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A Covariance Matrix Method to Compute Bit Error
Rates in a Highly Nonlinear Dispersion-Managed

Soliton System
Ronald Holzlöhner, Curtis R. Menyuk, William L. Kath, and Vladimir S. Grigoryan

Abstract— We completely describe the covariance matrix
method for the first time, and we use it to compute the noise evo-
lution in a 10 Gb/s single-channel dispersion-managed soliton sys-
tem propagating over 24,000 km. The linearization assumption
upon which the covariance matrix method is based breaks down,
unless we explicitly separate the phase and timing jitter of each
pulse from the noise. We describe a procedure for carrying out
this separation.

Index Terms— Optical fiber communication, Amplifier noise,
Phase jitter, Optical Kerr effect, Linear approximation, Monte
Carlo methods, Receivers, Spectral analysis.

I. I NTRODUCTION

AMPLIFIED spontaneous emission (ASE) noise that opti-
cal amplifiers add to the signal gives rise to bit errors

and sets the lower limit on the signal power. One traditional
way of computing bit error rates (BERs) and eye diagrams is
to run Monte Carlo simulations and extrapolate the results un-
der the assumption that the electrical power at the receiver af-
ter narrow-band filtering is Gaussian-distributed in the marks
(Ones) and spaces (Zeros). This method leads to large statis-
tical fluctuations in the tails of the probability density function
(pdf) and is hence inefficient. As a consequence, system design-
ers often use a simplified approach in which they assume that
the optical noise spectrum at the receiver is white, effectively
neglecting the nonlinear signal-noise interaction. This simplifi-
cation is often inappropriate for long-haul optical communica-
tions systems. In this letter, we report on the application of the
covariance matrix method to calculate the pdfs of the received
voltage in a 10 Gb/s single-channel dispersion-managed soliton
(DMS) system with a transmission distance of 24,000 km [1].
This method is based on the linearization assumption that the
noise does not interact with itself during propagation through
the fiber in an appropriate basis set [2], [3]. The pulses in the
DMS system considered here are periodically stationary and
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the signal propagation is highly nonlinear. Hence, this system
poses a stringent test of our approach.

Previous study of the same system [2] showed that the lin-
earization assumption breaks down unless we use a basis set
for the covariance matrix in which phase and timing jitter are
separated from the other noise components. This separation
is necessary because the nonlinear equations that govern the
fiber transmission imply that small amounts of amplitude and
frequency noise can lead to large amounts of phase and tim-
ing jitter respectively, which in turn lead to a breakdown of the
linearization assumption in the standard Fourier basis. By con-
trast, if we modify the basis to separate out the noise compo-
nents whose first-order contribution generates phase and timing
jitter, we find that the coefficients of the modified Fourier basis,
along with the jitter, obey the linearization assumption and re-
main multivariate Gaussian distributed far longer than the orig-
inal Fourier coefficients [2]. This result is similar to one that is
well known in the theory of solitons, where it is standard to use
a basis set that consists of discrete as well as continuous com-
ponents, rather than the usual Fourier basis, when studying the
effects of perturbations and noise [4].

In this letter, we show how to apply the linearization assump-
tion to directly calculate the covariance matrix for a highly non-
linear dispersion-managed soliton system. This work extends
previous work in which we used extensive Monte Carlo sim-
ulations to calculate the covariance matrix for the same DMS
system that we describe here [2], except that the path average
dispersion is lower in this simulation, leading to a lower timing
jitter. The Monte Carlo approach to calculating the covariance
matrix, as described in [2], serves to validate the linearization
assumption, but it requires an order of magnitude more compu-
tational time than the direct approach described here and is in-
herently less accurate. This work also extends previous work in
which we directly calculated the covariance matrix for a chirped
return to zero system [3]. In this earlier work, it was not nec-
essary to separate the timing jitter from the other noise modes,
which significantly simplifies the algorithm. Thus, this work
contains the first complete description of the covariance matrix
method.

The basic approach that we use is to follow the evolution of
the standard Fourier basis, projecting out the contribution to the
phase and the central time shift from the Fourier coefficients at
each amplifier. At the end of the transmission line, there is a
square law receiver that is insensitive to the phase, so we do not
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need to keep track of the phase. We reintroduce the effect of the
timing jitter by applying a convolution, as described in [2]. The
phase and timing jitter could in principle be separated from the
covariance matrix at the end of the transmission line. There is
a loss of numerical accuracy, unless the jitter is incrementally
separated.

Our approach is fully deterministic and does not rely at all on
Monte Carlo simulations, which allows us to greatly increase
the accuracy at small BERs at a fraction of the computational
cost of Monte Carlo simulations. To validate our results, we
compare them to standard Monte Carlo simulations. The non-
linearity in the DMS system is significantly higher than in the
majority of all modern transmission systems, and hence we ex-
pect our approach of use in almost any system.

