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QNN Calculating Bit Error Rates

BERs are commonly calculated from Monte Carlo
simulation results using Gaussian extrapolation
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But: voltage probability densities are not Gaussian [Marcuse 1990]
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DN  Outline

Goal

Accurate calculation of BER vs. decision level
© Linearize noise propagation
® Include signal-noise beating and data modulation

© Model a realistic electrical receiver filter

Approach

Calculate the multivariate Gaussian noise pdf of the optical field
Justification: Noise-noise interaction in the fiber 1s small
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BN Linearizing the NLS

Nonlinear Schrodinger equation with ASE noise

. Ou N D(z) 0°u

2 A Ia I3
I . +‘u‘ u=ig(z)u+F l l
0z 2 Ot

N

F' : added Gaussian white noise

Now set u =u, +0u, u, :<u> . noise-free signal

Ou : accumulated noise

0du  D(z) 0% u
0z 2 Ot

Doob’s Theorem: ou is multivariate Gaussian distributed
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BB Noise Covariance Matrix

ou(t)y= > |a, +iB,] exp(iwt), Ny =2048

T

a:(a—N/ZD”'DaN/Z—D IB—N/29“°»:BN/2—1) , N =80

. . _ _/ T
Covariance matrix K, = <akal>, K —<aa >

Multivariate Gaussian distribution of a:

f(a,z)= (ZIT)_zN \/detK_1 exp(—%aTK"la)
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BENN How to Compute the Covariance Matrix

Solve the linearized homogeneous propagation equation

g—::R(z)a ~ a(L)=¥a(0)

_ ) ) ATE ATEG
K(L)=G PK(0)¥ nTI—;ﬁft ([0 >O(([)L>

But: ODE is stiff due to dispersion term. Solution: perturbative approach

(k)
a" (0) =&, [ ad (L) w, = (L)

E
Compute \P by perturbing each of the N frequency modes separately
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DNSIS Simulation Setup

ASE ASE

oy -

K, u,

Propagation:

Receiver model:

K, u, voltage pdf
Square-law detector Narrow-band filter (Bessel)

Quadpratic noise-noise terms in the receiver cannot be neglected !
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DN Strong Jitter Distorts the Gaussian pdf

Small phase jitter Large phase jitter
Im 1
ay
Ak pdf [a,]
4 >
0 Re Re

Separate phase jitter from a@ (k) (L)

Phase jitter rotates signal around origin, distorting the Gaussian pdf
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NS Phase Jitter Removal

Remove phase jitter by projecting out the noise proportional to iu,,

(k)
a =gt - (‘EV v‘)))v v =FT{iu,(¢)}

Jitter removal requires artificial dispersion compensation in CRZ:

z=0 ((0 L§1> ((0 Lz»_

?""""""m""""""Ef't'i'ﬁé'i'éi'ai's'fiéfé'i'éﬁ'Egiﬁﬁéﬁééﬁéﬁ"

phase j itt'er removal
A La¥ (L)
S R d(k)(Ll), K(L,) > K(L,)
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DN Test System: Submarine CRZ, 6100 km

Modeled on a transatlantic communications system by Tyco Communications, Inc.
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D =-2.5 ps/nm-km
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Non-periodic evolution: medium nonlinearity, but strong pulse overlap
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DN Noise-Free Optical Signal at Receiver

Noise-free Optical Power
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DN Characterizing the Covariance Matrix

Matrix sketch
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DN Pdfs of the Electrical Signal
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WSS Eye Diagram from Linearization
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DN Focus on Worst Pattern

by Brian Marks
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DS 32 Bits CRZ: Focus on Worst Patterns
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DNSIES Conclusions

© Lincarization method was successfully applied to CRZ system

@ C(ritical steps: Phase jitter separation + dispersion compensation

© Bit patterns are important, focus on worst patterns
O Computational cost equal to 2N Monte Carlo noise realizations

Approach might be practical in realistic systems
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