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A Covariance Matrix Method to Compute Bit Error
Rates in a Highly Nonlinear Dispersion-Managed
Soliton System

Ronald Holzléhner, Curtis R. Menyuk, William L. Kath, and Vladimir S. Grigoryan

Abstract— We completely describe the covariance matrix the signal propagation is highly nonlinear. Hence, this system
method for the first time, and we use it to compute the noise evo- poses a stringent test of our approach.

lution in a 10 Gb/s single-channel dispersion-managed soliton sys- . .
tem propagating over 24,000 km. The linearization assumption Previous study of the same system [2] showed that the lin

upon which the covariance matrix method is based breaks down, €arization assumption breaks down unless we use a basis set
unless we explicitly separate the phase and timing jitter of each for the covariance matrix in which phase and timing jitter are
pulse from the noise. We describe a procedure for carrying out separated from the other noise components. This separation
this separation. is necessary because the nonlinear equations that govern the
Index Terms— Optical fiber communication, Amplifier noise, fiber transmission imply that small amounts of amplitude and
Phase jitter, Optical Kerr effect, Linear approximation, Monte  frequency noise can lead to large amounts of phase and tim-
Carlo methods, Receivers, Spectral analysis. ing jitter respectively, which in turn lead to a breakdown of the
linearization assumption in the standard Fourier basis. By con-
I. INTRODUCTION trast, if we quify the basis 'to ;eparate out the noise compo-
L . nents whose first-order contribution generates phase and timing
AMPLIFIEP spontaneous emission (ASE) noise that opler, we find that the coefficients of the modified Fourier basis,
cal amplifiers add to the signal gives rise to bit errorgiqng with the jitter, obey the linearization assumption and re-

and sets the lower limit on the signal power. One traditionglain muitivariate Gaussian distributed far longer than the orig-

way of computing bit error rates (BERs) and eye diagramsiis,| Fourier coefficients [2]. This result is similar to one that is

to run Monte Carlo simulations and extrapolate the results | known in the theory of solitons, where it is standard to use
der the assumption that the electrical power at the receiver gfy,qis set that consists of discrete as well as continuous com-

ter narrow-band filtering is Gaussian-distributed in the mar nents, rather than the usual Fourier basis, when studying the
(Ones) and spaces (Zeros). This method leads to large staligscis of perturbations and noise [4].

tical fluctuations in the tails of the probability density function In this letter, we show how to apply the linearization assump-

(pdf) ;nd IS hence_ melf_“:cl_mgnt. Asa Cr? r_lseq#eﬂctﬁ, system destlggﬁ to directly calculate the covariance matrix for a highly non-
€rs ofien use a simplitied approach In which Ih€y assume Iﬁgar dispersion-managed soliton system. This work extends
the optical noise spectrum at the receiver is white, effective evious work in which we used extensive Monte Carlo sim-

neglecting the nonlinear signal-noise interaction. This simpli llations to calculate the covariance matrix for the same DMS

qation 's often inappropriate for long-haul optical (_:ommunic%— stem that we describe here [2], except that the path average
tions systems. In this letter, we report on the application of thg persion is lower in this simulation, leading to a lower timing

covariance matrix me_thod to calculat_e the pdfs of the receiv 'H$er. The Monte Carlo approach to calculating the covariance
voltage in a 10 Gb/s single-channel dispersion-managed soli

. o . I3trix, as described in [2], serves to validate the linearization
(DMS) SySte”.‘ with a transmlsslon ‘?"St‘?‘”ce of 24'0.00 km [1 'ssumption, but it requires an order of magnitude more compu-
This method is based on the linearization assumption that

ise d tint t with itself duri tion th fional time than the direct approach described here and is in-
noise does not interact with I1SEIl ounng propagation throu rently less accurate. This work also extends previous work in