II. SIMULATION PROCEDURE

The simulated 10 Gb/s transmission line models a recircu-
lating loop and consists of 225 periods of a dispersion map
106.7 km long. A complete description of the system and the
simulation is given in [1]. Each map contains a fiber span
100.24 km long and normal dispersion of−1.096 ps/nm-km
and a span of length 6.71 km and anomalous dispersion of
16.696 ps/nm-km. The path average dispersion equals the ex-
perimental value of 0.02 ps/nm-km; we previously simulated
a system with 0.08 ps/nm-km [2]. Third-order dispersion is
not relevant in this system [1] and is set to zero. The carrier
wavelength is 1551.49 nm, matching the experimental value.
The fiber loss of 0.21 dB/km is compensated by five EDFAs.
We assume an effective fiber area of 49(µm)2 for both fiber
types. One EDFA follows each of the four 25-km segments
of normal-dispersion fiber, and the fifth follows the segment of
anomalous-dispersion fiber. There is a 2.8 nm (350 GHz) opti-
cal bandpass filter in each map period to reduce the amount of
noise.

We model the amplifiers as EDFAs with static gain, as op-
posed to explicitly including gain saturation. We carefully ad-
just the static gains so that they equal the effective gains one
would obtain using EDFAs with a saturation time of 1 ms and a
saturation power of 10 mW in accordance with [2]. The spon-
taneous emission factor isnsp = 1.2. The launched pulses have
a Gaussian shape with a FWHM duration of 9 ps and a peak
power ofPpeak= 8 mW. The peak pulse power at the begin-
ning of the normal span is 3.1 mW. The signal is injected and
received at the chirp-free point near the middle of the anoma-
lous span. We transmit the 8-bit PRBS sequence 11101000 in
a total simulation time window ofT = 800ps, which includes
all possible three-pulse sequences. Since the solitons do not
spread significantly during the transmission, there is no need
to study longer sequences of marks and spaces. The average
signal power is−4.2 dBm. We model the receiver as an ideal
square law detector followed by an electrical low-pass 5th-order
Bessel filter with a one-sided 3-dB bandwidth of 4.3 GHz.

To assess the degree of system nonlinearity, we define a non-
linear scale lengthLnl as the length over which a nonlinear
phase rotation of2π occurs. We may writeLnl = 1/(γPpeak)
with the nonlinearity coefficientγ = 2.1(W ·km)−1. The trans-
mission distance of 24,000 km is 400 times larger thanLnl,
showing that the DMS system is highly nonlinear. By contrast,

commercial systems are 3–5 times the nonlinear length scale at
most [5].

We use the split-step Fourier method to solve the scalar non-
linear Schrödinger equation, which only takes into account one
optical polarization. In the recirculating loop that we are mod-
eling, the polarization dependent loss (PDL) is large and the
polarization controllers are optimized to pass the signal with
minimum loss. Consequently, the signal is dominated by one
polarization, and the orthogonal polarization can be neglected.

We proceed by first expressing the optical field enve-
lope as u = u0 + δu, where u0 = 〈u〉 is the noise-free
field, and δu represents accumulated noise. We next
write δu =

∑NFFT/2−1
k=−NFFT/2 [αk + iβk]exp(−iωkt), where αk

and βk are NFFT real and imaginary noise Fourier co-
efficients and ωk = 2πk/T .1 We define the real vec-
tor a = (α−N/2,α−N/2+1, . . . ,αN/2−1, β−N/2,β−N/2+1, . . . ,
βN/2−1)t of length2N , where the symbolt denotes the trans-
pose. We chooseNFFT = 2048andN = 120in this work.

The evolution of the2N ×2N noise covariance matrixK =
〈aat〉 over one fiber leg fromz = 0 to z = L, in which no noise
is added, followed by an EDFA with gainG, is given by

K(L) = GΨK(0)Ψt +ηI, (1)

whereΨ is a propagator matrix,I is the identity matrix, andη
equals half the average ASE noise power per frequency mode.
We computeΨ using numerical differentiation, specifically the
Lyapunov method [6]. We first letu0(t,0) andu0(t,L) be the
noise-free optical field at the beginning and end of the fiber
span, respectively. We then perturbu0(t,0) in a single fre-
quency modek by a small amount∆ and launch the perturbed
signal u(k)(t,0) = u0(t,0) + ∆exp(iωkt). At z = L, we ob-
tain u(k)(t,L) by solving our nonlinear transmission equation
and calculate the deviationδu(k) = u(k)(t,L)−u0(t,L) and its
Fourier space vectora(k). The elements ofΨ are given by

Ψjk = a
(k)
j /∆. We find that the Lyapunov method is numeri-

cally stable and its results are independent of the value of∆
over several orders of magnitude. By successive application of
(1), we can propagate the covariance matrix from amplifier to
amplifier.

