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Evaluation of the Very Low BER of FEC Codes
Using Dual Adaptive Importance Sampling

R. Holzlöhner, A. Mahadevan, C. R. Menyuk, J. M. Morris, and J. Zweck

Abstract— We evaluate the error-correcting performance of
a low-density parity-check (LDPC) code in an AWGN channel
using a novel dual adaptive importance sampling (DAIS) tech-
nique based on multicanonical Monte Carlo (MMC) simulations,
that allows us to calculate bit error rates as low as10−19 for a
(96, 50) LDPC code without a priori knowledge of how to bias.
Our results agree very well with standard MC simulations, as
well as the union bound for the code.

Index Terms— Very low BER, Multicanonical Monte Carlo,
Importance sampling, LDPC codes.

I. I NTRODUCTION

T HE accurate computation of very low bit error rates
(BERs) for forward error correcting (FEC) codes depends

on sampling the very rare noise realizations that lead to
errors in the decoded bit sequence. These rare events cannot
be adequately sampled using standard Monte Carlo (MC)
simulations. Importance sampling (IS) [1] has been used to
enhance the occurrence of these events in FEC codes. How-
ever, for IS to be effective, a biased distribution must be chosen
using some knowledge of which noise realizations most likely
generate errors. This task is difficult when iterative decoding
algorithms are used, since codeword errors are correlated to
the noise distribution among the bits in a highly complex way.

We apply the multicanonical Monte Carlo (MMC) simula-
tion technique of [2] as the basis for a dual adaptive impor-
tance sampling (DAIS) technique to compute very low BERs.
We demonstrate the DAIS technique using a(96, 50) low-
density parity-check (LDPC) code and sum-product decoding
(SPD) [3] with up to 50 decoder iterations, achieving BER
≈ 10−19. Like standard IS [1], MMC increases the number of
events in the tail of the pdf being computed by sampling from
a biased pdf [4]. The advantage of MMC is that it adaptively
iterates to this biased pdf with little a priori knowledge needed
of how to bias. The iterative procedure uses a control quantity
to update the next iteration’s biased pdf so that, as the iteration
number increases, there tends to be an approximately equal
number of hits in each control-quantity histogram bin [2].

II. SIMULATION PROCEDURE ANDRESULTS

We study the performance of a regular(96, 50) LDPC code
with a code rate ofR = 50/96 in an AWGN channel with
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BPSK using DAIS. The parity-check matrix (H) of this code
can be found at [5]. We choose this code because it was:
(1) the same code studied in [1], and (2) possible to exactly
compute the first two non-trivial coefficients of the code’s
weight enumerator function (3 and 24 codewords at Hamming
weights 6 and 8, respectively), which allows us to compare our
simulation results with the code’s union-bound performance
[6]. Note that both [1] and [5] refer to this code as a(96, 48)
code, but 2 of the 48 rows ofH are linearly dependent.

We implemented SPD [3] employing the log-likelihood
modification of [7], and symmetric signal levels of+1 and
−1 for logical 1s and 0s, respectively. The pdfρl of the
noise in thelth bit at the receiver is zero mean Gaussian with
σ2 = 1/(2R Eb/N0) [3]. It suffices to transmit the all-zeros
codeword, since the code is linear and the noise is symmetric.

Let Γ be then-dimensional probability space of the noise in
then bits of a codeword. The noise vectorz = (z1, . . . , zn) is
multivariate Gaussian with joint pdfρ(z) =

∏n
l=1 ρl(zl). The

MMC algorithm is controlled by a scalar control quantityV

defined here asV (z) =
{

1
n

∑n
l=1 [H(qlzl) zl]

2
}1/2

, where

ql = (−1)bl with bl being the transmitted bit in thelth
position, andH(x) = 1 if x > 0 and H(x) = 0 otherwise.
We constructedV (z) so that a noise componentzl contributes
to V only if it may produce a bit-error at the input to the
decoder. We say that a received word with a noise realization
z generates an error, if the LDPC decoder cannot decode it to
the transmitted codeword within 50 iterations.

