
APPROVAL SHEET

Title of Dissertation: A Covariance Matrix Method for the Computation
of Bit Errors in Optical Transmission Systems

Name of Candidate: Ronald Holzlöhner
Doctor of Philosophy, 2003

Dissertation and Abstract Approved:
Professor Curtis R. Menyuk
Computer Science and Electrical Engineering,
University of Maryland Baltimore County

Date Approved:





Curriculum Vitæ

Name: Ronald Holzlöhner

Degree and date to be conferred: Ph.D., May 2003.

Collegiate institutions attended: 1998–2003, University of Maryland
Baltimore County, Ph.D., May 2003

1990–1998, Technische Universität Berlin (TUB),
Germany, M.S. in physics, August 1998

1995–1996, University of California,
Santa Barbara (UCSB)

Major: Photonics (Electrical Engineering).

Professional position: Research Assistant
Department of Computer Science and Electrical Engineering
University of Maryland, Baltimore County
TRC 201 B,
1000 Hilltop Circle,
Baltimore, MD 21250
USA



Publications in Refereed Archival Journals:

1. R. Holzlöhner, C. R. Menyuk, W. L. Kath, and V. S. Grigoryan, “A covariance
matrix method to compute accurate bit error rates in a highly nonlinear dispersion-
managed soliton system,”IEEE Photon. Technol. Lett., to appear in May 2003.

2. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the
split-step Fourier method in modeling optical fiber communications systems.”J.
Lightwave Technol., vol. 21, pp. 61–68, 2003.

3. R. Holzlöhner, C. R. Menyuk, W. L. Kath, and V. S. Grigoryan, “Efficient and
accurate calculation of eye diagrams and bit-error rates in a single-channel CRZ
system.”IEEE Photon. Technol. Lett., vol. 14, pp. 1079–1081, 2002.

4. R. Holzlöhner, H. N. Ereifej, G. M. Carter, and C. R. Menyuk, “Experimental and
theoretical characterization of a 40 Gb/s long-haul single-channel transmission sys-
tem.” J. Lightwave Technol., vol. 20, pp. 1124–1131, 2002.

5. R. Holzlöhner, V. S. Grigoryan, C. R. Menyuk, and W. L. Kath, “Accurate calcu-
lation of eye diagrams and bit error rates in long-haul transmission systems using
linearization,”J. Lightwave Technol., vol. 20, pp. 389–400, 2002.

6. H. N. Ereifej, R. Holzlöhner, and G. M. Carter, “Inter-symbol interference and tim-
ing jitter measurements in a 40 Gb/s long-haul dispersion-managed soliton system,”
IEEE Photon. Technol. Lett., vol. 14, pp. 343–345, 2002.

7. D. Marcuse, C. R. Curtis, and R. Holzlöhner, “Time shift of pulses due to dispersion
slope and nonlinearity,”IEEE Photon. Technol. Lett., vol. 11, pp. 1611–1613, 1999.

8. R. Holzlöhner and M. Schoen, “Attractive forces between anisotropic inclusions in
the membrane of a vesicle,”Eur. Phys. J. B, vol. 12, pp. 413–419, 1999.

9. R. Holzlöhner, “Schweissen mit Strom,”ELRAD, vol. 1, pp. 50–53, 1989.

Invited Papers:

1. C. R. Menyuk, R. Holzlöhner, I. T. Lima, Jr., B. S. Marks, and J. Zweck “Advances
in modeling high data rate optical fiber communication systems”SIAM Conference
on Computational Science and Engineering (CSE03), (San Diego, CA), 2003.



2. J. Zweck, I. T. Lima Jr., R. Holzlöhner, and C. R. Menyuk, “New advances in
modeling optical fiber communication systems,” inProc. OSA Topical Meeting,
(Vancouver, Canada), 2002.

3. C. R. Menyuk, R. Holzlöhner, and I. T. Lima Jr., “New approaches for model-
ing high data rate optical communication systems,” inProc. OSA Annual Meeting,
ThFF1, (Long Beach, CA), 2001.

4. C. R. Menyuk, R. Holzlöhner, and I. T. Lima Jr., “Advances in modeling optical
fiber transmission systems,” inIEEE LEOS Newsletter, pp. 21–23, 2001.

5. C. R. Menyuk, R. Holzlöhner, and I. T. Lima Jr., “Advances in modeling of opti-
cal fiber transmission systems,” inProc. LEOS Summer Topical Meeting, MD 1.2,
(Copper Mountain, CO), pp. 5–6, 2001.

6. C. R. Menyuk, D. Wang, R. Holzlöhner, I. T. Lima Jr., and E. Ibragimov, “Polariza-
tion mode dispersion in optical transmission systems,” inProc. OFC’00, Tutorial,
(Baltimore, MD), pp. 78–97, 2000.

Contributed Papers at Conferences:

1. R. Holzlöhner and C. R. Menyuk, “Accurate bit error rates from multicanonical
Monte Carlo simulations,”Proc. CLEO’03, talk CThJ3 (Baltimore, MD), 2003.

2. R. Holzlöhner, C. R. Menyuk, W. L. Kath, V. S. Grigoryan, "A Covariance Matrix
Method for Accurate Bit Error Ratios in a DWDM CRZ System,"Proc. OFC’03,
talk ThW3 (Atlanta, GA), 2003.

3. O. V. Sinkin, R. Holzlöhner, J. Zweck, C. R. Menyuk "Optimization of the split-
step Fourier method in modeling optical fiber communications systems,"Proc. OSA
Annual Meeting 2002, (Orlando, FL), 2002.

4. R. Holzlöhner, C. R. Menyuk, V. S. Grigoryan, and W. L. Kath, “Direct calculation
of the noise evolution in a highly nonlinear transmission system using the covari-
ance matrix,” inProc. CLEO’02, talk CThG5, (Long Beach, CA), 2002.

5. R. Holzlöhner, C. R. Menyuk, V. S. Grigoryan, and W. L. Kath, “Efficient and
accurate computation of eye diagrams and bit error rates in a single-channel CRZ
system,” inProc. CLEO’02, poster CThO44, (Long Beach, CA), 2002.



6. R. Holzlöhner, C. R. Menyuk, V. S. Grigoryan, and W. L. Kath, “Accurate cal-
culation of eye diagrams and error rates in long-haul transmission systems using
linearization,” inProc. UMBC Student Conference, (Baltimore, MD), 2002.

7. R. Holzlöhner, H. N. Ereifej, G. M. Carter, and C. R. Menyuk, “Timing jitter in a
40 Gb/s dispersion-managed soliton system,” inProc. OFC’02, talk ThQ2, (Ana-
heim, CA), 2002.

8. R. Holzlöhner, C. R. Menyuk, V. S. Grigoryan, and W. L. Kath, “Accurate eye
diagrams and error rates using linearization,” inProc. ECOC’01, poster P41, (Am-
sterdam, Netherlands), 2001.

9. R. Holzlöhner, C. R. Menyuk, V. S. Grigoryan, and W. L. Kath, “Accurate cal-
culation of eye diagrams and error rates in long-haul transmission systems,” in
Proc. OFC’01, paper MF3, (Anaheim, CA), 2001.

10. R. Holzlöhner and S. Hess, “Fluidmembranen mit anisotropen Einschlüssen,” in
Proc. DPG Spring Meeting, (Regensburg, Germany), 1998.

