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We apply the multicanonical Monte Carlo (MMC) method to compute the probability distribution
of the received voltage in a chirped return-to-zero (CRZ) system. When computing the probabilities
of very rare events, the MMC technique greatly enhances the efficiency of Monte Carlo simulations
by biasing the noise realizations. Our results agree with the covariance matrix method over 20 orders
of magnitude. MMC can be regarded as iterative importance sampling that automatically converges
toward the optimal bias so that it requires less a priori knowledge of the simulated system than does
importance sampling. A second advantage is that the merging of different regions of pdfs in order
to obtain the entire pdf is not necessary in many cases.
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The accurate computation of bit error rates (BERs)
and the probability distribution function (pdf) of the
received voltage in optical communications systems de-
pends on modeling very rare events with probabilities
on the order of 10716-1076. When forward error cor-
rection (FEC) is used, it is still important to accurately
model the voltage pdfs prior to correction.! One tradi-
tional way of computing BERs and eye diagrams is to
run Monte Carlo simulations and extrapolate the results
under the assumption that the electrical voltage at the re-
ceiver after narrow-band filtering is Gaussian distributed
in the marks (ones) and spaces (zeros). If the noise real-
izations in the Monte Carlo simulation are picked in an
unbiased way, as is commonly done, this method cannot
yield information about the tails of the pdf within a rea-
sonable computational time. As a consequence, system
designers often use a simplified approach in which they
assume that the optical noise spectrum at the receiver
is white, effectively neglecting the nonlinear signal-noise
interaction in the fiber. This simplification is inappropri-
ate for many long-haul optical communications systems.
By contrast, the covariance matrix method does take into
account the nonlinear signal-noise interaction and works
for nonlinear systems.?* However, it can fail in principle
when the nonlinear noise-noise interaction in the fiber
becomes large.

In this contribution, we apply the multicanonical
Monte Carlo (MMC) simulation technique that was pro-
posed by Berg and Neuhaus® in 1992. MMC is closely
related to importance sampling® in the sense that both
methods increase the number of events in the tail region
of the pdf by biasing them. In standard importance sam-
pling, one needs to guess what regions of the state space
are the major source of the bit errors and devise a set of
biases that will preferentially sample these regions. The
MMC method automatically determines the bias by us-

ing an iterative procedure. The iterative procedure uses
a control quantity to update the set of biases for the next
iteration, so that as the iteration number increases, there
tends to be an approximately equal number of hits in each
bin of the histogram of the control quantity.> Moreover,
the merging of different regions of a distribution” is not
necessary in many cases. Recently, Yevick® successfully
applied the MMC method to compute polarization mode
dispersion (PMD) emulator statistics. In this paper, we
outline the MMC algorithm, and we then employ it to
compute the received voltage pdfs in an optical commu-
nications system and compare these pdfs with the pdfs
that we previously computed using the covariance matrix
method.?

We introduce a state space I with a probability density
p, i.e., p(z) > 0 and [ p(z)dz = 1. When computing bit
errors due to noise, I is the space of all possible amplified
spontaneous emission (ASE) noise inputs at all amplifiers
and all frequencies. We want to compute the pdf p(V) for
each value of the received voltage V. We partition I" into
M subspaces I'y = {z € T'| (k — 1)AV < V(z) < KAV},

where AV is a small voltage difference, and 1 < k <
M. If Py = [327,yp(V)dV is the probability that

(k—1)AV <V(z) < kAV, then

Pi= [ xu(@p(a) dz o
r
where xi(z) = 1if z € Ty, and xx(z) = 0 otherwise. One

can use a standard Monte Carlo simulation to approxi-
mate P by

1 N
Pk ~ W;Xk(zz)a (2)

where the z* are N random sample points in T, selected
according to the probability density p.



The goal of any biasing scheme, including MMC, is to
reduce the variance of the sum in Eq. (2) by introducing
a positive biasing pdf p*(z). We rewrite Egs. (1) and (2)

6
as

P, = /Xk(z) li(z) p*(z)dz

*’l *Z)
~ NZXk *Z*') (3)

where the z*! are sampled from p*(z) instead of p(z).

