they are intrinsically analog signals that

do require high accuracy. Hence, the strategies to calculate the effect of optical

impairments and limit their impact are different than is the case for data channels.

3.4 Scattering

The previous sections outline a propagation medium with negligible defects and no

vibrations. The optical fiber has density fluctuations created by manufacturing,

electrostriction, or optical absorption. These fluctuations cause light scattering,

referred to as Rayleigh scattering [31]. Light can also interact with vibrations in

the crystal lattice of the optical fiber and cause scattering referred to as Raman and

Brillouin scattering [31]. The amount of scattering increases with the presence of

more photons; so, limiting the optical power of the frequency signal will limit the

scattering noise.

Experiments have shown that Rayleigh scattering can be significantly reduced

by modulating the input signal [32]. The appropriate modulation is a frequency
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modulation of the frequency signal

ωmod = ∆ω sin(ωmt+ φm), (3.9)

where ωm is the modulation frequency, ∆ω is the modulation depth, and φm is

the phase difference between the modulation and light fields [15]. A modulation

frequency between 1 kHz and 10 kHz with a large modulation depth of 10 MHz

is optimal [15]. Hence, the frequency signal should have a bandwidth of about 10

MHz.

We give further details on scattering limitations later in Sec. 3.5.

3.5 Optical Impairments

In the previous sections, we showed how the Kerr effect leads to multiple nonlinear

terms. In this section, we describe how each of the terms relates to an optical im-

pairment and how that impairment affects the frequency signal. In our analysis, we

discuss conditions under which many of the optical impairments become negligible.

3.5.1 Attenuation and Amplified Spontaneous Emission (ASE) Noise

Attenuation appears in Eq. 3.8b as

∂uf
∂z

= −α
2
uf . (3.10)
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The attenuation is due to absorption and Rayleigh scattering and will lead to an

exponential decrease of the optical power [13]. Amplifiers are spaced periodically

to compensate for the loss of optical power, but they add amplified spontaneous

emission (ASE) noise. ASE noise is accurately described over the bandwidth of an

optical signal as a white noise source with noise power [13]

σ2
ASE = nsphν0(G− 1)∆ν, (3.11)

where nsp is called the spontaneous emission factor, h is Planck’s constant, ν0 is the

center frequency, G is the gain of the amplifier, and ∆ν is the bandwidth of the

signal.

We will consider an optical communication system that has a length of 800

km and an 80-km amplifier separation, operating at the wavelength 1.5 µm with

loss αdB = 0.2 dB/km. There are a total of 10 amplifiers, each of which has a gain

G = 40. We will assume that each amplifier has a noise figure nsp = 2, which is a

typical value [13]. If we suppose that the bandwidth of the frequency signal is 10

MHz, then the total noise power is 1 nW. If the frequency signal has a power of 1

µW or above, the effect of the noise on the frequency signal will be negligible, while

its power is small compared to the power in a data signal, which is typically on the

order of 1 mW after each amplifier.
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3.5.2 Chromatic Dispersion

The dispersion appears in Eq. 3.8b as

∂uf
∂z

= −iβ2

2

∂2uf
∂T 2

. (3.12)

This impairment leads to pulse spreading of the optical signal because its frequency

components travel at different velocities. The time spread due to dispersion is [13]

τdisp = −2πc

λ2
β2fL∆λ, (3.13)

where L is the length of the fiber, and ∆λ is the range of wavelengths. For the optical

communication system in the previous example and a frequency signal centered at

a wavelength λ = 1.5 µm, we find τdisp = 1 ps. By contrast, the time slot of a single

bit at 10 Gbps occupies 100 ps; so, dispersion can be neglected for the frequency

signal. In this respect, the frequency signal differs significantly from a data signal,

which typically has a bandwidth on the order of 10 GHz.