Given a range[Vmin, Vmax] for V , we partitionΓ into M
subsetsΓk = {z ∈ Γ |Vk−1 ≤ V (z) < Vk}, where
Vk = Vmin + k∆V, 1 ≤ k ≤ M , and ∆V = Vk − Vk−1

= (Vmax − Vmin)/M is the width of each bin in the partition
of [Vmin, Vmax]. Let Pk be the probability of selecting a
realizationz from ρ so thatz ∈ Γk [4], [8]. Then,

Pk =
∫

Γ

χk(z)
ρ(z)
ρ∗(z)

ρ∗(z) dz ≈ 1
N

N∑

i=1

χk(z∗,i)
ρ(z∗,i)
ρ∗(z∗,i)

,

(1)
whereρ∗(z) is a positive biasing pdf,χk(z) = 1 if z ∈ Γk

andχk(z) = 0 otherwise, and thez∗,i areN random sample
points inΓ, selected according to the pdfρ∗(z). The variance
of the estimate of (1) is zero if the optimal biasing pdf
ρ∗opt(z) = χk(z)ρ(z)/Pk is used. However,ρ∗opt(z) depends
on Pk, which is initially unknown. In standard IS, one uses
physical intuition to guess a biasing pdf that is close toρ∗opt.
The MMC algorithm instead iterates over a sequence of
biasing pdfsρ∗,j that approachρ∗opt. We defineρ∗,j for the
jth iteration byρ∗,j(z) = ρ(z)/(cjP j

k ), wherek is such that
z ∈ Γk is satisfied. The quantitiesP j

k satisfy P j
k > 0 and
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∑M
k=1 P j

k = 1, and cj is an unknown constant that ensures∫
Γ

ρ∗,j(z) dz = 1. The vectorP j
k , k = 1, . . . ,M , is the key

quantity in the MMC algorithm and completely determines
the bias. At the first MMC iteration,P 1

k is usually set to
1/M, ∀k = 1, . . . , M .

Within each MMC iteration j, we employ the Metropolis
algorithm [9] to produce a random walk ofsamplesz∗,i

whose pdf equalsρ∗,j(z). We consider a Markov chain of
transitions consisting of small steps in the noise space. Each
transition goes fromz∗,i = z∗a ∈ Γka

to z∗b = (z∗a + εj∆z) ∈
Γkb

, where ∆z is random and symmetric,i.e., it does not
favor any direction inΓ, and the transition is accepted with
probability πab. If a transition fromz∗,i to z∗b is accepted,
we setz∗,i+1 = z∗b , else we setz∗,i+1 = z∗,i = z∗a. The
ratio πab/πba equalsρ∗,j(z∗b)/ρ∗,j(z∗a), which is thedetailed
balance conditionthat ensures that the limiting (stationary)
pdf for infinitely many steps of this random walk isρ∗,j [9].

We consider the perturbation of the noise component in each
bit z∗a,l of z∗a separately, and accept or reject it independently

with the probabilitymin
[
ρl(z∗b,l)/ρl(z∗a,l), 1

]
. We pick each

perturbation∆zl from a zero mean symmetric pdf. We obtain
a trial statez∗b in which only some of the components are
different from their previous values inz∗a. Next, we compute
kb, the bin corresponding toz∗b , and finally accept the step

from z∗a to z∗b with the probabilitymin
[
P j

ka
/P j

kb
, 1

]
.

In each iteration, the perturbation coefficientεj is constant
for all samples. After each iteration, we adjustεj so that
the acceptance ratioα , (number of accepted steps)/(total
number of steps,N ) is close to 0.3 (empirically chosen based
on experience from previous experiments). The minimum
required N for this random walk depends on the average
step sizeαεj 〈|∆z|〉 and hence is system-dependent. The
noise realizations are recorded in the histogramH∗,j , where
H∗,j

k =
∑N

i=1 χk(z∗,i) is the number of thez∗,i in iterationj
that fall into Γk. The P j

k are updated after each MMC
iteration using the recursion relations given in [8] based on
the histogramH∗,j . As j increases, the expected number of
samples〈H∗,j

k 〉 becomes independent of the bin numberk,
which implies thatP j

k → Pk.
Let Perr be the probability that a received word with noise

realizationz selected fromρ leads to an error, andPerr,k the
probability thatz leads to an errorand falls into bin k. Then

