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QNN Calculating Bit Error Rates

BERs are determined by the low-probability tails of the
received voltage probability density functions (pdfs)
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Nonlinear transmission complicates shape of the pdfs
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DN Common Approaches

© Full Monte Carlo simulations + Gaussian extrapolation [Marcuse]

+ : few assumptions, simple, can be used with strong nonlinearity
— : computationally expensive, pdfs are not Gaussian

@ CW transmission linearization + analytical pdfs [Hui, Bosco, Mazurczyk]

+ : very fast, deterministic, includes parametric gain
— : no data modulation 1n signal-noise interaction during transmission

© Optical white noise at receiver + analytical pdfs or Monte Carlo
receiver simulations [Marcuse, Winzer]

+ : very fast, possibly deterministic
— : no signal-noise interaction during transmission

Validation?
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DNSIES  Overview

Accurate calculation of BER vs. decision level

® For modulated data with multiple bits and channels

® Fiber propagation model:
— Includes nonlinear interactions between signal and noise
— Neglects noise-noise interactions in the fiber

— Propagates the optical noise covariance matrix
® Receiver model:

— Uses realistic optical and electrical filters

— Must include noise-noise interactions in the receiver

We compute the noise covariance matrix deterministically
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BN Linearizing the NLS

Nonlinear Schrodinger equation with ASE noise
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F' : added Gaussian white noise

Now set u=u,+0u, u,=u). average signal

0
Ou: accumulated noise
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Doob’s Theorem: ou is multivariate Gaussian distributed
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QBN Multivariate Gaussian pdf

ou(t) = i [ak +i,8k] exp (icq(t)

a :(0'190’29---aaNan:Bza'“nBN)T

: : _ T —
Covariance matrix K = <aa >, Kkl —<aka,>

Multivariate Gaussian distribution of a:

f.(a,z)= (27T)_N JdetK™ exp(—%aTK'la)
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BENN How to Compute the Covariance Matrix

Solve the linearized homogeneous propagation equation

Z_Z_R( Ja = a(L)=Ya(0) ASE  ASE
K(L)=G¥YK(0)¥" +n1 | &
Lo ! ’0((0L>

But: ODE is stiff due to dispersion term. Solution: perturbative approach

(k)
o(0)=a(0)=26, - a(1) = w, ="
&

Compute \P by perturbing each of the N frequency modes separately
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NS Strong Phase Jitter Requires Different Basis

Small phase jitter Large phase jitter

Phase jitter rotates the signal around the origin,
distorting the Gaussian pdf

Solution: Separate phase jitter from ) (L)
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DWNN  Phase and Timing Jitter

DMS system, 24,000 km
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Timing and phase jitter are Gaussian distributed
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DNNEE Phase and Timing Jitter Separation

Separate phase and timing jitter by projecting out their noise modes
using a 2-step Gram-Schmidt orthogonalization procedure:

v:FT{luo(t}, W:FT{atuO(l)} -DI:I -
sl (w,v)v
(V,V)
(k), ) _ (a(k),ﬁ;')

p) " ) " R

Jitter separation must be applied to each pulse individually
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DNNIS Test System 1: 10 Gb/s DMS over 24,000 km

R.-M. Mu et al., IEEE J. Sel. Topics Quant. Electronics 6, 248-257 (2000)
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N: 4 x 25 =100 km Normal dispersion fiber, D = - 1.1 ps/nm-km
A: 2 x 3.5 km Anomalous dispersion fiber, D = 16 ps/nm-km

Highly nonlinear system, hence stringent test of our approach
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DS Noise-free Optical Signal at Receiver

Noise Free Optical Power
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DNNISNI  Accurate Probability Density Functions

39,000 Monte Carlo noise realizations
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Accurate pdfs deviate strongly from Gaussians in tails
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NN Cross-correlations in the Covariance Matrix

Slices through K (a,a,)
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DI Are the Cross-correlations Relevant?
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Noise cross-correlations impact the pdfs significantly in this system
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DN Test System 2: Submarine CRZ, 6100 km
10 Gb/s, single-channel
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Non-periodic evolution: medium nonlinearity, but strong pulse overlap
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DS Noise-free Optical Signal at Receiver

Noise Free Optical Power
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BNSISY Compress Pulses, then Separate Jitter

Jitter separation requires artificial dispersion compensation in CRZ:

z=0 ((0 L§1> ((0 Lz»_

.............. al (L) - 0
D eeereensensenansenanssagsesanaa arfificial ... iav'(L,)
W dispersion compensation
phase Jltter separation
==. ............................................................. > a' (L )
OB —" > a' (L ), K(L,) — K(,)

Pulses in CRZ evolve separately, despite their strong overlap
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DN Characterizing the Covariance Matrix

UMBC

Modal Power (W)
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DN Pdfs of the Electrical Signal
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DN Accurate Contour Eye Diagram

CRZ system, 10 Gb/s, 32 bits PRBS, single-channel, 6100 km
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DNNISE 32 bits CRZ, 5 Channels, 50 GHz Spacing
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Method: Include background field when computing \P, but omit in K
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DNSIES Conclusions

@ Covariance matrix method was validated for DMS and CRZ

@ C(ritical step: Phase and timing jitter separation

© Noise cross-correlations are significant in some systems

O Computational cost equals 200-300 noise-free simulation runs

Covariance matrix method is a validation tool for other methods
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WS Monte Carlo and Linearization
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(1) Monte Carlo simulation
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SIS Jitter Separation at Work

DMS system, 2550 Monte Carlo noise realizations, ng, = 1.2 X 107
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Phase jitter is Gaussian distributed in polar coordinates
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DB Multiple Bits in CRZ: Patterns
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by Brian Marks
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SIS Isolation of Worst Pattern

by Brian Marks
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DS 32 Bits CRZ: Focus on Worst Patterns
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DNSIS Simulation Setup

ASE ASE

oy -

K, u,

Propagation:

Receiver model:

K, u, voltage pdf
Square-law detector Narrow-band filter (Bessel)

Quadpratic noise-noise terms in the receiver cannot be neglected !
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DN Noise Modes

Diagonal elements in covariance matrix without jitter separation,
jitter basis
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Phase and timing jitter are significantly stronger than other modes
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