11. R. Holzlöhner and J. B. Fournier, “Elastomechanik von Lipidmembranen mit
anisotropen Einschlüssen,” inProc. DPG Spring Meeting, (Muenster, Germany),
1997.

Unpublished Material:

1. R. Holzlöhner, “Mesoscopic and statistical properties of lipid membranes,” Master’s
thesis, Technische Universität Berlin, Berlin, Germany, 1998.



Abstract

Title of Dissertation: A Covariance Matrix Method for the Computation
of Bit Errors in Optical Transmission Systems

Ronald Holzlöhner, Doctor of Philosophy, 2003

Dissertation directed by: Professor Curtis R. Menyuk
Computer Science and Electrical Engineering,
University of Maryland Baltimore County

Bit error rates (BERs) are traditionally estimated by running Monte Carlo simulations

and extrapolating the results under the assumption that the electrical voltage at the re-

ceiver after narrow-band filtering is Gaussian distributed in the marks (Ones) and spaces

(Zeros). This method is computationally expensive and not always reliable. Thus, it is

often replaced in practice by approximations—the most common of which is to simply

neglect noise altogether during propagation and add Gaussian white noise at the receiver.

This and similar approaches are usually not well-validated.

The covariance matrix method that I describe in my dissertation is fully deterministic

and relies on the assumption that the interaction of the optical noise in the fiber with itself

is negligible. I calculate the linearized evolution of the noise around the noise-free signal.

The optical noise at the receiver is multivariate Gaussian distributed after the phase jitter

is separated, and therefore completely described by a covariance matrix.

I successfully apply the covariance matrix method to compute the BER in a highly

nonlinear dispersion-managed soliton system over 24,000 km and to a 10 Gb/s 5-channel

chirped return-to-zero (CRZ) submarine system over 6,100 km. The results are far more

accurate than what those from extrapolating Monte Carlo simulations, while requiring a

fraction of the computational cost.
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Chapter 1

Introduction

Computing accurate bit error rates (BERs) is one of most important tasks when designing

optical fiber transmission systems. The covariance matrix method that I derive in this

dissertation yields a speedup in simulation time of orders of magnitude over the commonly

used Monte Carlo simulation technique. Unlike somead-hocapproaches, the covariance

matrix method is based on a sound mathematical foundation that makes use of the result

that the optical noise in a transmission system is multivariate-Gaussian distributed after

phase and timing jitter are separated. This result is derived from the assumption that

the signal evolution is linearizable, which means that the interactions of the noise with

itself in the fiber are negligible once phase and timing jitter are separated. I show that

this assumption is valid for currently used systems. Unlike Monte Carlo methods, the

covariance matrix method is completely deterministic; it does not require random number

generators. In the remainder of this introduction, I will outline the problem of computing

bit error rates and provide a guide to the following chapters.

Optical fiber transmission systems offer the highest data rates among all communi-

cations systems, and their bandwidth-distance product significantly exceeds radio, mi-

crowave, satellite, and free-space optical transmission in the distance range of a few tens

to thousands of kilometers. Recent experiments have demonstrated the transmission of

5 Tb/s over a distance of 1,200 km [1] and 1.5 Tb/s over a distance of 6,500 km [2] at

channel data rates of 40 Gb/s. This excellent transmission quality is due to low attenu-

ation and distortion over a very large bandwidth in modern optical fiber waveguides. In

addition, the light in the fiber can be optically amplified, either using doped lumped fiber

amplifiers such as erbium-doped fiber amplifiers (EDFAs) [3], or, exploiting stimulated

Raman scattering in the transmission fiber itself, as in Raman amplifiers [4].

Despite these virtues, the combination of confinement of the light beam to a small
1
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effective fiber area and long propagation distance leads to a significant Kerr nonlinearity

in the transmission. Optical fibers also have chromatic dispersion that interacts with the

fiber nonlinearity in a complicated way. Dispersion can be used to mitigate some of the

detrimental effects of nonlinearity, but in general a quote by Neal Bergano holds true:

“Nonlinearity in optical fibers is always bad.” [5].

The large available bandwidth of about 5 THz in optical fibers is a consequence of

the high carrier frequency of 200 THz, which is more than six orders of magnitude larger

than the UHF radio frequency and four orders of magnitude beyond typical satellite fre-

quencies. However, because the photon energy is proportional to frequency, the photon

flow at the typical low optical signal powers of fractions of a milliwatt to a few milliwatts

per channel is small and hence the field quantization becomes relevant. As a consequence,

quantization noise is significant and dominates over thermal noise in optical amplifiers [3],

where it is known as amplified spontaneous emission (ASE) noise.

Modeling optical fiber communications is a young discipline. All-optical systems,

in which the light propagates from the transmitter all the way to the receiver without

ever being converted to electrical signals, have only been in existence since the advent

of low-loss fibers and EDFAs in the mid-1990s. As the systems have become faster and

more complex, physical modeling has become more important as well. In particular, fast

modeling tools are required in order to design systems, tune parameters, and verify error-

free operation. Given the rapid progress in commercial systems, it is not surprising that

modeling algorithms are lagging somewhat behind.

The task of computing BERs essentially consists of computing the evolution of the

ASE noise that is caused by optical amplifiers, taking into account its interaction with the

noise-free signal due to the fiber nonlinearity. Typical BERs are in the range of10−15–

10−9 and below, although many systems now employ forward-error correction (FEC) and

can tolerate raw BERs of up to10−3 [1], [6]. A commonly used method to simulate

these rare events is still to run Monte Carlo simulations of the noise and extrapolate the

results [7]. This approach relies on the speed of the signal propagation equation solver,

which usually employs a split-step fast Fourier transform method [8] that requires a large

number of discrete Fourier transforms. Running a Monte Carlo simulation is like repeat-

edly rolling dice or flipping a coin, and it is easy to implement on a computer and very

robust [9]. However, when evaluating the probability of extremely rare events, such as

that of the coin standing on its rim after being flipped, standard Monte Carlo simulations

are too inefficient. One can increase the Monte Carlo simulation efficiency by biasing the
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perturbations toward regions of the phase space where bit errors are believed to be more

likely to occur [10], [11], but the success of this method relies on a detailed knowledge of

the system, and the biasing must be optimized in order to achieve a sizable performance

gain over the unbiased simulation. On the other hand, this detailed system knowledge is

sometimes the result of a simulation, and hence it is not known at the time the simulation

is started.

Monte Carlo methods are very expensive computationally. For that reason, they are

often replaced in practice with simplified models. The most common of these models is to

run a noise-free simulation and then to simply add white Gaussian-distributed noise at the

receiver that corresponds to the noise that would arrive at the receiver in the absence of

any noise-signal interaction due to fiber nonlinearity. It is known, however, that parametric

pumping of noise by the signal is a significant issue in some systems. For this reason, Hui,

et al. [12], [13] introduced a model, later extended by Pilipetskii,et al. [14] that takes

into account parametric pumping by treating the signal as a cw wave. Due to difficulties

in carrying out extensive Monte Carlo simulations, this simplified approach is not well-

validated in general.

Systems that suffer from noise are well known in many areas of science. In all commu-

nications systems there is a certain amount of noise that distorts signals during transmis-

sion or storage of information, and therefore limits the capacity [15], [16]. Unless a given

physical system is completely dominated by nonlinearities, perturbation theory based on

the assumption that the noise interaction with itself is negligible is always a powerful

technique for computing error rates. The linearization assumption has been successfully

applied to optical fiber communications and the known results can be divided into several

groups:

• Soliton perturbation theory was applied to transmission with gain and loss, ASE

noise, soliton-soliton interactions, filtering, and synchronous modulation [17]–[20].