Perr,k = Perr|k Pk = Pk|err Perr, (2a)

Perr =
M∑

k=1

Perr,k, (2b)

wherePerr|k andPk|err are the conditional probabilities of an
error given that z falls into bin k, and vice versa. We can
computePerr by first running an MMC simulation as described
above, where we also count the errors in bink to produce a
histogramG∗,jk . We can then approximatePerr|k ≈ P jmax

err|k =∑jmax

j=1 G∗,jk /
∑jmax

j=1 H∗,j
k after jmax MMC iterations. Summing

over all MMC iterations is valid since the biasing pdf at
any MMC iteration only affects the total number of hits in
a bin, but not the behavior of error hits relative to the total
hits within a bin. Finally, we can use the left equation of
(2a), and equation (2b) to getPerr. In Fig. 1(a) we show the

approximation(P jmax

err|k P jmax+1
k )/∆V to Perr,k/∆V with dots

for Eb/N0 = 11 dB. The dashed line showsPk/∆V , and
the circles show the sum of the error histograms

∑jmax

j=1 G∗,jk .
The number of sampled errors rapidly decreases to 0 as
V decreases towards 0.4, which is wherePerr,k tends to
be largest. Consequently, the approximationPerr|k ≈ P jmax

err|k
converges very slowly as the iteration numberj increases.
The reason is that in thisunconstrainedMMC simulation, we
have not sampled enough of the higher-probability smaller-
noise realizations that generate errors.

One efficient method to overcome this undersampling prob-
lem is to run a second,constrainedMMC simulation (hence
the term dual in DAIS), in which we only accept Metropolis
steps that lead to errors. If a trial realizationz∗b does not
yield an error in this simulation, we setπab to zero. The
constrained simulation, hence, takes its samples fromρ̃(z) =
χerr(z)ρ(z)/Perr, where χerr(z) = 1 if z produces an error
and χerr(z) = 0 otherwise. Note that̃ρ(z) is proportional to
ρ(z) whereverχerr(z) = 1. If the Metropolis random walk
is ergodic in the error subset ofΓ, the constrained MMC
simulation approximatesPk|err. Since thePerr,k and Pk|err

estimates obtained using the two simulations are both smooth
for largek, using (2a) we can obtainPerr = Perr,k/Pk|err from
the data wherek is large. In Fig. 1(a), the dash-dot line shows
Pk|err/∆V obtained from the constrained simulation, while the
solid line shows the resultingPerr,k/∆V obtained by scaling
Pk|err/∆V to fit Pk/∆V from the unconstrained simulation
for 0.55 < V < 0.6. Since MMC yields a similar number
of samples in each bin, the relative statistical sampling error
of Pk|err in the constrained simulation is smaller at smallV
than in the unconstrained simulation. A significant advantage
of running separate unconstrained and constrained simulations
is that the algorithm optimizes the perturbation coefficientsεj

of the two simulations independently. The values ofεj tend
to differ strongly between the two simulations.

In our simulations,M = 300. In the first iterationN j=1 =
5000 samples in the unconstrained case andN j=1 = 10, 000
in the constrained case, and we increase the number of samples
after each iteration so thatN j+1 = 1.3 N j . In each case,P 1

k =
1/M, k = 1, . . . , M , and we assume the simulation to have
sufficiently converged whenmaxk |(P j

k−P j+1
k )/P j+1

k | < 0.1.
This convergence requires≈ 106 to 108 samples in total, with
the samples increasing on average with increasingEb/N0.
Also, in both cases, we initialize each MMC iteration with
a z that gives a decoder error.

In Fig. 1(b), the× and+ symbols denote the decoder output
BER and WER estimates, respectively, obtained via MC.
The dashed curve with¤ and dash-dot curve with◦ denote
the decoder output BER and WER estimates, respectively,
obtained using DAIS. Finally, the solid curve and dotted curve
denote the BER and WER union bounds, respectively [6].

