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Evaluation of the Very Low BER of FEC Codes
Using Dual Adaptive Importance Sampling

R. Holzléhner, A. Mahadevan, C. R. Menyuk, J. M. Morris, and J. Zweck

Abstract—We evaluate the error-correcting performance of BPSK using DAIS. The parity-check matriH) of this code
a low-density parity-check (LDPC) code in an AWGN channel can be found at [5]. We choose this code because it was:
using a novel dual adaptive importance sampling (DAIS) tech- (1) the same code studied in [1], and (2) possible to exactly
nigue based on multicanonical Monte Carlo (MMC) simulations, te the first tw trivi I, fficients of th de’
that allows us to calculate bit error rates as low asl0~!? for a Compu e the Tirs 0 n_on rvial coetiicients o € co e_s
(96,50) LDPC code without a priori knowledge of how to bias. Weight enumerator function (3 and 24 codewords at Hamming

Our results agree very well with standard MC simulations, as weights 6 and 8, respectively), which allows us to compare our

well as the union bound for the code. simulation results with the code’s union-bound performance
Index Terms—Very low BER, Multicanonical Monte Carlo, [6]. Note that both [1] and [5] refer to this code ag%, 48)
Importance sampling, LDPC codes. code, but 2 of the 48 rows dfl are linearly dependent.
We implemented SPD [3] employing the log-likelihood
|. INTRODUCTION modification of [7], and symmetric signal levels efl and

HE accurate computation of very low bit error rates 1 for logical 1s and Os, respectively. The pgdf of the
T (BERS) for forward error correcting (FEC) codes depend¥ise in theith bit at the receiver is zero mean Gaussian with
on sampling the very rare noise realizations that lead @ = 1/(2R Ey/No) [3]. It suffices to transmit the all-zeros
errors in the decoded bit sequence. These rare events ca§@geword, since the code is linear and the noise is symmetric.
be adequately sampled using standard Monte Carlo (MC)LetI' be then-dimensional probability space of the noise in
simulations. Importance sampling (IS) [1] has been used #ie n bits of a codeword. The noise vector= (21, ..., 2,) is
enhance the occurrence of these events in FEC codes. Hwtivariate Gaussian with joint pgf(z) = [[,, pi(z). The
ever, for IS to be effective, a biased distribution must be chosB#MC algorithm is controlled by a scalar contr<1)I2quanthy
using some knowledge of which noise realizations most likefjefined here ad/(z) = LS [H(gz) z1)? / . where
generate errors. This task is difficult when iterative decoding _ (—1)" with b, being the transmitted bit in théth
algorithms are used, since codeword errors are correlate Osition, andH(z) = 1 if & > 0 and H(z) — 0 otherwise.

the noise distribution among the bits in a highly complex wa; e constructed (z) so that a noise componentcontributes

o < e o o1y 1 may produce  bicrr a he it 1 e
tance samgling (DAIS) technigue to compute venf)low BEpR(Sjecoder. We say that a received word with a noise realization
We demonstrate the DAIS technique using(3, 50) low- z generates an error, if the LDPC decoder cannot decode it to

density parity-check (LDPC) code and sum-product decodirt%e Fransmltted codeword within 50 |terat|op S

’ . . L Given a rang€Viin, Vimax] for V', we partitionT" into M
(SPD) [3] with up to 50 decoder iterations, achieving BER
~ 1019, Like standard IS [1], MMC increases the number ubsetsly = {z € T'|Vi1 < V(z) < Vi}, where
N : ’ = Vinin + KAV, 1 < k < M, and AV = Vi — Vi

events in the tail of the pdf being computed by sampling from® T : : o .
a biased pdf [4]. The advantage of MMC is that it adaptivelg (Vimax — Vinin)/M S the width of each bin in the partition

iterates to this biased pdf with little a priori knowledge needeJ [.Vm“.l’VmaX]' Let P be the probability of selecting a
. . . realizationz from p so thatz € 'y, [4], [8]. Then,
of how to bias. The iterative procedure uses a control quantity

to update the next iteration’s biased pdf so that, as the iteration p(z) 1 X v p(z™)

number increases, there tends to be an approximately equéf: = / Xi(2)—rsp™(z)dz~ — > xk(z) s,
o oo . r p*(2) —1 p*(z**)

number of hits in each control-quantity histogram bin [2]. ¢ L

where p*(z) is a positive biasing pdfy,(z) = 1 if z € T,
and x(z) = 0 otherwise, and the** are N random sample
points inT', selected according to the pgf(z). The variance
of the estimate of (1) is zero if the optimal biasing pdf
Manuscript received 30, 2004. The associate editor coordinating the reviBﬁpt(Z) = xx(2z)p(z)/ Py is used. HOWGVGrPf)pt(Z) depends
of this letter and approving it for publication was Prof. M. Fossorier. Thign P, which is initially unknown. In standard IS, one uses
work was supported by the Laboratory of Telecommunications Sciences un ; ; i o i ;
contract MDA 904.02.C0428/Z95680L. Bﬁysmal mtumon_to guess a b|qsmg pdf that is close3g.
The authors are or were with the Computer Science and Electrical ER€ MMC algorithm instead iterates over a sequence of

gineering Department, University of Maryland Baltimore County (UMBC)biasing pdfsp* that approacho;pt. We definep*7 for the
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Il. SIMULATION PROCEDURE ANDRESULTS