However, the results are only strictly valid for classical solitons.

• Standard perturbation theory was applied to an unmodulated (cw) signal [12], [13],

[21], [22].

• Computation of the evolution of noise moments such as timing and amplitude jitter

has been carried out for an arbitrary signal [23].



4

However, none of the approaches that have been developed to date are capable of com-

puting the full probability density function (pdf) of the optical noise in the presence of an

arbitrary signal modulation and the pdf of the electrical receiver current. The goal of this

dissertation is to develop a method that

1. linearizes the optical noise propagation in a wide range of transmission systems,

2. yields the accurate pdf of the optical noise over the entire transmission distance,

3. yields the pdf of the electrical receiver current after passing a narrow-band filter,

4. can be easily implemented and is computationally efficient.

I derive such an approach in this dissertation and call it the covariance matrix method.

The approach is capable of computing accurate probability density functions (pdfs) of the

receiver current after narrow-band filtering. With this information, the BER and contour

eye diagrams can then be obtained. I develop two different methods to compute the key

statistical quantity, namely the covariance matrix of the optical noise, and I show that both

lead to a significant efficiency enhancement over traditional Monte Carlo simulations. The

most complex system that I treat in this dissertation is a 10 Gb/s 5-channel WDM chirped

return to zero (CRZ) system, in which I simulate the transmission of 32 bits.

In Chapter 2, I cover some basics of optical fiber communications systems and optical

amplifier noise. I outline different previous linearization approaches in Chapter 3 and

formulate the theory of the covariance matrix method in Chapter 4. I show the results of

calculating the covariance matrix using Monte Carlo simulation techniques in Chapter 5

and using the fully deterministic covariance matrix method in Chapter 6. The work in

Chapter 5 validates the linearization assumption. Chapter 7 contains the conclusions.

The Appendix contains some mathematical details and a description of the numerical

algorithms.



Chapter 2

Basics of Optical Fiber Transmission Systems

This dissertation is concerned with the nonlinear interaction of optical noise with a sig-

nal and this chapter lays the foundation for the subsequent derivation of the covariance

matrix method. In Section 2.1, I introduce the most important components of a typical

optical fiber transmission system. Section 2.2 contains a brief description of optical noise

sources. I introduce the modified nonlinear Schrödinger equation (NLS) that describes the

evolution of light in nonlinear optical fibers in Section 2.3. Finally, I discuss the effective

nonlinearity in modern transmission systems in Section 2.4.

2.1 Design

Modern optical transmission systems contain a large number of individual optical com-

ponents such as lasers, modulators and demodulators, multiplexers and demultiplexers,

filters, optical fibers, and amplifiers. In addition, there is much electrical equipment at the

receiver, such as photodiodes, electrical filters, amplifiers, and decision circuits. When

simulating these components, the level of detail of the model must be appropriate for

the system under study. For example, optical amplifiers are often modeled by simply

multiplying the optical field by a factor; I use this method in the simulations for this dis-

sertation. More realistic models can include ASE noise, gain saturation, the gain profile,

polarization hole burning, and transients. The first step of any simulation is to simplify the

transmission system and to restrict the model of the optical propagation to the essential

effects. The nature of the most important effects strongly depends on the type of the opti-

cal system as I will show in Section 2.4, and the effects can be expected to vary when the

data rate is increased. In particular, the amount of nonlinearity has an important impact

on the evolution of the signal and the noise.
5
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Figure 2.1: Simple optical transmission system.

Fig. 2.1 shows the schematics of a simple optical transmission system. The optical

signal is generated by a transmitter, and inserted into the fiber. It then passes through

a transmission line that primarily consists of fiber spans and optical amplifiers. At the

end of the transmission line, the signal is optically filtered and enters a receiver, where

it is converted to electrical current by a high-speed photodiode. This current is low-pass

filtered and enters a decision circuit.

In a typical digital optical fiber transmission system, the pulses are either directly

created by an optical laser, or the output of a constant wave (cw) laser is modulated by an

external modulator. I will only consider the case of an intensity-modulated return-to-zero

signal in which a light pulse or “mark” represents a logical “1” and the absence of light or

“space” represents a logical “0”. The pulse stream might then be multiplexed, either by

interleaving pulses in the time domain, called time division multiplexing (TDM), and/or

by combining channels at different frequencies, called wavelength-division multiplexing

(WDM). All recently-deployed systems employ dispersion management [8], in which the

dispersion varies periodically. Each period consists of a concatenation of several fiber

spans with different local fiber dispersions, and the variation of dispersion in one period

is referred to as the dispersion map.

The systems that I model in this dissertation are depicted in Fig. 5.1 and in Fig. 6.4

and will be discussed at a later point.

2.2 Noise Sources in Optical Systems

All active components in a communications system produce noise that degrades the signal.

These active components include the pulse source, the receiver, and, most important, the

amplifiers. One can distinguish between optical and electrical noise, and this dissertation

will be mainly concerned with the evolution of optical noise. The photodiode and the

electrical amplifiers produce electrical noise, and I will show how it can be taken into
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account in principle. In this section, I will first outline a theoretical proof that all optical

amplifiers must produce noise. This discussion is followed by a brief description of noise

creation in the EDFAs.

I define noise as a random fluctuation of a signal that an active componentadds to

the signal. Other sources of apparent randomness, such as polarization mode dispersion

(PMD) or a pseudorandom data sequence, are not considered noise. When dealing with

electromagnetic signals, there are two principal sources of noise: (i) shot or quantization

noise and (ii) thermal noise. Shot noise is directly connected to the quanta of the electrical

field, the photons. Thermal noise is caused by the thermal fluctuations in a medium that

for instance manifests itself as Brownian motion. The relative strength of these two noise

sources in an optical amplifier is given by the ratiohν/kBT , whereh is Plank’s constant,

ν = c/λ is the frequency of light,c is the speed of light,kB is Boltzmann’s constant, andT

is temperature [3]. Atλ≈ 1550nm and room temperature, this ratio is about 30, showing

that shot noise dominates, and I will therefore neglect thermal noise in the optical domain.

We may mathematically characterize the light evolution in the fiber as a point in the

phase space that consists of all Fourier amplitudes of the electric field. In principle, this

space is infinite-dimensional, but in practice we restrict it to a finite number of dimensions

by considering a finite time domain and a finite frequency bandwidth. Without noise, the

field evolves along a deterministic path in this phase space. Once we take into account

noise, however, this point becomes a cloud whose volume normalized to the signal in-

creases as the light propagates along the fiber. Quantum mechanics dictates the minimum

noise that an amplifier can add to the signal on average, and this value determines the

minimum increase in the phase space volume.

