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Abstract

We show that the time delay of optical pulses traveling in long fibers is influenced by

the dispersion slope and the fiber nonlinearity. Consequently, one or more new pulses

that are inserted by add-drop operations into a pulse train that has already traveled

a long distance may shift relative to the old pulses. This time shift delays the initial

pulses more than the newly inserted ones, so that the newly inserted pulses can leave

their time frames, leading to errors.
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1 INTRODUCTION

In long fiber systems with optical amplifiers the nonlinear effect accumulates and

becomes significant even at low peak pulse powers [1]. The Kerr nonlinearity causes

broadening of the pulse spectrum as well as four-wave mixing among communication

channels at different wavelengths.

An additional effect, not usually considered, is a nonlinear time shift of the pulses

that is caused by the interaction of the Kerr nonlinearity with the dispersion slope.

This nonlinear time shift is superimposed on the normal, linear time delay affecting all

pulse propagation. In a train of pulses, all having essentially the same peak amplitude

and traveling the same distance, the additional nonlinear time shift is not noticeable.

However, it may become a problem in add-drop operations in which new pulses are

added in mid-stream. The new arrivals would not yet have accumulated a broadened

spectrum due to self-phase modulation and hence would suffer less nonlinear time

delay than the old pulses, causing them to shift their positions relative to the old

ones. This situation might occur in proposed OTDM networks [2] or even in future

WDM networks in which several users might share a single transmission wavelength.

A similar effect also occurs if pulses are injected at the same location but with differ-

ent power as would occur for example in a duobinary transmission system [3].
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2 THEORY

As a measure of the time shift of a single pulse we use the first moment of the time

variable, t, defined as [4]

〈t(z)〉 =

∫∞
−∞ t|E(z, t)|2 dt∫∞
−∞ |E(z, t)|2 dt

. (1)

The variable E(z, t) indicates the complex pulse envelope as a function of distance z

and time t. In terms of the pulse spectrum,

ψ(z, ω) =

∫ ∞

−∞
E(z, t)eiωtdt , (2)

the first temporal moment can also be expressed as

〈t(z)〉 = β̇0z +

...
β 0z

2

∫∞
−∞(ω − ω0)

2|ψ(z, ω)|2dω∫∞
−∞ |ψ(z, ω)|2dω

, (3)

where ω represents the angular frequency, β0 the propagation constant of the optical

wave at a central frequency ω0, and the dots signify differentiation with respect to ω.

A term with the second frequency derivative of β0 is omitted because in most appli-

cations this term vanishes after it is averaged over the fiber length, and, in addition,

it does not yield a contribution if the optical power spectrum is symmetrical around

ω0.
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Since
...
β 0 > 0, the frequency integral in (3) makes a positive contribution to the

normal group delay β̇0z. This contribution increases as the spectrum broadens due

to nonlinear self-phase modulation.

Equation (3) for 〈t(z)〉 shows that the increase in the relative time delay is pro-

portional to the distance z traveled by the pulse if the power spectrum remains un-

changed along the fiber, as is the case for linear or soliton transmission [1]. It is also

true periodically for dispersion-managed solitons which are, therefore, exempt from

a nonlinear time shift [5], [6]. However, when the spectrum broadens as a function

of the length coordinate z, the additional time shift is no longer linear so that pulses

that travel different distances or carry different amounts of power may be displaced

with respect to each other. Finally, (3) also implies that the nonlinear time shift

can be reduced if the fiber dispersion is arranged as a periodic dispersion map which

decreases the tendency of the spectrum to spread with length [7].

We introduce the nonlinear time shift

〈τ(z)〉 = 〈t(z)〉 − β̇0z . (4)

Using the nonlinear Schrödinger equation [8], [9] and approximating the pulse by its

self-phase modulation solution applied to Gaussian-shaped pulses [10], the following
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approximate expression can be derived,

〈τ(z)〉 =
λ4 ln(2)

(2πcτh)2

(
2D

λ
+

dD

dλ

)
z

{
1 +

1√
3

(
4π

3λ

n2P0

Aeff

z

)2
}

. (5)

The parameters appearing in this equation have the following meaning: The wave-

length is λ, c is the velocity of light in vacuum, τh is the full width of the pulse at half

maximum, D is the usual dispersion expressed as the wavelength derivative of the

time delay, n2 is the nonlinear coefficient, P0 the peak power of the pulse, and Aeff

is the effective area of the guided fiber mode. The appearance of the group velocity

dispersion, D, in this expression stems from the conversion of
...
β 0 to the wavelength

derivative of D.