We study the performance of a regulas, 50) LDPC code
with a code rate ofR = 50/96 in an AWGN channel with
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S oL, P} =1, and¢ is an unknown constant that ensureapproximation(Pej;;f,: PIm ) AV t0 Pery/AV with dots
Jrp*7(z)dz = 1. The vectorP/, k=1,...,M, is the key for E,/N, = 11 dB. The dashed line shows,/AV, and
quantity in the MMC algorithm and completely determinethe circles show the sum of the error histograpms™; G-

the bias. At the first MMC iteration} is usually set to The number of sampled errors rapidly decreases to 0 as

1/M, VkE=1,...,M. V' decreases towards 0.4, which is wheRg,; tends to
Within each MMCiteration j, we employ the Metropolis be largest. Consequently, the approximatiBg,;, ~ Pgﬁflz

algorithm [9] to produce a random walk afamplesz*® converges very slowly as the iteration numbeincreases.

whose pdf equalg*(z). We consider a Markov chain of The reason is that in thisnconstrainedMMC simulation, we

transitions consisting of small steps in the noise space. Edwdve not sampled enough of the higher-probability smaller-

transition goes fronz* = z* € 'y, t0 z} = (z} + ¢/Az) € noise realizations that generate errors.

I'y,, where Az is random and symmetrid,e., it does not  One efficient method to overcome this undersampling prob-

favor any direction inl’, and the transition is accepted withlem is to run a second;onstrainedMMC simulation (hence

probability ;. If @ transition fromz** to z; is accepted, the term dual in DAIS), in which we only accept Metropolis

we setz*t1 = z, else we se*'"! = z*! = z}. The steps that lead to errors. If a trial realizatiafj does not

ratio ., /T €qualsp™(z;)/p*J (%), which is thedetailed vyield an error in this simulation, we set,, to zero. The

balance conditionthat ensures that the limiting (stationarykonstrained simulation, hence, takes its samples fi@m =

pdf for infinitely many steps of this random walk &7 [9].  xen(z)p(z)/Perr, Where xen(z) = 1 if z produces an error
We consider the perturbation of the noise component in eaahd yer(z) = 0 otherwise. Note thap(z) is proportional to

bit 27, ; of z; separately, and accept or reject it independentlyz) whereveryen(z) = 1. If the Metropolis random walk

with the probabilitymin [Pl(ziz)/m(z;l), 1}. We pick each 18 ergodic in the error subset df, the constrained MMC

perturbationAz; from a zero mean symmetric pdf. We obtair?'m_UIatlon apprOX|mat'e§3k|e,r. S|nge the_Pe"vk and Pyjer

a trial statez? in which only some of the components aré&stimates obtained using the two simulations are both smooth
b

different from their previous values iz;. Next, we compute fﬁr 'nge’f'husgg (|2a) Wel C"":r_‘ Olitaiﬁerh:ferrﬁ/dpklfle_rr frorrT]]

ks, the bin corresponding ta;, and finally accept the stept e data wher v IS large. In Fig. (a),.t € dash- c_)t IN€ SNOWS
. . i oi Pyjen/ AV obtained from the constrained simulation, while the

from z, to z; with the probabilitymin [Pka/Pkb, 1}.

: solid line shows the resulting.,/AV obtained by scaling
In each iteration, the perturbation coefficietis constant Pyjer/ AV to fit P,/AV from the unconstrained simulation
for all samples. After each iteration, we adjust so that for 0.55 < V' < 0.6. Since MMC vyields a similar number
the acceptance ratiax = (number of accepted steps)/(totabf samples in each bin, the relative statistical sampling error
number of stepslV) is close to 0.3 (empirically chosen basegf p, . in the constrained simulation is smaller at smil
on experience from previous experiments). The miniMufAan in the unconstrained simulation. A significant advantage
required NV for this random walk depends on the averaggf running separate unconstrained and constrained simulations
step sizeae’ (|Az[) and hence is system-dependent. Thg that the algorithm optimizes the perturbation coefficieits
noise realizations are recorded in the histogrem’, where of the two simulations independently. The valuescbftend
Hi? =YX | xi(z*) is the number of the*? in iteration;j to differ strongly between the two simulations.
that fall into T';,. The P} are updated after each MMC |n our simulationsM = 300. In the first iterationVi=1! =
iteration using the recursion relations given in [8] based @00 samples in the unconstrained case ant! = 10,000
the histogramH*/. As j increases, the expected number df the constrained case, and we increase the number of sample:
samples(H,’) becomes independent of the bin numlier after each iteration so that’+! = 1.3 N. In each caseP! =
which implies thatP] — P. 1/M, k=1,...,M, and we assume the simulation to have
Let Per be the probability that a received word with noisgufficiently converged whemax;, \(P,g—P,g“)/P,g“\ < 0.1.
realizationz selected fromp leads to an error, anfer;, the  This convergence requires 10° to 10% samples in total, with
probability thatz leads to an erroand falls into bin k. Then the samples increasing on average with increasihgN,.