A single photon at a single frequency occupies a two-dimensional subspace of this

phase space. The minimum area that it can occupy, after an appropriate normaliza-

tion [24], has units of action, which is energy times time. This action can be written as

the product of two conjugate variables such as momentump and positionx, and Heisen-

berg’s uncertainty principle states that this area is quantized in multiples ofh̄/2, where

h̄ = h/2π. The uncertainty principle is usually expressed in terms of the uncertainties∆p

and∆x as∆p∆x ≥ h̄/2. An equivalent way of writing this relation for an ensemble of

photons that propagate in the same direction at the same frequency is∆n∆ϕ≥ 1/2, where

n is the number of photons that arrive at a detector per time,ϕ = 2πνt is their phase, and

t is time. I now consider an amplifier with power gainG. Under the assumptions that the

input signal is shot noise limited with∆n∆ϕ = 1/2, that the amplifier contributes added
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white Gaussian noise (AWGN) to the signal that increases only∆n but not∆ϕ, and that

an optimized detector is used, Heffner [25] showed that the minimum added noise power

PN may be written,

PN = 1
2hνB(G−1), (2.2.1)

whereB represents the full width half maximum (FWHM) amplifier bandwidth. One way

to interpret (2.2.1) is to view it as a quantization error ofhν/2 in the measurement of the

field intensity at the amplifier input at each frequency during an observation period of1/B.

Detailed studies show that the noise in EDFAs is not Gaussian distributed but rather Bose-

Einstein distributed [26]; however, unless the number of photons in the system is small,

the distinction with the usual Gaussian approximation is negligible. That is always the

case in today’s communications systems.

Realistic optical amplifiers produce more noise than the quantum limit (2.2.1), al-

though modern devices do not exceed it by much. In laser amplifiers, the ratio of the true

noise power to the quantum limit is given by thespontaneous emission factornsp. De-

scribing the physics of EDFAs in detail would exceed the scope of this dissertation, and

I therefore just mention that quantum noise in laser amplifiers is caused byspontaneous

emission, where electrons randomly lower their energy state by emitting noise photons.

The EDFA amplifies these photons, giving rise to amplified spontaneous emission (ASE)

noise. In a greatly simplified, two-state model of the erbium, the spontaneous emission

factor is related to the population densitiesN1 andN2 of the ground state and excited state

respectively in the erbium-doped fiber by [3]

nsp =
N2

N2−N1
. (2.2.2)

Typical values ofnsp are 1.2–2.5. Considering that current optical fibers have almost

reached the physical minimum of the light attenuation due to Rayleigh scattering, the

amplifier gains and, hence, the accumulated ASE noise cannot be reduced very much.

2.3 The Nonlinear Schrödinger Equation

In order to study the light evolution in optical fibers, we begin by writing the electric field

in the fiber as [27]

E(r, τ) =
√

ω0

2ε0c2β(ω0, zp)
e(zp, τ)R(x,y)exp

[
i

∫ zp

0
β(ω0, z

′
p)dz′p− iω0τ

]
, (2.3.1)
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whereE is the electric field vector in MKS units, whiler = (x,y,zp) andτ are position in

the fiber and physical time,ω0≈ 1015 Hz is the carrier frequency,ε0 = 8.85×10−12 F/m

is the permittivity of the vacuum,c = 2.99×108 m/s is the speed of light in a vacuum, and

β(ω0, zp) is the wavenumber at the carrier frequencyω0, which may vary slowly relative

to the wavelength along the fiber. The coordinatezp measures distance along the fiber.

The transverse modal field is normalized so that∫
dx

∫
dy

∣∣R⊥(x,y)
∣∣2 = 1, (2.3.2)

whereR⊥(x,y) is a vector obtained by projectingR onto the plane perpendicular to the

propagation direction. With this normalization,|e(zp, t)|2 equals the local power. We note

that we are assuming that only one polarization is propagating. From equation (2.3.1) for

the electric field, it is possible to derive the modified nonlinear Schrödinger equation in

the following form [8], [27],

i
∂u

∂z
+

1
2
D(z)

∂2u

∂t2 + |u|2u = ig(z)u+ F̂ (z, t), (2.3.3)

whereu(z, t) = e(z, t)
√

γLD, while γ = n2ω0/(Aeffc) is the nonlinear coefficient and

LD is a characteristic length. The distancez is normalized asz = zp/LD. We have

transformed from physical timeτ to retarded timet = τ−∫ z
0 β′(z′)dz′. The quantityn2 =

2.6×10−16 cm2/W is the Kerr coefficient, andAeff = 30–200µm2 is the effective fiber

core area. The quantityD(z) = −β′′(z)/β′′0 is the normalized dispersion parameter with

the local dispersionβ′′(z) and a scaling dispersionβ′′0 . The dispersionβ′′ is measured in

units of ps2/nm. The characteristic lengthLD equalsT 2
0 /|β′′0 |, whereT0 is a characteristic

time scale. When modeling soliton systems, it is customary to setT0 equal to the FWHM

soliton duration andβ′′0 equal to the path average dispersion, in which caseLD is the

dispersive scale length[8]. The normalized field gain coefficientg(z) is

g(z) =

{
gm(z), zm < z < zm +Lamp/LD ,

−γl elsewhere,
(2.3.4)

wheregm represents the gain coefficient inside them-th amplifier normalized byLD,

which I assume to begin atz = zm and to be of lengthLamp, andγl is the normalized fiber

loss coefficient. Since the typical length of an EDFA is only a few meters, the dispersion

and nonlinearity in the EDFA can be neglected and hence amplification and ASE noise

input can be considered as lumped. For later use, I define thenonlinear scale length[8]

Lnl =
1

γPpeak
, (2.3.5)
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which is the distance over which the nonlinear phase rotation is approximately2π.

Summarizing the meaning of the terms that appear in (2.3.3), the second term on the

left-hand side describes chromatic dispersion, the third term describes the Kerr nonlinear-

ity, and the first term on the right-hand side describes fiber attenuation and gain within the

amplifiers. The last term is aLangevinnoise term and the quantitŷF represents the ASE

white noise contribution with zero mean

〈F̂ (z, t)〉= 0, (2.3.6)

and the autocorrelation

〈
F̂ (z, t) F̂ ∗(z′, t′)

〉
= 2η δ(z− z′)δ(t− t′), (2.3.7)

where

η = nspgmh̄ω0LDγ/T0. (2.3.8)

In the test systems that I consider in this dissertation,nsp = 1.4–2.0 inside the fiber am-

plifiers andnsp = 0 in the transmission fiber. The angular brackets〈·〉 denote the noise

ensemble average, and the asterisk denotes complex conjugation. Equation (2.3.3) can

be extended to include effects such as higher-order dispersion, saturated absorption, and

Raman and Brillouin scattering [27]. However, saturable absorbers are not used in the test

systems that I study, while Raman and Brillouin scattering effects are small and can be

neglected. Mu,et al. [28], [29] showed that third-order dispersion does not have a strong

impact on the pulse propagation in the DMS system and the CRZ system that I simulate

in this dissertation. I solve (2.3.3) using a standard split-step approach [8].

2.4 From Solitons to Quasilinear Systems

When damping, noise, and thez-variation of the dispersion relation can all be neglected,

the nonlinear Schrödinger equation (2.3.3) is integrable, and it possesses a set of closed-

form solutions calledsolitons [30]. Solitons were originally defined as solitary waves

that do not change shape in a collision, while their phases and temporal positions un-

dergo an offset. We note that solitary waves are wave packets that propagate without

changing shape except possibly in collisions with other entities. So, the original defini-

tion of solitons was highly restrictive. Over time, this definition has evolved in the optical
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communications community so that now virtually any return-to-zero pulse is called a soli-

ton [29], [31]. In this section, we will use the original, restrictive definition.