3.5.3 Self-Phase Modulation (SPM)

The term

∂uf
∂z

= iγ|uf |2uf (3.14)

in Eq. 3.8b corresponds to self-phase modulation. This effect leads to a phase shift

that is proportional to the signal power. Thus, linear attenuation limits the effect
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over some length after each amplifier. The effective length is Leff = (1/α)[1 −

exp(−αL)], so that Leff ≈ 20 km for αdB = 0.2 dB/km [14]. The maximum phase

shift due to self-phase modulation between two amplifiers is [14]

φSPM = γPfLeff, (3.15)

where Pf is the average power of the frequency signal after an amplifier. The total

maximum phase shift is given by Eq. 3.15 multiplied by the number of amplifiers in

the fiber link. For our system, we have γ = 1.3 W−1km−1 and Leff = 20 km with

10 amplifiers. If we impose an upper bound on φSPM of 1 radian, then the upper

bound on the frequency signal power is 3.8 mW.

3.5.4 Four-Wave Mixing (FWM)

The term

iγu∗fudmudn (3.16)

corresponds to four-wave mixing. For any two data signals centered at ωm and

ωn with corresponding wavenumbers β(ωm) and β(ωn), four-wave mixing (FWM)

creates a parasitic wave whenever ωm + ωn = 2ωf and β(ωm) + β(ωn) = 2β(ωf ).

This phase-matching condition is avoidable as long as the signals are located away

from the zero-dispersion wavelength of the fiber. Frequency sources have a central

wavelength that slightly wanders and a narrow bandwidth. Therefore, placing the

frequency signal greater than five times its bandwidth away from the zero-dispersion

29



wavelength prevents any portion of the spectrum of the frequency signal from phase-

matching and will eliminate this impairment [15]. We write this requirement as

λ− λ0 > 5∆λ, where λ is the central wavelength of the frequency signal signal, λ0

is the zero-dispersion wavelength, and ∆λ is the bandwidth of the frequency signal.

3.5.5 Rayleigh Scattering

An optical fiber has random density fluctuations that are created during the fiber’s

fabrication. These fluctuations are the primary source of attenuation in the fiber, on

the order of 0.12–0.17 dB/km at 1.5 µm [13]. Additionally, Rayleigh scattering adds

noise to a narrowband frequency signal; however, this noise can be suppressed by a

frequency modulation with a bandwidth that is greater than about 10 MHz [32].

3.5.6 Brillouin and Raman Scattering

Brillouin and Raman scattering are due to light coupling with vibrations in the

crystal lattice of the optical fiber and convert the light to lower frequencies. Bril-

louin scattering couples with acoustic waves and Raman scattering couples with

vibrational waves.

Brillouin scattering only occurs when a phase matching condition is met,

ωorig = ωnew + ωacoustic and βorig = βnew + βacoustic, where ωorig and βorig are the

frequency and wavenumber of the incident wave, ωnew and βnew are the frequency

and wavenumber of the created optical wave, and ωacoustic and βacoustic are the fre-

quency and wavenumber for the acoustic wave. The large difference between the

30



velocities of the optical waves and the acoustic wave means that the phase matching

condition only occurs when the created wave propagates in the direction opposite

to that of the incident wave (βnew is negative). A Brillouin scattered wave grows

from thermal noise at a rate proportional to the incident light intensity. If the

growth rate is greater than the loss due to attenuation, then the created wave grows

exponentially. This growth sets a threshold on the incident wave’s power [13,31]

Pmax,B =
21Aeff

LeffgB
, (3.17)

where Leff is the effective fiber length, Aeff is the fiber effective area, and gB is the

Brillouin gain. Brillouin scattering is a narrowband process with a gain bandwidth

on the order of 100 MHz which our frequency signal can fit within. The actual

power threshold will depend on the system and can range between 1–10 mW [13].

If we set an upper limit of 1 mW on the frequency signal, then we avoid the effect

of Brillouin scattering.