Also, in both cases, we initialize each MMC iteration with
= = 2 ’ g y
Pert. Pj;”‘k Pie = Pyjen Perr (23) 52 that gives a decoder error.
P P 2b In Fig. 1(b), thex and+ symbols denote the decoder output
er - kzl erk> (2b) BER and WER estimates, respectively, obtained via MC.

The dashed curve with and dash-dot curve with denote
where Pery; and Pyje are the conditional probabilities of anyhe decoder output BER and WER estimates, respectively,
error given that z falls into bin k, and vice versa. We can gptained using DAIS. Finally, the solid curve and dotted curve
computeFer by first running an MMC simulation as describetjenote the BER and WER union bounds, respectively [6].
above, where we also count the errors in bito produce @  The unjon bound can be closely approximated at high
histogramG; 7. We can then approximat€ex ~ Pyt = E, /N, by the contribution of low Hamming weight (6 and 8 in
i Gyl P H;” after jmax MMC iterations. Summing  this case) codewords. The SPD for LDPC codes approximates
over all MMC iterations is valid since the biasing pdf athe ML decoder [10]. Hence, we would expect the SPD
any MMC iteration only affects the total number of hits into perform worse than the union bound on ML decoding
a bin, but not the behavior of error hits relative to the totat high E,/Ny. Our results from DAIS are consistent with
hits within a bin. Finally, we can use the left equation othis expectation and indicate that DAIS can simulate WER
(2a), and equation (2b) to gé%. In Fig. 1(a) we show the and BER performance of codes at very low values. We also
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A measure of DAIS’s gain over MC is given by the ratio
of the number of samples (codewords) required to achieve
a given WER at a giverf,/Ny; e.g., atE, /Ny = 10 dB,
3 WER =~ 10~ is obtained by DAIS using x 107 codewords
(unconstrainedy 3 x 107 codewords (constrained} 11 x
107 codewords (total), whereas MC would require 10*°
codewords (assuming 10 word error events). Thus the gain
410 is % ~ 9 x 105. Our current experience suggest that
DAIS’s gain increases with decreasing WER, but the accuracy
of DAIS as an estimator, and its dependence on the nhumber of
codewords or codeword length, is unknown at this time, and
a subject of continuing research.

We are currently studying DAIS for longer codes. As code
length increases, dimensionality of and its partitions that
map to bins ofV increases. Hence, maintaining a given level
of statistical accuracy in sampling each partitiomlofequires
more samples for the longer code.
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I1l. SUMMARY AND CONCLUSIONS

. We presented a dual adaptive importance sampling (DAIS)
technigue based on multicanonical Monte Carlo (MMC) sim-
ulations, and used it to study an LDPC code in an AWGN
channel. It allows us to calculate very low WERs and BERs.
In contrast to standard importance sampling [1], the MMC al-
gorithm iteratively approaches the optimal bias without a priori
knowledge of how to bias. We improve the WER and BER
estimates by combining the results of two MMC simulations
Fig. 1. (a) Dashed curve: Pdf df. Dots: joint pdf of\” and errors, both from in the large noise regions where statistical uncertainty due to
the unconstrained simulation. Dash-dot curve: pd¥o€onditioned on errors sampling from the biased pdf is smallest. In one simulation, we
from constrained simulation. Solid curve: joint pdf Bf and errors obtained . e . .

by scaling dash-dot curve to fit the dots fof > 0.55. Circles: Number approxmate the probability of decoder (_errors _'n the large n0|s.e
of decoder errors in the unconstrained simulation. (b) Cross and plus syf@gions. In a second complementary simulation, we constrain
bols: MC BER and WER estimates, respectively. Dashed curve with squaige MMC random walk to the noise region that produces
and dash-dot curve with circles: DAIS BER and WER, respectively. Soli . .
and dotted curves: BER and WER union bound approximations, respectivéi‘f‘,‘COder errors. Our WER and BER results are (:lonS'Stent with
based on codewords at Hamming weight 6 and 8 [6]. standard Monte Carlo simulations, and the union bound on
maximum-likelihood decoding [6].
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