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1. Introduction 
 

Perhaps the most important and, at the same time, most difficult theoretical problem in optical fiber communications 
is finding methods that will allow the user to accurately calculate bit error ratios with reasonable efficiency.  There 
are a number of reasons for this difficulty:  The transmission system and the receiver are nonlinear systems—
invalidating simple analytical approaches.  At the same time, the desired bit error ratios (BERs) are low, on the order 
of 10–12 or less—making standard Monte Carlo simulations impractical.  Moreover, one must be able to solve the 
problem end-to-end, taking into account the combined effects of transmission nonlinearity, receiver nonlinearity, 
and error correction and/or signal processing at the decision point in the receiver. 
 Important progress has been made in solving portions of this problem.  The most progress has been made on 
square law receivers, which are appropriate for on-off keyed systems.  We will review this work briefly.  
Considerable progress has been made on the impact of transmission nonlinearity on the noise distribution prior to 
the receiver.  Both deterministic and statistical methods have been developed to the point where they agree 
completely with one another for realistic systems and are mutually self-validating.  The main purpose of this talk is 
to review this progress.  Finally, important progress has been made in the past year in determining the impact of 
pattern dependences due to inter-channel interactions (cross-phase modulation) in a wavelength-division 
multiplexed system on the distribution of marks and spaces prior to the receiver and in determining the impact of 
iterative decoders in error correcting codes on the BER.  This work was described at the European Conference on 
Optical Communications [1] and will not be repeated here. 
 
2. Receiver model 
 

The basic receiver structure that we will consider is shown in Fig. 1.  It consists of an optical filter/demultiplexer, 
followed by a photodetector that squares the input optical amplitude, followed by an electrical filter, a clock 
recovery circuit, and a threshold detector at the decision point.  While commercial receivers can be considerably 
more complicated, the details are often proprietary, and this model is often adequate in realistic settings.  Work by 
Lee and Shim [2], Bosco, et al. [3], and Forestieri [4] has demonstrated that if the optical and electrical filters are 
linear and if the optical noise entering the receiver is white and Gaussian-distributed, then regardless of the signal 
format, the voltage distributions for the marks and for the spaces at the detection point will obey a generalized chi-
square distribution.  Holzlöhner, et al. [5] extended this earlier work slightly to show that any input multivariate 
Gaussian noise distribution leads to a generalized chi-square distribution.  
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Fig. 1.  Schematic illustration of the receiver model. 
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3. Noise-signal interaction 
 

We now turn to the main subject of this presentation, which is calculating the distribution of the voltage of the marks 
and spaces at the detection point in the receiver, taking into account nonlinear transmission effects.  Historically, 
two principal approaches have been used to tackle this problem.  The first is complete Monte Carlo simulations.  
While this approach fully accounts for the nonlinearity in principle, it is not possible to calculate enough realizations 
to determine the full distributions of the marks and the spaces.  This approach can be used to calculate the lowest 
moments of the distributions with reasonable accuracy in some cases; however, in some other cases, even this 
computation is too computationally time-consuming to be practical.  The second approach is to simply neglect the 
nonlinear signal-noise and noise-noise interactions during transmission, in which case the noise at the entry to the 
receiver is well-approximated as Gaussian and white.  While this approach is simple and fast, it is known by 
comparison to the moments of complete Monte Carlo simulations that it often produces incorrect results.  As of this 
writing, it is not known when this method produces reliable results.  Another approach, described in a review article 
by Golovchenko, et al. [6], takes into account signal-noise interactions in the approximation that the signal is treated 
as a continuous wave for the purpose of calculating its effect on the noise. 
 We present here two alternative approaches.  The first approach, the covariance matrix method, is a 
deterministic approach.  It is based on the assumption that once phase jitter has been separated from the noise, noise-
noise beating in transmission can be neglected.  Separating the phase jitter is a crucial step; Monte Carlo simulations 
show that this approach fails otherwise.  The noise modes with the phase contribution removed are multivariate-
Gaussian distributed and one can calculate the full distribution of the marks and spaces prior to the receiver for the 
covariance matrix [7].  Once that is done, the voltage distribution of the marks and spaces obey a generalized chi-
square distribution, which can also be calculated. 
 The second approach that we will present is based on the multicanonical Monte Carlo method [8,9].  This 
approach fully accounts for all the transmission nonlinearity.  It is a method for iteratively biasing Monte Carlo 
simulations, so that a priori knowledge of how to bias the simulation is not needed, in contrast to most other 
importance sampling techniques. 
 For systems that we have studied, the covariance matrix method requires approximately as much computer time 
as 200 noise-free simulations.  The reason is that each noise mode must be propagated separately from amplifier to 
amplifier.  The multicanonical Monte Carlo method requires approximately 105 realizations, which costs 105 times 
as much computer time as a noise-free simulation, in cases that we studied.  This number of realizations amounts to 
several hours to several days of computer time on a modern computer cluster, which is acceptable for validation 
studies, but is not usually acceptable for production studies. 
 In order to test our approaches, we applied them to a chirped return to zero system that is based on a submarine 
transmission system.  The model system, shown in Fig. 2, consists of 34 map periods, each with five amplifiers, over 
a total length of 6120 km.  It includes pre-compensation, post-compensation, and the receiver model shown in 
Fig. 1.  If we define the nonlinear scale length as the length scale 1/γ P, where γ is the Kerr coefficient and P is the 
path-averaged maximum pulse intensity, the system is approximately 3 nonlinear scale lengths long.  We have 
studied the dynamics of this system using standard simulations, and we have shown that this nonlinear scale length 
is typical for a variety of submarine and terrestrial systems [10]. 
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Fig. 2.  Schematic illustration of the model submarine system. 
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 We show our key result in Fig. 3 [11].  Here, we compare the covariance matrix method and multicanonical 
Monte Carlo method for this model system.  We are showing the voltage distribution for the marks and for the 
spaces at the detection point in the receiver after clock recovery, which has been realistically modeled.  The 
distributions for the marks and spaces are separately calculated using both methods.  Both methods are capable of 
calculating the distribution function at the level of 10–20, and they are in perfect agreement!  
 
4. Conclusions 
 

There is much that remains to be done.  These results should be extended to other modulation formats, like non-
return to zero and differential phase shift keying, as well as to other system configurations.  Polarization effects 
should be included.  Moreover, these methods can and should be used to give us information about when simple 
approximations, like the Gaussian white noise approximation, will yield accurate results in realistic systems. 
 Nonetheless, important progress has been made.  Since the nonlinearity in the model system of this paper is at 
the high end of most commercial systems, it is our view that the covariance matrix method will apply to any 
commercial system.  Certainly, it appears possible to use the multicanonical Monte Carlo method with any 
commercial system. 
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Fig. 3.  Probability density functions for the voltage of the marks and spaces for the model system in Fig. 2. 
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