Efficient and Accurate Computation of Eye Diagrams and Bit Error Rates in a Single-channel CRZ System

CLEO 2002, Poster 44

R. Holzlöhner,¹ C. R. Menyuk,^{1,2} V. S. Grigoryan,^{3,1} W. L. Kath^{4,1}

¹University of Maryland Baltimore County, Baltimore, MD ²PhotonEx Corporation, Maynard, MA ³CeLight Corporation, Silver Spring, MD ⁴Northwestern University, Evanston, IL

Calculating Bit Error Rates

BERs are commonly calculated from Monte Carlo simulation results using Gaussian extrapolation

But: voltage probability densities are not Gaussian [Marcuse 1990]

UMBC

U Outline

Goal

Accurate calculation of BER vs. decision level

- Linearize noise propagation
- **2** Include signal-noise beating and data modulation
- **3** Model a realistic electrical receiver filter

Approach

Calculate the multivariate Gaussian noise pdf of the optical field Justification: Noise-noise interaction in the fiber is small

Linearizing the NLS

Nonlinear Schrödinger equation with ASE noise

$$i\frac{\partial u}{\partial z} + \frac{D(z)}{2}\frac{\partial^2 u}{\partial t^2} + |u|^2 u = ig(z)u + \hat{F}$$

$$\hat{F}: \text{ added Gaussian white noise}$$

Now set $u = u_0 + \delta u$, $u_0 = \langle u \rangle$: noise-free signal
 δu : accumulated noise

$$i\frac{\partial\delta u}{\partial z} + \frac{D(z)}{2}\frac{\partial^2\delta u}{\partial t^2} + 2|u_0|^2\delta u + u_0^2(\delta u)^* = ig(z)\delta u + \hat{F}$$

Doob's Theorem: Su is multivariate Gaussian distributed

Moise Covariance Matrix

$$\delta u(t) = \sum_{k=-N_{FFT}/2}^{N_{FFT}/2-1} \left[\alpha_k + i\beta_k \right] \exp(i\omega_k t), \qquad N_{FFT} = 2048$$

$$a = (\alpha_{-N/2}, ..., \alpha_{N/2-1}, \beta_{-N/2}, ..., \beta_{N/2-1})^{\mathrm{T}}, N = 80$$

Covariance matrix
$$\mathbf{K}_{kl} = \langle \boldsymbol{a}_k \boldsymbol{a}_l \rangle, \quad \mathbf{K} = \langle \boldsymbol{a} \boldsymbol{a}^{\mathrm{T}} \rangle$$

Multivariate Gaussian distribution of a:

$$f_{\boldsymbol{a}}(\boldsymbol{a}, z) = \left(2\pi\right)^{-2N} \sqrt{\det \mathbf{K}^{-1}} \exp\left(-\frac{1}{2}\boldsymbol{a}^{\mathrm{T}}\mathbf{K}^{-1}\boldsymbol{a}\right)$$

و

How to Compute the Covariance Matrix

Solve the linearized homogeneous propagation equation

$$\frac{\partial a}{\partial z} = \mathbf{R}(z) a \implies a(L) = \Psi a(0)$$

$$\mathbf{K}(L) = G \Psi \mathbf{K}(0) \Psi^{\mathrm{T}} + \eta \mathbf{I}$$

$$\mathbf{\Lambda}_{\text{ASE}}$$

$$\mathbf{M}_{\text{input}} = G \Psi \mathbf{K}(0) \Psi^{\mathrm{T}} + \eta \mathbf{I}$$

But: ODE is stiff due to dispersion term. Solution: perturbative approach

$$a^{(k)}(0) = \varepsilon \hat{e}_k \longrightarrow a^{(k)}(L) \Rightarrow \Psi_{jk} = \frac{a_j^{(k)}(L)}{\varepsilon}$$

Compute Ψ by perturbing each of the N frequency modes separately

UMR

Simulation Setup

Quadratic noise-noise terms in the receiver cannot be neglected !

Jan Strong Jitter Distorts the Gaussian pdf

Separate phase jitter from $a^{(k)}(L)$

Phase jitter rotates signal around origin, distorting the Gaussian pdf

UMB

III Phase Jitter Removal

Remove phase jitter by projecting out the noise proportional to iu_0

$$\widetilde{\boldsymbol{a}}^{(k)} = \boldsymbol{a}^{(k)} - \frac{\left(\boldsymbol{a}^{(k)}, \boldsymbol{v}\right)}{\left(\boldsymbol{v}, \boldsymbol{v}\right)} \boldsymbol{v}, \qquad \boldsymbol{v} = \mathrm{FT}\left\{i\boldsymbol{u}_{0}(t)\right\}$$

Jitter removal requires artificial dispersion compensation in CRZ:

[___] Test System: Submarine CRZ, 6100 km

Modeled on a transatlantic communications system by Tyco Communications, Inc.

Non-periodic evolution: medium nonlinearity, but strong pulse overlap

UMBC

III Noise-Free Optical Signal at Receiver

Characterizing the Covariance Matrix

Eye Diagram from Linearization

J Focus on Worst Pattern

by Brian Marks

32 Bits CRZ: Focus on Worst Patterns

• Linearization method was successfully applied to CRZ system

- **2** Critical steps: Phase jitter separation + dispersion compensation
- **3** Bit patterns are important, focus on worst patterns
- Computational cost equal to 2N Monte Carlo noise realizations

Approach might be practical in realistic systems