The solution for a single soliton of peak powerPpeakand durationT0 in a lossless fiber

with a constant anomalous dispersion (β′′ < 0) of

β′′ =−PpeakγA−2 (2.4.1)

is [20]

us(A,τ,Φ,Ω; t,z) = Asech
{
A [t− τ(z)]

}
exp

{
i [Φ(z)−Ωt]

}
, (2.4.2)

with the four parameters
A: soliton amplitude and inverse duration,

Ω: central (angular) frequency offset relative toω0,

Φ : soliton phase,

τ : soliton center in time.

The quantitiesA and Ω are arbitrary constants, whileτ and Φ depend onz and

satisfy the relations

τ(z) = τ0−Ωz, (2.4.3a)

Φ(z) = Φ0 + 1
2(A2−Ω2)z, (2.4.3b)

whereτ0 = τ(0) andΦ0 = Φ(0). The soliton energy is proportional to

Es =
∫ ∞

−∞
|us|2dt = 2A. (2.4.4)

Higher-order solutions called “breathers” exist whose shape oscillates in time.

Because the first-order soliton (2.4.2) is localized in time and space, it is analogous to

a particle that is described by the four parameters(A,τ,Φ,Ω). The mechanism that keeps

the soliton stable is the balance between dispersion and nonlinearity: The dispersion tends

to spread the pulse in time, while the nonlinearity tends to compress it due to self-phase

modulation (SPM). These two forces neutralize each other if the pulse shape is given by

(2.4.2), and the shape remains constant while propagating in a lossless waveguide. As

noted earlier, solitons pass through each other without changing their shape. They merely

shift their central times and phases.

Mollenaueret al. [32] demonstrated in 1980 that it is possible to transmit solitons

in optical fibers over large distances. The loss in optical fibers can be compensated by
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optical amplifiers such as EDFAs or Raman fiber amplifiers. However, as mentioned in

Section 2.2, amplifiers also add noise to the signal and distort the pulse shapes. Both the

soliton shape and its four parameters are affected by noise, and I will outline a soliton

perturbation theory in the next chapter that describes these distortions in the case of small

noise. Of the four soliton parameters, the change in the central timeτ is the most severe

at the receiver and leads totiming jitter, giving rise to bit errors. After passing through

an EDFA, the central time of a soliton will have shifted slightly. Moreover, the central

frequencyΩ will have changed by a small amount. The latter effect, by means of (2.4.3a),

in turn induces a shift in the central time in the subsequent propagation. This effect was

described by Gordon and Haus in 1986 [17], [19]. The Gordon-Haus timing jitter is a

severe impairment in soliton systems. I note that a analogous discussion applies tophase

jitter, which is enhanced by fluctuations in the soliton energyA. While phase jitter is

irrelevant in direct-detection receivers that I consider in this thesis, it is relevant in the

context of the covariance matrix method, and I will elaborate on this issue later.

Since ASE noise is additive rather than multiplicative, one can in principle try to in-

crease the soliton energy, but (2.4.2) shows that an increase inA also leads to shorter

pulses. These pulses are harder to make, are more susceptible to modulation effects

like the Raman self-frequency shift, and require more bandwidth per wavelength channel.

Fortunately, a technique called dispersion management, in which the fiber with constant

anomalous dispersion is replaced by fiber spans that alternate between normal (β′′ > 0)
and anomalous (β′′ < 0) dispersion, can effectively reduce the nonlinearity of the soliton

and thereby reduce the impact of noise. This method permits one to increase the soliton

peak power by an amount known as theenergy enhancement factor[33], [34]. In this case,

the pulse shape deviates from the soliton shape (2.4.2) and is closer to a Gaussian shape.

Moreover, the pulse shape is not constant, but it varies periodically with the period of the

dispersion map (periodically stationary) or even with the period of the entire propagation

distance. An additional advantage of dispersion management is that in a multi-channel

or wavelength-division multiplexed (WDM) system, pulses in neighboring channels pass

through each other rapidly, although repeatedly, which reduces and average the impair-

ment due to nonlinear channel crosstalk.

Using dispersion management, it is possible to reduce the path average dispersion. If

one reduces the peak power at the same time, one can approach the linear transmission

regime, where the fiber acts as a linear waveguide. In the limit where nonlinearity is negli-

gible, the accumulated dispersion at the receiver is zero, and noise is absent, one finds that
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any pulse shape is preserved. Traditionally, the non-return to zero (NRZ) modulation for-

mat has been popular in the communications community because the pulses are relatively

easy to generate, and because it is spectrally efficient, which means that at a given data rate

it occupies less bandwidth that other easily produced modulation formats [31], [35]. How-

ever, in 1996, Berganoet al. [36] showed that the transmission quality can be improved

by subjecting the NRZ signal to a bit-synchronous phase modulation orchirp. Applying

chirp reduces the spectral efficiency, but it was found that the error-free transmission dis-

tance could be increased in some cases. Another consequence is that the optical power

at the receiver appears in the form of separated return-to-zero (RZ) pulses. This develop-

ment led to the implementation of chirped RZ (CRZ) modulation, one of the modulation

formats that I will study in the simulations in this dissertation.

All commercial and almost all academic optical transmission systems to date employ

pulse formats that fall somewhere in the middle between the classical soliton and the

linear regime. In fact, it is possible to go continuously from one limiting case to the

other, and it is hard to distinguish wavelength-division-multiplexed (WDM) dispersion-

managed soliton (DMS) systems, where the pulse shapes do not repeat periodically, from

CRZ systems [31]. Both operate at per-channel peak powers of a few mW and are called

“quasilinear.” Periodically stationary DMS systems [37] form a class by themselves as

they operate at higher peak powers of a few mW and above and are significantly nonlinear

in the sense that the solitons would spread dispersively in the absence of fiber nonlinearity.

As I will show in subsequent chapters, this significant nonlinearity is a challenge and

stringent test for the covariance matrix method that is described in this dissertation.



Chapter 3

Transmission Linearization

3.1 Introduction

The covariance matrix method that I describe in this dissertation can be divided into two

steps:

1. the computation of the covariance matrix that describes the accumulation of ASE

noise from the optical amplifiers and its evolution due to optical fiber nonlinearity,

and

2. the computation of the pdf of the electrical current in the receiver after a photodiode

and an electrical filter.

As I will show in the next chapters, the first step, in which we treat transmission through

an optical fiber with a series of erbium-doped fiber amplifiers along the path, is amenable

to a linearization approach that assumes that the nonlinear interaction of the optical noise

with itself in the fiber is negligible once phase jitter and, in some cases, timing jitter are

separated. By contrast, the noise interaction with itself in the receiver cannot be ignored.

The aim of this chapter is to describe some of the previous work that was done on trans-

mission linearization and to outline the limitations of the linearization approach.

As I noted in the Introduction, most of the previous work on optical transmission lin-

earization falls into one of three categories: One is soliton perturbation theory, described

in Section 3.2, and the second may be calledcw linearization, described in Section 3.3.

The two categories differ in the zero-order signal about which the noise fluctuates; in

the first case it is the standard soliton, and in the latter it is cw (continuous wave) ra-

diation, which is unmodulated light. In both cases, the simple form of the zeroth-order
14
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signal makes it possible to use analytical approaches, which cannot be used with the mod-

ulation formats that are currently employed in communications systems. Nevertheless,

both cases yield important insights. The third category was recently pioneered by Grigo-

ryanet al. [23], who have shown that important scalar noise moments such as amplitude

and timing jitter can be derived by linearizing around an arbitrary signal, and I briefly re-

view the results in Section 3.4. Finally, I discuss the limits of linearization in Section 3.5.