Effectively, we are assuming that the dispersive contribution to the pulse spectrum

and shape is small compared to the nonlinear contribution due to the self-phase mod-

ulation. Consequently, we neglect its contribution to these quantities in (5). However,

we assume that it still shifts the pulse once the pulse’s spectrum and shape are deter-

mined. As a consequence of this approximation, equation (5) is useful for estimating

the magnitude of the time shift, but it is not always quantitatively accurate.
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3 SIMULATIONS

We now explore the nonlinear time shift in more detail with the help of numerical

simulations of the nonlinear Schrödinger equation. To reduce the problem to its bare

essentials, we consider a single input pulse with a raised cosine shape. This pulse

occupies a time slot of T = 0.1 ns, which corresponds to a bit rate of 10 Gb/s. In

addition, we assume that the fiber is lossless. In a realistic fiber, losses would be

compensated by periodically spaced amplifiers so that the peak power of pulses in

the lossless system would have to be interpreted as a path-averaged power.

The relative time shift, τ , of this pulse is expressed in two different ways. We

compute its average value 〈τ〉, according to (1) and (4) and also keep track of the

temporal position of the peak of the pulse. Fig. 1 shows plots of these quantities

for raised-cosine-shaped pulses with different peak powers and different dispersion

histories. It also shows the theoretically-expected time shift according to (5). The

fixed parameters in both sub-plots have the following numerical values: λ = 1.55 µm,

τh = 40 ps, P0 = 2 mW, Aeff = 55 µm2, n2 = 2.6× 10−20 m2/W, and dD/dλ = 0.03

ps/nm2-km. The average and peak time shifts can generally be quite different due

to the distortion of the pulse under the combined influence of the nonlinearity and

the dispersion slope. Fig. 1a was computed for a pulse with a peak power of 2 mW

and no first-order group velocity dispersion. In this case, the approximate theory
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underestimates the average time shift because the pulse has narrowed and its peak

height has increased. In Fig. 1b, we raised the peak power of the incident pulse

to 5 mW and also included a dispersion map with a period of 100 km. The map

consisted of three sections. The first and third sections had a normal dispersion

of D = −0.52 ps/nm-km and a length of 25 km, while the middle section had an

anomalous dispersion of D = 0.5 ps/nm-km and a length of 50 km. The slight

average normal dispersion of 〈D〉 = −0.01 ps/nm-km was chosen to prevent the pulse

from breaking up into solitons. In this case, the approximate theory yields higher

time delays than the simulation because the dispersion map prevents the spectrum

from spreading as rapidly as it would with D = 0.

To demonstrate the time shift of a pulse that is injected mid-stream relative to the

initial pulses, we generated a sequence of 16 raised cosine pulses with a peak value of

5 mW, as shown in Fig. 2a. The dispersion map was the same as that used in Fig. 1b.

After a distance of 3,000 km, we removed the 9-th pulse and replace it with a new

pulse with the same profile as the initial pulses had when we first injected them into

the fiber. At this point, the optical profile of the original pulses is already distorted,

and the peak positions of the pulses do not coincide with their average positions, as

shown in Fig. 2b. After detection and electrical filtering with a 4-th order Bessel

filter of 25 GHz baseband bandwidth, the pulses assume the appearance shown in

Fig. 2c. A time shift is visible just from the action of the electrical filter. In Fig. 2d,
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we show the optical profile after the pulses have propagated an additional 1,800 km.

The peak position of the injected pulse has shifted by about 60 ps. The peak pulse

curve of Fig. 1b indicates a delay of 55 ps which is in reasonably good agreement.

After electrical filtering, the pulses have the form shown in Fig. 2e. The injected pulse

has moved into the time slot of its neighbor so that it might be misidentified by the

detection equipment. We note that the time shift scales as the square of the power.

Thus, it will become more important at higher data rates in which higher powers

must be used to maintain a fixed signal-to-noise ratio. Conversely, since bits are

spaced closer together as the data rate increases, the time delay that can be tolerated

diminishes. We conclude that this time shift effect will be even more important in

systems that operate at 40 Gbit/s instead of 10 Gbit/s.
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Figure Captions

Figure 1

Relative time shifts in picoseconds of a single pulse as a function of the length

coordinate z in megameters (Mm) computed from the nonlinear Schrödinger

equation and from the approximate theory. In (a), the peak pulse power was

2 mW. There was no dispersion map and D = 0. The full-width of the pulse

(FWHM) was τh = 40 ps at the input. In (b), the input peak pulse power was 5

mW. There was a dispersion map with a 100 km period and an average normal

dispersion of 〈D〉 = −0.01 ps/(nm km).

Figure 2

In (a), we show the initial train of raised cosine input pulses at a bit rate of

10 GB/s. At z = 3 Mm, pulse no. 9 is replaced with a new pulse. In (b), we

show the optical pulse train. Note the distortion of the old pulses caused by

the relatively high peak pulse power. In (c) we show the pulse train of (b) after

square-law detection and filtering with a baseband filter of 25 GHz. At z = 4.8

Mm the new pulse no. 9 has shifted its position relative to the old pulses, as

shown in (d). In (e), we show the pulse train of (d) after square-law detection

and filtering with a baseband filter of 25 GHz.
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Figure 1: Time shift of pulses. Marcuse et al.
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Figure 2: Pulse train before and after pulse insertion. Marcuse et al.
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