Raman scattering is similar to Brillouin scattering except that it is a broad-

band process on the order of 20 THz [31]. In this case, the power threshold is [13]

Pmax,R =
16Aeff

LeffgR
, (3.18)

where we use the same parameters as before and gR is the Raman gain. Raman

scattering sets an upper threshold of 500 mW which is well above the threshold set

by other optical impairments.
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3.5.7 Cross-Phase Modulation (XPM)

The remaining term,

∂uf
∂z

= i2γ|ud|2uf , (3.19)

corresponds to cross-phase modulation (XPM), which leads to cross-talk between

two signals. This effect on the frequency signal becomes negligible when the group

velocity difference between the data channel and the frequency signal is large, which

occurs when the frequency signal and data channel are spaced at least one data

channel separation away. Therefore, the effects of XPM on the frequency signal

only has to be computed for the two neighboring data channels. Since our goal is to

place the frequency signal between two data channels, XPM is the primary source

of frequency distortion.

The limitation on the optical power of the frequency signal (� 1 mW) implies

that the effect of XPM due to the frequency signal on the data channels will be

much less than a radian and can be neglected.

3.6 Phase distortion of the frequency signal due to XPM

Data signals can be modeled as random bit strings. The average behavior of two

neighboring data channels on the frequency signal will be equal as long as the

frequency signal is placed in the middle of the frequency gap between the data

channels. We simplify our analysis of the effect of XPM on the frequency signal by

replacing the effect of the two neighboring data signals with a doubling of the effect
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of a single data signal.

Applying the limits on the system parameters that we have obtained, Eqs.

3.8a and 3.8b simplify to the following equations,

∂uf
∂z

= i4γ|ud|2uf , (3.20a)

∂ud
∂z

+ δ
∂ud
∂T

+
iβ2

2

∂2ud
∂T 2

+
α

2
ud = iγ|ud|2ud. (3.20b)

The dispersion, SPM, FWM, and attenuation are negligible for the frequency sig-

nal. The non-neighboring data channels are sufficiently separated in frequency to

neglect their contribution to XPM. The effect of XPM has been doubled to represent

the mean behavior of the two neighboring data signals. Low optical power of the

frequency signal makes the effect of XPM on the data signal negligible.

The frequency signal has the form uf (z, T ) = uf (0, T ) exp[iφ(z, T )], where

uf (0, T ) is the initial frequency signal and φ(z, T ) is phase distortion due to XPM.

We may integrate Eq. 3.20a, from which it follows that

φ(z, T ) = 4γ

∫ z

0

|ud(ζ, T )|2dζ. (3.21)

The data signal is subject to the effects of loss, dispersion, a time shift due to the

group velocity difference from the frequency signal, and self-phase modulation. The

phase distortion of the frequency signal depends entirely on the evolution of the

data signal as it propagates through the fiber.
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3.7 Chapter Remarks

Impairment Limits Threshold

Attenuation and ASE Optical Power ≥ 1 nW

Rayleigh Scattering Frequency Modulation ≥ 10 MHz

Brillouin Scattering Optical Power < 1 mW

Raman Scattering Optical Power < 500 mW

Self-Phase Modulation Optical Power < 3.8 mW

Four-Wave Mixing Central Frequency λ− λ0 > 5∆λ

Table 3.1: Summary of the limits on the frequency signal imposed by the optical
impairments.

Table 3.1 summarizes the various limits we place on the frequency signal to

reduce the effect of optical impairments. By limiting the frequency signal’s optical

power and its bandwidth, we can limit the causes of phase distortion due to optical

impairments. As a consequence, the distortion will be dominantly due to XPM. In

the next chapter, we perform computations to estimate φ(z, T ) using typical system

parameters for a commercial optical fiber communication system.
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Chapter 4: Results

4.1 Introduction

In the previous chapter, we described the parameters of a commercial WDM optical

fiber communication system with a frequency signal that is located between two data

channels, as shown in Fig. 3.1. Given reasonable system parameters, we showed that

the dominant optical impairment is XPM, given by Eq. 3.21, and all other optical

impairments can be made negligible.

