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Calculating Bit Error Rates

Nonlinear transmission complicates shape of the pdfs
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BERs are determined by the low-probability tails of the 
received voltage probability density functions (pdfs)
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 Common Approaches

� Full Monte Carlo simulations + Gaussian extrapolation [Marcuse]
+ : few assumptions, simple, can be used with strong nonlinearity
– : computationally expensive, pdfs are not Gaussian

� CW transmission linearization + analytical pdfs [Hui, Bosco, Mazurczyk]
+ : very fast, deterministic, includes parametric gain
– : no data modulation in signal-noise interaction during transmission

� Optical white noise at receiver + analytical pdfs or Monte Carlo
receiver simulations [Marcuse, Winzer]

+ : very fast, possibly deterministic
– : no signal-noise interaction during transmission

Validation?
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Overview

Accurate calculation of BER vs. decision level
• For modulated data with multiple bits and channels
• Fiber propagation model:

─ Includes nonlinear interactions between signal and noise
─ Neglects noise-noise interactions in the fiber
─ Propagates the optical noise covariance matrix

• Receiver model: 
─ Uses realistic optical and electrical filters
─Must include noise-noise interactions in the receiver

We compute the noise covariance matrix deterministically
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Linearizing the NLS
Nonlinear Schrödinger equation with ASE noise

added Gaussian white noise

0 0, :  average  signal
:  accumulated noise
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Doob’s Theorem: δu is multivariate Gaussian distributed 

F̂ F̂



UMBC
6

Multivariate Gaussian pdf
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How to Compute the Covariance Matrix

Solve the linearized homogeneous propagation equation
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But: ODE is stiff due to dispersion term.  Solution: perturbative approach
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Compute ΨΨΨΨ by perturbing each of the N frequency modes separately
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Solution: Separate phase jitter from 

Phase jitter rotates the signal around the origin, 
distorting the Gaussian pdf
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Strong Phase Jitter Requires Different Basis
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Phase jitter histogram Timing jitter histogram

Timing and phase jitter are Gaussian distributed
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Phase and Timing Jitter Separation
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Separate phase and timing jitter by projecting out their noise modes 
using a 2-step Gram-Schmidt orthogonalization procedure:

Jitter separation must be applied to each pulse individually
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Test System 1: 10 Gb/s DMS over 24,000 km

N: 4 × 25 = 100 km Normal dispersion fiber, D = − 1.1 ps/nm-km
A: 2 × 3.5 km Anomalous dispersion fiber, D = 16 ps/nm-km

A

NNN

N
A

2.8 nm 
OBF

AO switch

Highly nonlinear system, hence stringent test of our approach

EDFA

R.-M. Mu et al., IEEE J. Sel. Topics Quant. Electronics 6, 248–257 (2000)
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Noise-free Optical Signal at Receiver

Signal
Spectrum

Noise: diag(K) OSNR:
8.44 dB

8 bits
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 Accurate Probability Density Functions

Voltage (normalized)
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Accurate pdfs deviate strongly from Gaussians in tails
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Q = 7.54
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39,000 Monte Carlo noise realizations
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Cross-correlations in the Covariance Matrix

Slices through K

cross-correlations

k lα α
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Are the Cross-correlations Relevant?

Cross-correlations neglected

Cross-correlations
in K set to zero

Noise cross-correlations impact the pdfs significantly in this system
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Test System 2: Submarine CRZ, 6100 km

Non-periodic evolution: medium nonlinearity, but strong pulse overlap

N N N N

A

45 km 45 km 45 km 25 km

20 km−2.5 ps/nm-km

16.5 ps/nm-km

pre-compensation post-compensation
34 map
periods

916 ps/nm916 ps/nm

10 Gb/s, single-channel
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Noise-free Optical Signal at Receiver

Signal
Spectrum

Noise: diag(K)

OSNR:
11.7 dB

32 bits
PRBS
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Compress Pulses, then Separate Jitter

...

phase jitter separation

artificial
dispersion compensation
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Jitter separation requires artificial dispersion compensation in CRZ:
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Pulses in CRZ evolve separately, despite their strong overlap
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Characterizing the Covariance Matrix

Slices through K

parametric
gain

k lα α
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Pdfs of the Electrical Signal

average pdfs

with phase jitter

Monte Carlo
Gaussian fit
Accurate pdf

Optimum
Accurate BER:
3.1 x 10–12

Optimum
Gaussian BER:
1.0 x 10 –11

Q = 6.7
(100,000 realiz.)
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CRZ system, 10 Gb/s, 32 bits PRBS, single-channel, 6100 km
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32 bits CRZ, 5 Channels, 50 GHz Spacing

3.2 million bits!
Channel 0

Method: Include background field when computing ΨΨΨΨ, but omit in K



UMBC
23

Conclusions

� Covariance matrix method was validated for DMS and CRZ

� Critical step: Phase and timing jitter separation

� Noise cross-correlations are significant in some systems

� Computational cost equals 200–300 noise-free simulation runs

Covariance matrix method is a validation tool for other methods 
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Monte Carlo and Linearization
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signal Noise-free signal propagation

u0

Traditional
eye diagram

Contour 
eye plot

(1) Monte Carlo simulation
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 Jitter Separation at Work

Phase jitter is Gaussian distributed in polar coordinates 
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DMS system, 2550 Monte Carlo noise realizations, nsp = 1.2 × 10−3

Bk = Ak+ ak



UMBC
26

Multiple Bits in CRZ: Patterns
by Brian Marks

511-bit PRBS sequence
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Isolation of Worst Pattern
by Brian Marks
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32 Bits CRZ: Focus on Worst Patterns

avg. pdfs
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 Simulation Setup

Receiver model:

Quadratic noise-noise terms in the receiver cannot be neglected !

ASE ASE

... u

K, u0

Propagation:

Square-law detector Narrow-band filter (Bessel)
voltage pdf

voltage

K, u0

u
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Noise Modes

Phase and timing jitter are significantly stronger than other modes

Diagonal elements in covariance matrix without jitter separation, 
jitter basis
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