The next step is the separation of the phase and timing jitter.
Each pulsel in the signal has a different phaseϕl and central
time τl. Pulses do not overlap in our test system; hence, these
pulse phases evolve independently and must be removed sep-
arately from each other. We decompose the signalu0(t) into
a sum of the four marks, writingu0(t) =

∑4
l=1ul(t), where

ul(t) = u0(t) within the bit slot of thel-th mark, andul(t) = 0
otherwise. We consider the 8 modesiul(t) and ∂ul/∂t and
their real2N -dimensional Fourier space vectorsvl andwl re-
spectively. Note that(vl,wl) 6= 0 for a general signalu0(t),
where(·, ·) denotes the scalar product between real vectors.2

Consider the transformed covariance matrix

K ≡RtKR, (2)

1In refs. [2] and [3],ωk should be replaced by−ωk everywhere.
2Except for specially constructed examples,(vl,wl) vanishes only in the

case of even pulses.
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whereR is an orthonormal matrix, andK is the covariance
matrix at the end of the transmission line. We constructR so
that the modesvl form the first 4 columns, and the modeswl

form the following 4 columns. We fill the remaining2N − 8
columns with columns of the2N -dimensional identity matrix.
Next, we makeR orthonormal by using the Gram-Schmidt
procedure [7]. The phase jitter of pulsel is given byσϕ,l =√
Kll/|vl|. The jitter in any other mode can be computed anal-

ogously. In the DMS system, we find a relative amplitude jitter
of 17.4%, a phase jitter ofσϕ = 2.45π, and a timing jitter of
στ = 2.19 ps. These values are the standard deviations of the
fluctuations averaged over the four pulses and agree with our
traditional Monte Carlo simulations.

We separate the phase and timing jitter by computing the ma-

trix K(r)
that equalsK, except that the first 8 rows and columns

are set to zero. Then we invert the transformation (2), yield-

ing the matrixK(r) ≡ RK(r)Rt. Using u0(t) andK(r), we
compute the pdf of the electrical narrow-band filtered receiver
voltage [2].

In order to avoid roundoff errors, we computeK(r)
by sepa-

rating the jitter at every amplifier, rather than only once at the
end. To each of the noise vectorsa(k) we apply the 2-step
Gram-Schmidt orthogonalization procedure [8] to obtain resid-
ual noise vectors̃a(k) given by

w′ ≡ w− (w,v)
(v,v)

v, (3a)

ã(k) ≡ a(k)− (a(k),v)
(v,v)

v− (a(k),w′)
(w′,w′)

w′. (3b)

The vectors̃a(k) are now used instead ofa(k) to computeΨ,
and hence the phase and timing jitter that are produced during
the propagation are separated from the covariance matrix. The
method described in (3a) and (3b) is mathematically equivalent
to removing the jitter at the end of the transmission line.

We must reintroduce the effect of the timing jitter on the
pdf of the electric current at the receiver. The photodiode pro-
duces the currentI = |u0+δu|2, which we express asI(t,τ) =
|u0(t+ τ)+ δu(r)(t)|2, whereτ is a time offset due to timing
jitter, andδu(r)(t) is the optical noise field described byK(r).
We first setτ = 0 and compute the pdf ofI(t,τ = 0), and we
then convolve this pdf with the pdf ofτ . We have found that
τ is Gaussian distributed with varianceσ2

τ [2]. We assume
thatτ is independent ofδu(r)(t), thereby neglecting the cross-
correlations between thewl and the other modes inK. Our
simulations show that the correlation betweenτ andI(t,τ = 0)
is negligible, justifying this procedure.

III. R ESULTS

Fig. 1 shows the average pdfs of the receiver voltage that
result from the linearization approach as solid lines in compari-
son with a histogram from a traditional Monte Carlo simulation,
consisting of 39,000 noise realizations represented by the dots.
The voltage is normalized to the mean of the pdf of the marks.
The dashed lines show a Gaussian fit to the Monte Carlo data,
using the mean and variance. The large deviation between the
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Fig. 1. Solid lines: average pdfs from the linearization approach; dots: his-
togram from a traditional Monte Carlo simulation; dashed lines: Gaussian fit to
the dots using the mean and variance.

solid and dashed curves is obvious, especially in the spaces. On
the other hand, the agreement between the covariance matrix
method and the Monte Carlo results is excellent in the range
shown.

IV. CONCLUSIONS

In this paper, we completely describe the covariance matrix
method for the first time. We apply this method to a highly non-
linear 10 Gb/s single-channel DMS system with a transmission
distance of 24,000 km. Extending previous work [2], we are
able to compute the pdfs of the received voltages of this system
over a large range with a substantial reduction in computational
time. A crucial step in this approach is the separation of the
phase jitter and timing jitter, which we perform at every ampli-
fier and separately for each mark. The computational cost of our
method equals that of a Monte Carlo simulation with only2N
noise realizations, whereN is the number of relevant complex
Fourier modes; in this work we used2N = 240. It is our view
that this approach will be of use in a wide range of commercial
and experimental systems.
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