It follows that the phase distortion depends on the length of fiber, the fre-

quency separation between the frequency signal and the data channels, and the

power of the neighboring data channels as they change over the course of their

propagation. We will now vary these parameters and investigate their effect on the

stability of the frequency signal.

We choose a value for the data channel power that is typical in commercial

optical communication systems. These values are chosen to minimize nonlinear

distortion in the data signals [13, 14]. Hence, we neglect the nonlinear distortion of

the data signals when calculating φ(z, t) and focus on the effect of dispersion. The

evolution of the data signal is then easily obtained in the Fourier domain, and we
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find

ud(z, T ) =
1

2π

∫ ∞
−∞

Ud(0, ω
′) exp

(
−α

2
z + iδω′z +

i

2
β2ω

′2z − iω′T
)
dω′, (4.1)

where Ud(0, ω) is the Fourier spectrum of the data signal at z = 0, defined as

Ud(0, ω) =

∫ ∞
−∞

ud(0, t
′) exp(iωt′)dt′. (4.2)

We begin by investigating the distribution of the power of the data signal

|ud|2 as a function of length z. The on-off-keyed, nonreturn-to-zero (OOK-NRZ)

symbols of the data signal change over the length of the fiber due to dispersion, self-

phase modulation, and attenuation. We first study a system in which attenuation

is neglected. We then add the effect of attenuation. Finally, we study the system

behavior as the group velocity difference due to the frequency separation between

the neighboring data channels and frequency signal increases.

4.2 Simulation Parameters

The simulated data signal is a 210 − 1 pseudorandom binary sequence (PRBS) [33]

that is OOK-NRZ modulated with optical power of 1 mW with periodic bound-

ary conditions. A PRBS has properties that resemble a random sequence. It is

approximately delta-correlated, and has an almost equal number of 0s and 1s. As

a consequence, the statistical properties of the signal converges more rapidly as

the sequence length increases than if the string of 0s and 1s are randomly chosen.
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PRBS signals are commonly used in both computer simulations and laboratory ex-

periments to model data channels. The length of the string is chosen so that the

string does not repeat as the data channel travels through a fixed time point in the

frequency signal.

The fiber has an attenuation of α = 0.2 dB/km, group velocity dispersion

β2 = −22 ps2/km, and Kerr nonlinearity γ = 1.3 W−1km−1. The data signal

has a central wavelength of 1530 nm with inverse group velocity difference δ = 1

ps/km relative to the frequency signal. These parameters are typical for optical

fiber communication systems [13,14]. We will vary some of these parameters in the

following sections as we study the changes in the XPM-induced phase distortion.

4.3 Without Attenuation

We first neglect attenuation in order to provide a baseline against which to determine

its effect.

During propagation, the optical power in each bit of the data signal spreads

outside of its time slot into the time slots of its neighbors. After some long distance,

the expected power in each time slot will become the same. Therefore, the variance

of the data signal’s optical power is expected to decrease as a function of fiber length,

although there will be statistical fluctuations in the pseudo-random signal that we

are using. Figure 4.1 shows the data signal power variance as the distance varies

up to 800 km. Since there is no attenuation, the mean of the data signal power

is constant. Though not shown in the figure, longer propagation distances yield a
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variance on the order of 1.8× 10−7 W2.

Figure 4.1: Data channel optical power variance vs. fiber length.

The phase shift φ grows as a function of distance because the frequency signal

experiences cross-talk from the data signal, which accumulates over the propagation

length. Figures 4.2a and 4.2b show the mean and variance of the phase shift of the

frequency signal due to XPM. The mean of φ grows linearly with respect to the

fiber length because without attenuation the average energy in the data signal is

constant. As a consequence, the mean additive phase error can be compensated.