The starting point of the linearization approach is the nonlinear Schrödinger equation

(2.3.3). One can decompose the noisy optical signalu = u0 + δu as a sum of a noise-

free signal,u0 = 〈u〉, and accumulated transmitted noise,δu. The accumulated noise

is the sum of all the individual contributions and experiences nonlinear interaction with

the signal, as well as dispersion, attenuation, and amplification. The angular brackets〈·〉
denote the noise ensemble average. The difference of (2.3.3) and the statistical average of

(2.3.3) then yields the evolution equation forδu

i
∂ δu

∂z
+

D

2
∂2δu

∂t2 +2|u0|2δu+u2
0(δu)∗ = ig δu+ F̂ , (3.1.1)

where the terms that are quadratic and third order inδu, describing the optical noise-noise

interactions, are omitted. The third and fourth terms on the left-hand side stem from the

nonlinear term|u|2u in (2.3.3) and describe the interactions of the noise-free signalu0

with the noiseδu. The term2|u0|2δu leads to a phase rotation that can be regarded as a

cross-phase modulation (XPM) betweenu0 andδu. The termu2
0(δu)∗ describes an energy

exchange betweenu0 andδu. Since|u2
0| À |δu|2, energy mainly flows from the signal to

the noise and leads toparametric growthof the noise, an effect that I will describe in

Chapters 5 and 6. Parametric gain can be viewed as a four-wave mixing (FWM) in which

the annihilation of two signal photons atω1 create two noise photons atω3 andω4, so

thatω4 = 2ω1−ω3 [8]. The energy conversion process is most efficient if the frequency

mismatch|ω1−ω3|= |ω1−ω4| is small. We note that the linearized NLS (3.1.1) depends

on bothδu as well as on its complex conjugate(δu)∗. As a consequence, (3.1.1) is not self-

adjoint, which substantially complicates the solution, as I will show in the next section.

By contrast, the original nonlinear equation (2.3.3) is self-adjoint.

3.2 Soliton Perturbation Theory

Soliton perturbation theory describes the stability of a soliton in the presence of small

perturbations and was derived and frequently used between the 1970s and the 1990s. The
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mathematical theory is beautiful, but somewhat complex, and even a summary of the re-

sults tends to be lengthy. However, soliton perturbation theory is the key to understanding

the jitter in optical systems, such as Gordon-Haus timing jitter [17], [19], and is a prereq-

uisite to subsequent chapters.

I quote results from the papers by Georges [20] and Kaup [18], but mainly follow

Iannone [38]. The perturbed NLS is

∂ u

∂z
=

i

2
∂2u

∂t2 + i|u|2u+P, (3.2.1)

whereP is a small perturbation. The exact solution of the unperturbed NLS (P = 0) is

known. I now setu = u0 + δuexp(iA2z/2), whereu0 = us = us(A,τ,Φ,Ω; t,z) is the

soliton solution (2.4.2). The first-order perturbation expansion is then

∂ δu

∂z
= L[δu]+P, (3.2.2)

whereL is a linear operator given by

L[δu] = i

(
1
2

∂2

∂t2 +2|u0|2− 1
2
A2

)
δu+ iu2

0(δu)∗. (3.2.3)

Any perturbationP can now be expanded in the spectrum ofL, that is, decomposed into

a sum of multiples of the eigenfunctions ofL. The expansion coefficients then yield the

perturbations of the soliton parameters{A,τ,Φ,Ω} to first order. First, I define the scalar

product

(g,h) = Re
∫ ∞

−∞
g(t)h∗(t)dt = Re

∫ ∞

−∞
h(t)g∗(t)dt, (3.2.4)

and the adjoint operatorL

(L[g],f) = (g,L[f ]), (3.2.5)

note thatL[if ] = −iL[f ]. Similar to the spectrum of the stationary eigensystem of a

hydrogen atom [24], the spectrum ofL consists of discrete (bound) modes and a con-

tinuous part. The discrete part has four modes, one each for the four soliton parameters

A, Φ, Ω, andτ , in contrast to the hydrogen operator that has a countably infinite number

of bound states. However, there are two complications: First,L is not a unitary operator

so thatLL 6= I, whereI is the identity operator, implying that the eigenvectors ofL do

not form a single orthonormal basis, but rather there are “left” and “right” eigenvectors.
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Second,L has a zero eigenvalue. I denote the four discrete generalized eigenfunctions of

L by fA, fΦ, fΩ, andfτ , and analogously the generalized discrete eigenfunctions ofL by

f̄A, f̄Φ, f̄Ω, andf̄τ . These functions satisfy

L[fA] = −iAfA = AfΦ, (3.2.6a)

L[fΦ] = 0, (3.2.6b)

L[fΩ] = −iAfΩ = fτ , (3.2.6c)

L[fτ ] = 0. (3.2.6d)

The identitiesL[fΦ] = 0 andL[fτ ] = 0 are manifestations of the phase invariance and

translational invariance of the NLS respectively.1 the eigenfunctions satisfy the orthonor-

mality relations

(fi,f j) = δi,j , (3.2.7a)

(fi,fj) = (f i,f j) = 0, if i 6= j, (3.2.7b)

wherei, j = A, Φ, Ω, τ . The remaining products are(fA,fA) = (fΦ,fΦ) = (2/3A)(1+
π2/12), (fΦ,fΦ) = (fA,fA) = 2A, (fΩ,fΩ) = A2(f τ ,f τ ) = π2/(6A), and (fτ ,fτ ) =
A2(fΩ,fΩ) = 2A3/3. The explicit form of the eigenfunctions ofL is

fA = −ifΦ =
1
A
{1−A(t− τ) tanh[A(t− τ)]}us, (3.2.8a)

fΦ = ifA = ius, (3.2.8b)

fΩ = −iAf τ =−i(t− τ)us, (3.2.8c)

fτ = iAfΩ = A tanh[A(t− τ)]us, (3.2.8d)

and the generalized eigenfunctions ofL are

fA = −ifΦ = us, (3.2.9a)

fΦ = ifA =
i

A
{1−A(t− τ) tanh[A(t− τ)]}us, (3.2.9b)

fΩ = − i

A
fτ =−i tanh[A(t− τ)]us, (3.2.9c)

f τ =
i

A
fΩ =

t− τ

A
us. (3.2.9d)

Any accumulated noiseδu can be expanded as

δu = fAδA+fΦδΦ+(fΩ− τfΦ)δΩ+fτδτ + δuc, (3.2.10)

1If u(z, t) is a solution of (3.2.1), thenexp(iϕ)u(z, t) andu(z +z′, t+ t′) are solutions as well.
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whereδA, δΦ, δΩ,andδτ denote deviations in the four soliton parameters, andδuc is the

residual or continuous part of the noise that is orthogonal to thef i so that(f i, δuc) = 0.