the fiber in an appr_oprlate basis set [2]_’ [3_]' The pu_Ises n tO\‘/ahich we directly calculated the covariance matrix for a chirped
DMS system considered here are periodically stationary aﬂﬁurn to zero system [3]. In this earlier work, it was not nec-
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need to keep track of the phase. We reintroduce the effect of temmercial systems are 3-5 times the nonlinear length scale at
timing jitter by applying a convolution, as described in [2]. Thenost [5].
phase and timing jitter could in principle be separated from theWe use the split-step Fourier method to solve the scalar non-
covariance matrix at the end of the transmission line. Therelisear Schrodinger equation, which only takes into account one
a loss of numerical accuracy, unless the jitter is incrementatyptical polarization. In the recirculating loop that we are mod-
separated. eling, the polarization dependent loss (PDL) is large and the
Our approach is fully deterministic and does not rely at all golarization controllers are optimized to pass the signal with
Monte Carlo simulations, which allows us to greatly increagainimum loss. Consequently, the signal is dominated by one
the accuracy at small BERs at a fraction of the computationgdlarization, and the orthogonal polarization can be neglected.
cost of Monte Carlo simulations. To validate our results, we We proceed by first expressing the optical field enve-
compare them to standard Monte Carlo simulations. The nQBpe asu = ug + du, where ug = (u) is the noise-free
linearity in the DMS system is significantly higher than in théield, and su represents accumulated noise. We next
majority of all modern transmission systems, and hence we §ite 5, — S VFFT/2-1 [k + i8] exp(—iwyt), where ay,

; k=—Ngp7/2 . . . ;
pect our approach of use in almost any system. and [, are Npgr real and imaginary noise Fourier co-

efficients andw;, = 27rk/T.1 We define the real vec-
Il. SIMULATION PROCEDURE tOr @ = (O N/2, 0 N/211s -y ONJ2-15 B Ny2: B N2 11+ s
The simulated 10 Gb/s transmission line models a recircgy, , 1)’ of length2V, where the symbai denotes the trans-
lating loop and consists of 225 periods of a dispersion mgpse. We choos&rrr = 2048and N = 120in this work.
106.7 km long. A complete description of the system and theThe evolution of th€ N x 2N noise covariance matrik =
simulation is given in [1]. Each map contains a fiber spam.at) over one fiber leg from = 0to z = L, in which no noise

100.24 km long and normal dispersion 6fL.096 ps/nm-km s added, followed by an EDFA with gaif, is given by
and a span of length 6.71 km and anomalous dispersion of

16.696 ps/nm-km. The path average dispersion equals the ex- K(L) = GYK(0)W' + 1T, (1)
perimental value of 0.02 ps/nm-km; we previously simulated
a system with 0.08 ps/nm-km [2]. Third-order dispersion ighereW is a propagator matrix; is the identity matrix, and
not relevant in this system [1] and is set to zero. The carrigfuals half the average ASE noise power per frequency mode.
wavelength is 1551.49 nm, matching the experimental valufle compute using numerical differentiation, specifically the
The fiber loss of 0.21 dB/km is compensated by five EDFAgyapunov method [6]. We first letg(,0) andug(t, L) be the
We assume an effective fiber area of ¢8m)? for both fiber noise-free optical field at the beginning and end of the fiber
types. One EDFA follows each of the four 25-km segmentpan, respectively. We then pertua(z,0) in a single fre-
of normal-dispersion fiber, and the fifth follows the segment efuency mode: by a small amouna and launch the perturbed
anomalous-dispersion fiber. There is a 2.8 nm (350 GHz) opsignal u¥) (¢,0) = uo(t,0) + Aexp(iwyt). At z = L, we ob-
cal bandpass filter in each map period to reduce the amountaif +(*) (¢, L) by solving our nonlinear transmission equation
noise. and calculate the deviatioiu*) = u(¥)(¢, L) — uo(t, L) and its

We model the amplifiers as EDFAs with static gain, as ofFourier space vectos*). The elements of¥ are given by
posed to explicitly including gain saturation. We carefully adp_k _ aU“)/A. We find that the Lyapunov method is numeri-
just the static gains so that they equal the effective gains oRRlly stable and its results are independent of the valua of
would obtain using EDFAs with a saturation time of 1 ms and@er several orders of magnitude. By successive application of
saturation power of 10 mW in accordance with [2]. The Spofiy) we can propagate the covariance matrix from amplifier to
taneous emission factorig, = 1.2. The launched pulses haveamplifier.
a Gaussian shape with a FWHM duration of 9 ps and a peakrpe eyt step is the separation of the phase and timing jitter.
power of Ppeak=8 mW. The peak pulse power at the beging, ey hyisg in the signal has a different phase and central
ning of the normal span is 3.1 mW. The signal is injected angle - pyises do not overlap in our test system; hence, these
received at the chirp-free point near the middle of the ano lilse phases evolve independently and must be removed sep-

lous span. We transmit the 8-bit PRBS sequence 1110100 RBtely from each other. We decompose the signél) into
a total simulation time window df’ = 800 ps, which includes . 4
a sum of the four marks, writingo(t) = >, w/(t), where

all possible three-pulse sequences. Since the solitons do ) = uo(#) within the bit slot of thel-th mark, andu, (£) = 0

spread significantly during the transmission, there is no neel | wise. We consider the 8 mods (t) and du /ot and
to study longer sequences of marks and spaces. The average ) : X