We now quantify the phase deviation using the measures that we introduced in

Chapter 2. We first consider the first structure equation, D
(1)
φ = 〈[φ(t+ τ)−φ(t)]2〉,

which represents the mean phase accumulation. As we discussed in Chapter 2, the

structure functions are related to the autocorrelation function. A typical data signal
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(a) (b)

Figure 4.2: (a) Mean of φ vs. fiber length (b) Variance of φ vs. fiber length.

is a collection of apparently random bits that are uncorrelated with each other. As

the data signal propagates through the fiber, the optical energy associated with each

bit occupies a larger amount of time due to dispersion, so that the amount of time in

which a bit is correlated with itself increases. Figure 4.3 shows
[
D

(1)
φ

]1/2

at different

lengths. The phase deviation becomes constant after a short amount of time.

Figure 4.4 shows the Allan deviation. After averaging the fractional frequency

over a time interval on the order of the duration of the bit pulse, τ = 10−10 s,

the Allan deviation starts to fall off at a rate proportional to τ−1. This falloff

signifies that rapidly oscillating errors are being averaged out. We expect the falloff

to continue indefinitely because XPM contributes no long-term frequency drift. We

have computed the Allan deviation up to 10 ns, at which point the trend proportional

to τ−1 is apparent. Extrapolating the τ−1 dependence to longer averaging times, we

find that the Allan deviation is 3× 10−15 at τ = 1 s, and 3× 10−18 at τ = 103 s.
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Figure 4.3: Phase deviation without attenuation.

Figure 4.4: Allan deviation without attenuation.
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4.4 Effect of Attenuation

We now include the effect of attenuation. We expect the phase and frequency

instability to be lower than was the case without attenuation because the effective

length before the nonlinearity and hence XPM become negligible is 20 km after each

amplifier.

Figure 4.5: Data channel optical power variance vs. fiber length.

First, we compare the variance of the attenuated data signal with the variance

without attenuation. Figure 4.5 shows the data signal’s optical power variance.

Spikes occur every 80 km, corresponding to the locations of the amplifiers.

The mean and variance of φ must also grow over the length of the fiber, but

they no longer grow almost linearly because the data signal power varies. Instead,
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Figure 4.6: (a) Mean of φ vs. fiber length (b) Variance of φ vs. fiber length.

the mean and the variance grow in steps. Figures 4.6a and 4.6b show the mean and

variance of φ respectively, in which flat regions where the data signal power is low

are visible. The mean and variance are less than when attenuation was neglected

because the average power of the data channels is lower.

The phase deviation
[
D

(1)
φ

]1/2

reaches an asymptotic value as was the case

when attenuation is neglected. Since the asymptotic value depends on the pulse

spreading due to dispersion, the asymptotes occur at the same times. However, the

phase deviation will be lower than was the case without attenuation, because the

effect of XPM on the frequency signal from the data channels depends on the optical

power of the data channels. Figure 4.7 shows
[
D

(1)
φ

]1/2

for different fiber lengths.

Finally, the Allan deviation will be comparable to the results in the previous

section. Figure 4.8 shows the Allan deviation for several fiber lengths, and we see

a similar trend to what we saw without attenuation. At very low averaging times,

τ < 10−11 s, there is higher uncertainty than in Figure 4.4 due to high frequency

ASE noise in the data signal. The Allan deviation will also decrease at a rate
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Figure 4.7: Phase deviation with attenuation.

proportional to τ−1 after an averaging time interval approximately equal to the bit

duration. We perform the same extrapolation as in the previous section, and we

find an Allan deviation of 10−15 at τ = 1 s, and 10−18 at τ = 103 s.
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Figure 4.8: Allan deviation with attenuation.

4.5 Varying the Frequency Separation

The frequency separation between the data channels and the frequency signal will

lead to a group velocity difference between the data channels and the signal channels,

due to chromatic dispersion. The relative group velocity difference governs the

rate at which the data signal travels through a fixed time point in the frequency

signal. The group velocity difference is related to the separation between the center

frequencies of the data channels and the frequency signal. The value δ = (vf −

vd)/(vfvd) = 1 ps/km is chosen because it corresponds to placing the frequency

signal at the midpoint between two neighboring data channels separated by 12.5

GHz. As the separation between the center frequencies decreases, the group velocity
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difference decreases and thus δ decreases.