The union bound can be closely approximated at high
Eb/N0 by the contribution of low Hamming weight (6 and 8 in
this case) codewords. The SPD for LDPC codes approximates
the ML decoder [10]. Hence, we would expect the SPD
to perform worse than the union bound on ML decoding
at high Eb/N0. Our results from DAIS are consistent with
this expectation and indicate that DAIS can simulate WER
and BER performance of codes at very low values. We also
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Fig. 1. (a) Dashed curve: Pdf ofV . Dots: joint pdf ofV and errors, both from
the unconstrained simulation. Dash-dot curve: pdf ofV conditioned on errors
from constrained simulation. Solid curve: joint pdf ofV and errors obtained
by scaling dash-dot curve to fit the dots forV > 0.55. Circles: Number
of decoder errors in the unconstrained simulation. (b) Cross and plus sym-
bols: MC BER and WER estimates, respectively. Dashed curve with squares
and dash-dot curve with circles: DAIS BER and WER, respectively. Solid
and dotted curves: BER and WER union bound approximations, respectively,
based on codewords at Hamming weight 6 and 8 [6].

observe excellent agreement between the results obtained by
DAIS and MC, wherever MC results are available (DAIS falls
within the 99% error bars for MC), which further validates
DAIS.

Our argument that the true code performance should be
close to the union bound at highEb/N0 is further bolstered by
the observation that for MC simulations, asEb/N0 increases,
the contribution of the probability of decoding-to-wrong-
codewords progressively dominates the WER. For example, at
Eb/N0 = 4 dB, 216 of 1888 word errors recorded were due to
decoding to wrong codewords (the rest were decoder failures),
whereas atEb/N0 = 7 dB, the corresponding numbers were
40 of 52. Note that the BER results in [1] are farther away
from the union bound than our results (by about 0.4 dB at BER
= 10−9), which may be attributed to their use of≤ 5 iterations
for the SPD, and possibly a different decoder implementation.

We note that our BER data points do not show a waterfall
region since they correspond to largeEb/N0 relative to the
Shannon limit (≈ 0 dB for our code), and since the code
is not very long. We earlier obtained BER estimates down
to 10−39 for a smaller (20, 7) code, but space limitations
preclude presenting these results.

A measure of DAIS’s gain over MC is given by the ratio
of the number of samples (codewords) required to achieve
a given WER at a givenEb/N0; e.g., atEb/N0 = 10 dB,
WER≈ 10−14 is obtained by DAIS using8× 107 codewords
(unconstrained)+3 × 107 codewords (constrained)= 11 ×
107 codewords (total), whereas MC would require≥ 1015

codewords (assuming≥ 10 word error events). Thus the gain
is 1015

11×107 ≈ 9 × 106. Our current experience suggest that
DAIS’s gain increases with decreasing WER, but the accuracy
of DAIS as an estimator, and its dependence on the number of
codewords or codeword length, is unknown at this time, and
a subject of continuing research.

We are currently studying DAIS for longer codes. As code
length increases, dimensionality ofΓ and its partitions that
map to bins ofV increases. Hence, maintaining a given level
of statistical accuracy in sampling each partition ofΓ requires
more samples for the longer code.

III. SUMMARY AND CONCLUSIONS

We presented a dual adaptive importance sampling (DAIS)
technique based on multicanonical Monte Carlo (MMC) sim-
ulations, and used it to study an LDPC code in an AWGN
channel. It allows us to calculate very low WERs and BERs.
In contrast to standard importance sampling [1], the MMC al-
gorithm iteratively approaches the optimal bias without a priori
knowledge of how to bias. We improve the WER and BER
estimates by combining the results of two MMC simulations
in the large noise regions where statistical uncertainty due to
sampling from the biased pdf is smallest. In one simulation, we
approximate the probability of decoder errors in the large noise
regions. In a second complementary simulation, we constrain
the MMC random walk to the noise region that produces
decoder errors. Our WER and BER results are consistent with
standard Monte Carlo simulations, and the union bound on
maximum-likelihood decoding [6].
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