. ) . . it real2N-dimensional Fourier space vectarsandw; re-
signal power is-4.2 dBm. We model the receiver as an idea

square law detector followed by an electrical low-pass 5th-ord\?=,lvJ eecrt;v(él)./). dt?}i;giﬁg’:ég Iaf Or]:;)(;uitgsgt?/\r/ Zleilggzﬂltti/(ézétors
Bessel filter with a one-sided 3-dB bandwidth of 4.3 GHz. ’ b ’

: . . Consider the transformed covariance matrix
To assess the degree of system nonlinearity, we define a non-

linear scale lengthl, as the length over which a nonlinear
phase rotation o2r occurs. We may writeln = 1/(vPpeax)

i ineari icient = km)—1 -
with the nonlinearity coefficient = 2.1(W-km)~—". The trans 1 refs. [2] and [3]y. should be replaced bywy, everywhere,

miSSi_On distance of 24,000 km is_ 400 time_s Iarger thian 2Except for specially constructed examplés;,w;) vanishes only in the
showing that the DMS system is highly nonlinear. By contrastase of even pulses.

K=R'KR, (2)



HOLZLOHNERET AL.:A COVARIANCE MATRIX METHOD TO COMPUTE BIT ERROR RATIOS IN A HIGHLY NONLINEAR DISPERSION-MANAGED SOLITON... 3

whereR is an orthonormal matrix, anfl is the covariance

matrix at the end of the transmission line. We constfcio

that the mode®; form the first 4 columns, and the modes 0
form the following 4 columns. We fill the remainir@yN — 8
columns with columns of th& NV-dimensional identity matrix.
Next, we makeR orthonormal by using the Gram-Schmidt
procedure [7]. The phase jitter of pulsés given byo,; = -2
\/ﬁ/m\. The jitter in any other mode can be computed anal-
ogously. In the DMS system, we find a relative amplitude jitter

of 17.4%, a phase jitter of, = 2.457, and a timing jitter of

o, = 2.19 ps. These values are the standard deviations of the 15
fluctuations averaged over the four pulses and agree with our
traditional Monte Carlo simulations.

We separate the phase and timing jitter by computing the nfdg. 1. Solid lines: average pdfs from the linearization approach; dots: his-
. K(T) togram from a traditional Monte Carlo simulation; dashed lines: Gaussian fit to
trix

that equalsC, except that the first 8 rows and columnshe dots using the mean and variance.
are set to zero. Then we invert the transformation (2), yield-

ing the matrixK(") = RE' >R_t. Using uo(t) and KU, we _ solid and dashed curves is obvious, especially in the spaces. On

compute the pdf of the electrical narrow-band filtered receiv@{s other hand, the agreement between the covariance matrix

voltage [2]. method and the Monte Carlo results is excellent in the range
In order to avoid roundoff errors, we compufé” by sepa- shown.

rating the jitter at every amplifier, rather than only once at the

end. To each of the noise vectas§”) we apply the 2-step IV. CONCLUSIONS

Gram-Schmidt orthogonalization procedure [8] to obtain resid- |, inis paper, we completely describe the covariance matrix

ual noise vectora'*) given by method for the first time. We apply this method to a highly non-
linear 10 Gb/s single-channel DMS system with a transmission

/ (w,v)

w = - v, (3a) distance of 24,000 km. Extending previous work [2], we are
(v,0) able to compute the pdfs of the received voltages of this system

—w _ o @) (@) 3y OVeralarge range with a substantial reduction in computational
“ - ¢ (v,v) v (w',w') w. (30) time. A crucial step in this approach is the separation of the

phase jitter and timing jitter, which we perform at every ampli-
The vectorsa® are now used instead af®) to compute¥, fierand separately for each mark. The computational cost of our
and hence the phase and timing jitter that are produced durigthod equals that of a Monte Carlo simulation with o2ly
the propagation are separated from the covariance matrix. THase realizations, whe® is the number of relevant complex
method described in (3a) and (3b) is mathematically equivaldr@urier modes; in this work we us@V = 24Q. It is our view
to removing the jitter at the end of the transmission line. that this approach will be of use in a wide range of commercial

We must reintroduce the effect of the timing jitter on th&nd experimental systems.
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