The residual noise disperses out as the soliton propagates and does not interact with the

soliton to first order. With the help of the projections of the perturbationP on thef i, one

can derive the following differential equations for the four parameters

dA

dz
= (P,fA), (3.2.11a)

dΦ
dz

= (P,fΦ)+
A2−Ω2

2
+ τ

dΩ
dz

, (3.2.11b)

dΩ
dz

= (P,fΩ), (3.2.11c)

dτ

dz
= (P,f τ )−Ω. (3.2.11d)

Let us now assume that the perturbationP is due to ASE noise,P = F̂ and consider

the projection

F̂i ≡ (f i, F̂ ). (3.2.12)

Since the noise components satisfy (2.3.7)

〈
F̂ (z, t)

〉
= 0, (3.2.13a)

〈
F̂ (z, t) F̂ ∗(z′, t′)

〉
= 2η δ(z− z′)δ(t− t′), (3.2.13b)

whereη = nspgmh̄ω0LDγ/T0 as defined in (2.3.8), one can infer that

〈
F̂i

〉
= (f i,〈F̂ 〉) = 0, (3.2.14a)

〈
F̂i F̂j

〉
=

〈
(f i, F̂ )(f j , F̂ )

〉
= η(f i,f j). (3.2.14b)

Inspection of (3.2.7b) shows that the only non-zero correlations are the
〈
(F̂i)2

〉
, and hence

the perturbations in the four soliton parameters are uncorrelated if they are driven by white

noise. The four variances of the projections are

〈
(F̂A)2〉 = 2ηA, (3.2.15a)

〈
(F̂Ω)2〉 =

2ηA

3
, (3.2.15b)

〈
(F̂τ )2〉 =

π2η

6A3 , (3.2.15c)

〈
(F̂Φ)2〉 =

2η

3A

(
1+

π2

12

)
. (3.2.15d)
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With these expectation values, (3.2.11a)–(3.2.11d) can be solved to yield

〈
δA(z)2〉 =

〈
(F̂A)2〉z, (3.2.16a)

〈
δΩ(z)2〉 =

〈
(F̂Ω)2〉z, (3.2.16b)

〈
δΦ(z)2〉 =

〈
(F̂Φ)2〉z +

〈
(F̂A)2〉A2z3

3
, (3.2.16c)

〈
δτ(z)2〉 =

〈
(F̂τ )2〉z +

〈
(F̂Ω)2〉 z3

3
. (3.2.16d)

All four parameter variances contain a part that grows linearly over distance with a mag-

nitude that is determined by the projection of the noise on the adjoint eigenfunction. The

linear growth of the variances is the power law of a one-dimensional random walk [39].

However, phase jitter is also driven by amplitude jitter, and timing jitter is also driven by

frequency jitter. These indirect effects become stronger than the direct perturbations of

the phase and the central time asz becomes large. Equation (3.2.16d) states that the tim-

ing jitter of an unfiltered classical soliton,
〈
δτ(z)2

〉1/2
, grows proportionally toz3/2 for

largez, the well known result first derived by Gordon and Haus [17]. Besides the timing

jitter that is induced by frequency shiftsδΩ, there is a direct shift in the central time whose

standard deviation grows asz1/2. The ratio of the two contributions to the variance is [38]

〈
(F̂Ω)2

〉
z3

3
〈
(F̂τ )2

〉
z

=
4

3π
z2A4. (3.2.17)

If one requires that this ratio be larger than unity, one arrives at the conditionZÀ 2.72Lnl,

whereZ is transmission distance in meters andLnl = 1/(γPpeak) is a nonlinear scale

length of the soliton (2.3.5). With typical values ofγ = 2.1(W ·km)−1 andPpeak= 8 mW,

one obtainsZÀ 160km, which is small compared to the typical transmission distance in a

soliton system. This comparison shows that it is sensible to assume that timing jitter grows

like z3/2 in unfilteredoptical communications using solitons. This large timing jitter poses

a serious problem in soliton transmission systems. The phase jitter
〈
δΦ(z)2

〉1/2
grows in

an analogous way, except that the jitter is proportional toA, notA1/2 as in the case of the

timing jitter. These large growth rates are another manifestation of the phase and timing

invariances of the NLS. The distance at which the cubic and the linear contributions to

the phase jitter in (3.2.16c) equal each other isZ = 1.35Lnl ≈ 80km.

I now revisit equations (3.2.11a)–(3.2.11b) and try to interpret their meaning in the

context of noise. They state that the deviation of the four soliton parameter contains the

projection of the noise onto the eigenfunctions
〈
F̂i

〉
. All of the adjoint eigenfunctions
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f i are proportional tous(t,z) multiplied by a bounded or a linear function. They are all

localized in time since sech(t) decays rapidly toward infinity. According to Parseval’s

theorem, the projection or scalar product between two functionsg(t) and h(t) can be

written as

(g,h) =
∫ ∞

−∞
g(t)h∗(t)dt =

1
2π

∫ ∞

−∞
g̃(ω)h̃∗(ω)dω, (3.2.18)

where the asterisk denotes the complex conjugate and the tilde denotes the Fourier trans-

form. Applying (3.2.18) to (3.2.11a)–(3.2.11d) shows that only the frequency components

of the noise that overlap with the spectrum of the eigenmodes are relevant. This result is

well known and can be applied to all signalsu0(t,z). As a consequence, it is sufficient

to focus on the range of the noise spectrum where the signal spectrum is nonzero. Other

noise components do not interact with the signal in the fiber to first order. Solitons with

short duration, corresponding to large values ofA, have a wider spectrum and hence in-

corporate more noise. (I note that this rule does not hold at the receiver, which includes a

square law detector.)

This reasoning leads to the natural question of how many modes are relevant in soliton

perturbation theory. I note that the following discussion is approximate and qualitative.

Suppose one samples the functionus(t) so that it is represented byN samples in the

range±Ts/2, whereTs = ρTFWHM is a multiple of the full width soliton duration at half

the peak power. If one requires that a discrete Fourier transform yieldN samples that lie

in the range±Bs/2, with Bs = ρBFWHM with the FWHM soliton bandwidthBFWHM, one

obtains the relationN = TsBs = ρ2TFWHMBFWHM = 0.63ρ2. If one choosesTs andBs

so that the soliton power does not exceed 1% of its peak value outside the time interval of

−Ts/2 < t < Ts/2 and outside the frequency interval of−Bs/2 < f < Bs/2, one obtains

ρ ≈ 3.4 andN ≈ 7.3, where I take advantage of the fact that the Fourier transform of

the sech-function is again a sech-function. Thus, a small number of modes, only 7–8,

suffices to simulate a soliton in the presence of noise. The above Fourier decomposition

with a period ofTs corresponds to an infinite train of solitons and if this signal passes

an EDFA, it follows from (2.2.1) that the noise power1
2hνBs(G−1)nsp will be added to

each soliton. If, on the other hand, one neglects the soliton overlap in the tails and applies

soliton perturbation theory to the soliton att = 0, then the four soliton eigenmodesfA,

fΦ, fτ , andfΩ will each receive an average energy of1
2hνBs(G− 1)nsp as well. The

rest of the noise energy that overlaps with the central soliton in both the time and the

frequency domains has approximatelyN −4 times as much power as any of the discrete

modes receives. Hence, one can decompose the ASE noise into three parts: a first part
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that perturbs the soliton parameters, a second part consisting of the portion of the noise

continuum that overlaps with the soliton in both frequency and time, and a third part that

neither perturbs the soliton parameters nor overlaps with the soliton. The first two parts

receive about equal energy.

To summarize the results of soliton perturbation analysis, one finds that a perturbation

to the soliton, such as ASE noise, causes the four soliton parameters amplitude, frequency,

central time and phase to fluctuate. The rest of the noise produces a radiation continuum

and disperses. Noise can be expanded into the four eigenfunctions and the continuum,

and the parameter perturbations are given by the projections of the noise on the adjoint

eigenfunctionsf̄i. Although this dissertation does not deal with standard solitons, these

qualitative observations will be of importance in the remainder of this chapter and in the

next chapter.