The ratio L = p(z*?)/p*(z*?) is called the likelihood ra-
tio. The variance of the sum in Eq. (3) is zero if the
optimal biasing pdf p*(z) = p},.(2) = xx(z)p(z)/ Py is
used. However, p; (z) depends on P, and hence is ini-
tially unknown. In standard importance sampling, one
uses physical intuition to guess a biasing pdf that is close
to pope- The MMC algorithm instead iterates over bias-
ing pdfs p*7 that approach p} ;. We define p*7 for the
jth iteration by

*d (Y — p(z)
g = S5 ael (4)
The quantities P! satisfy PJ > 0 and Yo" P = 1,
where we recall that M is the number of partitions of
the state space, and ¢/ is an unknown constant that
ensures [ p*J(z)dz = 1. The vector of the P} is the
key quantity in the MMC algorithm and completely de-
termines the bias. The P] are updated after each it-
eration such that after a number of iterations, the ex-
pected number of samples in each bin of the histogram is
(N xk(z*%)) = N/M and is hence independent of k.
Substituting this value in Eqgs. (3) and (4) yields ¢/ — M
and P} — P;.'® We will discuss the assumptions under
which this convergence can be achieved in a later publi-
cation.

Within each MMC iteration j, we employ the Metropo-
lis algorithm!! to produce a random walk of samples z*:
whose distribution equals p*7(z). We consider a Markov
chain of transitions consisting of small steps in the noise
space. Each transition goes from z*! = z* € T to
z; = z! + ¢/ Az, where Az is random and symmetric,
i.e., it does not favor any direction in I', and the tran-
sition is accepted with probability 7. If a transition
from z*% = z* to z; is accepted, we set z*"*! =z, and
otherwise we set z* ! = z*¢ = z*.

In our simulations, p is the product of the pdfs of all
ASE noise inputs at each amplifier and each frequency,
which we assume to be independent identical Gaussian
pdfs p; with p = H;i:l p1, where d is the dimension of T'.
We consider the perturbation of the noise component in
each bit z; of z}; separately, and accept or reject it inde-

pendently with the probability min [pl (z5)/pi(z5,), 1)

We pick each perturbation Az; from a zero mean sym-
metric pdf. We obtain a trial state z; in which only some

of the components are different from their previous val-
ues in z¥. Next, we compute k; and finally accept the

step from z to z; with the probability min [PJ /P, ] .
The compound transition probability is hence

d * J
Tah = {Hmin lpl(zi’l), 1] }min lpk.“ , 1] . (5)
=1 Pl(za,l) P,gb
The probability ratio m.,/m, equals p*J(z})/p*?(z}),
which is the detailed balance condition that ensures that
the limiting (stationary) distribution for infinitely many
steps of this random walk is p*7.1!

In each iteration, the perturbation coefficient €’ is con-
stant for all samples. After each iteration, we adjust €’
so that the acceptance ratio o, which is the ratio of the
number of accepted steps to the total number of steps N,
is close to 0.3. The minimum required number of sam-
ples N of this random walk depends on the average step
size ae’ {|Az|) and is hence system-dependent. The noise
realizations are recorded in the histogram H*J, where
H;Y = Zfil Xk(z*?) is the number of the z** in it-
eration j that fall into T'y. The P} are updated after
each MMC iteration using the recursion relations given
in® based on the histogram H*J. As j increases, the ex-
pected number of samples (H,"’) becomes independent
of the bin number k, which implies that P} — Py.

We note that we could in principle also pick all pertur-
bations at the same time and accept the entire step with
the probability min [p(z;;)P,ga /p(z3) P}, 1]. The advan-
tage of our individual perturbation method is that we
can use significantly larger perturbations e/. However,
this method only works in problems where the pdf p fac-
tors into independent pdfs p;.