Figure 4.9 shows the phase deviation for different frequency spacings between

the data and frequency signal. The frequency separation in the figure refers to the

separation between the center frequencies of the data channel and the frequency sig-

nal. The 6.25 GHz separation refers to the system described in this thesis, where the

frequency signal is placed in the boundaries of two closest neighboring data signals

that conform with the ITU grid standard [16]. The 12.5 GHz separation corresponds

to replacing a data channel with the frequency signal. Further separations are used

to demonstrate the effect of XPM diminishing as the data channel is placed further

away from the frequency signal.

Figure 4.9: Phase deviation vs. group velocity difference.
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4.6 Comparison to Frequency Transfer Experiments

Experiments in optical frequency transfer are typically performed on dark fibers or

use frequencies alloted to a data channel. Experiments with simple unidirectional

fiber optic links have an Allan deviation of 10−14 with one day of averaging [34–36].

Improvements in frequency transfer have reduced the Allan deviation so that it is on

the order of 10−17 with an averaging time of 105 sec [35,37]. Now, the primary source

of phase noise in frequency transfer experiments is random temperature fluctuations

over the length of the fiber [38].

Frequently these experiments are performed on optical fiber links that are in

the range of 80 – 500 km. The difference between the lengths of these experiments

and our simulation is not a major concern, because the phase noise due to XPM

increases as the length of the fiber link increases. We expect the larger distance

in our simulations will exaggerate the phase noise due to XPM. Comparing the

experiments to our results in the previous sections, we find that the phase noise due

to XPM from placing the frequency signal in the interstices of two neighboring data

channels is on the order of environmental effects.

4.7 Chapter Remarks

Since the bits in any data signal are uncorrelated, the phase deviation will asymptote

after an averaging time that corresponds approximately to the time that it takes a

single bit to slide through a constant phase point in the frequency signal. When
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the relative group velocity is greater, the phase deviation reaches its final value at

a smaller distance because the data signal passes through a fixed time point in the

frequency signal at a faster rate.

The Allan deviation represents the expected frequency error. Experiments

performing frequency transfer with a frequency signal that occupies an entire data

channel on the ITU grid have Allan deviations that are comparable to our simulated

values [9,11]. In this case, the frequency signal and data channels are separated by

many GHz. The source of error in the experiments is environmental fluctuations.

We have found that placing a frequency signal in the interstices of two data signals

gives a frequency error on the order of environmental effects and should therefore

be feasible. Hence, it is not necessary to use an entire data channel to transfer a

frequency signal.
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Chapter 5: Conclusion

A frequency signal in an optical fiber suffers optical impairments due to the medium.

By imposing reasonable limits on the bandwidth, optical power, and central fre-

quency of the frequency signal, we can make all of these impairments negligible

except for XPM.

Current systems that transfer frequencies over optical fibers either use dark

fibers or use an entire data channel with a bandwidth of 10 Gbps or 100 Gbps.

Since a frequency signal does not require a large bandwidth, it is more efficient

to place a frequency signal in between two data channels. However, placing the

frequency signal close to the data channels will lead to phase and frequency errors.

Limiting the errors will increase the commercial viability of frequency transfer using

commercial optical fiber communication systems.

We computed the amount of frequency error due to XPM using the Allan

deviation, and we found that it was comparable to environmental effects. Hence, it

is feasible to place a frequency signal between two data channels on the ITU grid

without a significant increase in errors due to cross-phase modulation.
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5.1 Future Work

In our work to date, we did not take into account self-phase modulation (SPM) of

the data channels. The parameters in modern communication systems are chosen to

minimize the impact of SPM, and its largest effect is on the phase of a data channel,

which has no impact on the frequency signal. Hence, its neglect is reasonable.

Moreover, it is difficult computationally to study its effect since we can no longer use

Fourier transforms of the input data signal, but must solve the nonlinear Schrödinger

equation using a propagation code. Nonetheless, a careful investigation of its effect

should be carried out at a future time.
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