In the first iteration, one can set Pt = 1/M or use an
initial guess for the P,i. We have used both approaches.
To update the P} at the end of iteration j, we initially set

1+1 . s .
P/t to an arbitrary positive value and use the recursion
relations®

J+1 pj *,J i
P]+1 _ P Pk+1 Hk+1 (6&)
k41— P]g H;:’j ’
i s, ry*,l
~j _ gi I _ H Hk+1 (6b)
9 = J 10 9k = H*l H*l )
2i=19k P AT

where in addition we define g gk =0 if gi =0and g, =0
if Hy' + Hy!l, = 0. The exponent 0 < §i < 1 hence
depends on all previous iterations. Finally, we normalize
the P/t so that Z,Icwzl P/t =1.

We applied the MMC algorithm to a 10 Gb/s, single-
channel chirped return-to-zero (CRZ) system of length
6,100 km that resembles a submarine system. Previously,
we have computed the pdf of the received voltage in this
system using the covariance matrix method and com-
pared its results to standard Monte Carlo simulations.?
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Figure 1. Pdfs of the low-pass filtered received voltage
for the marks and the spaces in the CRZ system. Circles
and crosses: Results from the last iteration of MMC sim-
ulations with 55,000 and 100,000 samples, respectively;
solid lines: covariance matrix method.

However, we were only able to show agreement over about
six orders of magnitude. By contrast, the MMC method
enables us to show agreement over about 20 orders of
magnitude.

The state space I' is of dimension d = (34 dispersion
map periods) x (4 amplifiers per period) x (140 rele-
vant frequencies) x 2 = 38,080, where the last factor of
2 accounts for the real and imaginary parts of the optical
noise. We launch a 32-bit PRBS signal and calculate the
average pdf of the received voltage in the marks by aver-
aging over all 16 marks, and we use the same procedure
in the spaces. We consider v(t1,,) and v(to,,), where ¢ ,
and top, with n = 1...16 are the points in time at the
centers of the bit slots that contain a mark or a space, re-
spectively, and v(t) is the low-pass filtered received volt-
age as a function of time. We record the average pdfs of
v(t1,n) and v(tg,,) in weighted histograms by quantizing
v(t1,,) and v(to,,). For each noise realization z*, we
increment the value of the histogram in the appropriate
bin by the likelihood ratio L = p(z**)/p*(z**) = ¢/ P],
z** € T'y, according to Eq. (3). The pdfs of v(¢1,,) and
v(to,n) can be regarded as vertical slices through an eye
diagram.

Figure 1 shows the average pdf of v(t1,,) and v(to,n)
in the last MMC iteration. The voltage is normalized
by max,[v(t1,,)] in the absence of noise. The solid line
shows the result of the covariance matrix method, and
the crosses and circles show the pdf from the MMC sim-
ulations for the marks and the spaces. The agreement is
excellent.

In the following, we summarize additional details of
the algorithm. To bias the marks, we seek to de-
crease the maximum voltage in the marks to close the
eye. We therefore choose the control quantity to be
V' = miny,[v(t1,,)] for each noise realization. Conversely,
we seek to increase the voltage in the spaces, and in that

simulation we set V' = maxy[v(to,,)]- In our simulations,
the voltage V' thus merely plays the role of a control
quantity and has no other use.

We set M = 50. In the first iteration, we chose
N = N’=! = 5000 samples. The simulation covers a
larger voltage range with each new iteration, and more-
over the Metropolis random walk tends to accept more
steps at voltages where p(V) is large than in the tails
of p(V). We therefore increase the number of sam-
ples after each iteration so that N/*' = 1.15NJ. In
the simulation of the marks, we needed 55,000 total
samples in 8 iterations and to simulate the spaces, we
needed 101,000 total samples in 10 iterations. We consid-
ered the simulation to have sufficiently converged when
max, [(P] — P/™")/PJ*'| < 0.1, which is hardly visible
on a log scale.

In conclusion, we applied the MMC simulation tech-
nique to a CRZ system with a transmission distance of
6,100 km. We were able to compute the pdfs of the low-
pass filtered received voltage over a range of 20 orders of
magnitude. We compare this result with the covariance
matrix method?* and obtain excellent agreement, fully
validating the covariance matrix method for this system.
This result also demonstrates the usefulness of the MMC
method for calculating the complete voltage pdf in a re-
ceiver, while at the same time accounting for the full
nonlinear noise-noise interaction in the fiber.
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