3.3 CW Linearization

In addition to linearizing the NLS around a zeroth-order soliton solution, the NLS can

be linearized around a constant power solution. In this case, the theory is quite simple.

Starting with the lossless NLS,

i
∂u

∂z
− β′′

2
∂2u

∂t2 +γ |u|2u = 0, (3.3.1)

and linearizing around an unmodulated signal, or cw radiation of powerP0 [8], [40], we

write,

u(t,z) =
[√

P0 +a(t,z)
]

exp(iφNL) , (3.3.2)

wherea(t,z) is the time-dependent perturbation. Equation (3.3.2) solves (3.3.1) with the

nonlinear phase rotationφNL = P0z. Without going into the details of this calculation, I

will just state that one obtains a linearized NLS fora(t,z) similar to (3.1.1). Upon making

a plane-waveansatzof the form

a(t,z) = a0exp[i(kz−ωt)] , (3.3.3)

wherea0 is a complex number, one obtains the dispersion relation

k =±1
2|β′′|ω

√
ω2 +sgn(β′′)ω2

c , (3.3.4)
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whereωc = 4/(|β′′|LNL) with LNL = 1/(γP0). Equation (3.3.4) shows that the stability

of the perturbed system depends on the sign ofβ′′. If the dispersion is normal (β′′ > 0),

then the wave numberk will be real for allω, resulting in a noise radiation (3.3.3) that

is stable in the presence of small perturbations. However, if the dispersion is anomalous

(β′′ < 0), thenk becomes imaginary forω < ωc, and the perturbation grows exponentially

with z. This instability is called themodulational instabilityand implies that cw radiation

in an optical fiber with anomalous dispersion will eventually break up and form a periodic

pulse train, along with background radiation. The gain spectrum of the modulational

instability induced by a cw peak consists of two symmetric sidelobes with their maxima

offset byωmax =±(2γP0/|β′′|)1/2 and the valuegmax = 2γP0 [8].

The discussion above provides neither for amplification and attenuation, nor for vari-

able dispersion. Huiet al. [12], [13] removed this limitation by dividing the simulated

transmission path into pieces and applying the cw linearization separately. The result

for constant dispersion confirms the simple calculation in (3.3.1)–(3.3.4) by showing that

sidelobes are only produced in the presence of anomalous dispersion. The presence of

a strong signal leads to noise growth in the wavelength vicinity, and the additional gain

that the noise experiences is calledparametric gain[8]. The computational method starts

with the linearized NLS (3.1.1) and its complex conjugate. This system of equations is

then solved for each fiber span by multiplication with a transfer matrix, where the matrix

depends on the locally constant fiber parameters and signal power. In this work, the noise

is represented by a vector containing the values of the discrete noise spectrum. More-

over, Huiet al. [12], [13] considered dispersion-managed links and the optimization of

dispersion maps to reduce the total noise in a single-channel system.

Hui’s analysis was extended by Boscoet al. [21] and Carenaet al. [22] to WDM

systems, who also computed the pdfs of the receiver current and the BER. They split the

noise into its in-phase and quadrature components,ap(t,z) andaq(t,z)

u(t,z) =
[√

P0 +ap(t,z)+ iaq(t,z)
]

exp(iφNL) . (3.3.5)

Bosco and Carena implicitly assume thatap andaq are Gaussian distributed and consider

the autocorrelations〈apap〉 and〈aqaq〉 and the crosscorrelations〈apaq〉. They show that

the growth ratio ofap andaq depends on the fiber dispersion. In normal dispersive fiber,

the quadrature component grows much faster than the in-phase component [41]. The in-

phase noise component distorts the signal power, while the quadrature noise component

leads to phase noise that is irrelevant in systems with square-law detectors that are used

in the vast majority of all experimental and commercial systems. The reduction of the
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in-phase noise component at the expense of the quadrature noise component is called

noise squeezing[42] and can indeed improve the BER, but is very difficult to achieve in

long-haul WDM systems.

In conclusion, the cw linearization approach shows that the stability of noise growth

depends critically on the fiber dispersion. However, linearizing around cw radiation im-

plies that the signal-noise interactions in the presence of a modulated signal cannot be

calculated. Pilipetskiiet al. [14] report on a method in which they apply the noise statis-

tics computed in a cw linearization to the noise-free modulated signal, but this method

obviously does not properly take into account the nonlinear signal-noise interaction dur-

ing the transmission, and it is not well-validated.

3.4 Noise Moments

Considering a single pulse, the most important moments are the pulse energyU , the cen-

tral timetp, and the central frequencyΩp, defined as

U =
∫ Tbit

0
|u|2dt, (3.4.1a)

tp =
1
U

∫ Tbit

0
t|u|2dt, (3.4.1b)

Ωp =
1
U

∫ ∞

−∞
ω|ũ(ω)|2dω =

1
U

Im
∫ Tbit

0
u∗t udt, (3.4.1c)

whereTbit is the inverse of the data rate,ũ(ω) is the Fourier transform ofu = u(t),
andut = ∂u(t)/∂t. In the case of the soliton,u = us(A,α,Φ,ω; t,z), U = 2A, tp = τ ,

andΩp = Ω.

As I discussed in the last two chapters, one would like to linearize around a com-

putationally determined solutionu0 of the signal. Grigoryanet al. [23] generalized the

Gordon-Haus result in 1999 to arbitrary signal shapes and extended the analysis to differ-

ent kinds of jitter. They found that the deviation oftp andΩp with distance is given by

projections of the noise on the field

∂tp
∂z

= DΩp +
i

U

∫ Tbit

0
(t− tp)

(
uF̂ ∗−u∗F̂

)
dt, (3.4.2)

dΩp

dz
= −iΩp

U

∫ Tbit

0

(
uF̂ ∗−u∗F̂

)
dt− 1

U

∫ Tbit

0

(
utF̂

∗−u∗t F̂
)

dt, (3.4.3)
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whereD is the local dispersion. Linearizing the propagation equation around an arbitrary

field u, one can now numerically compute the evolution of the timing jitter

σp =
(〈

t2
p

〉−〈tp〉2
)1/2

(3.4.4)

and the frequency jitterσΩ =
〈
(δΩ)2

〉1/2
. Grigoryanet al. [23] successfully applied this

method to DMS, RZ, and NRZ systems.

3.5 Limits of Linearization

What lies beyond linearization? Is it possible and is it even necessary to derive results

for transmission systems in which noise-noise interactions are relevant? Mecozzi [43] has

taken an interesting approach by neglecting the dispersion terms in the NLS and, using

Itô’s formalism [44], derives exact expressions for arbitrary field averages of the form

〈u(t,z)n (u∗(t,z))m〉. I note that neglecting the dispersion is a very strong simplification,

and hence the resulting equation describes a system which is significantly different from a

realistic optical communications system. Mecozzi is able to define characteristic distances

that define two regimes of propagation, a linear regime where the noise is additive, and

a nonlinear one where significant signal-noise interactions occur. Moreover, he shows

that the signal spectrum broadens due to SPM and the signal-noise interactions add a

noise background to the signal spectrum. However, the results are strongly limited by the

constraint that the dispersion equals zero.

A traditional method for obtaining the full pdf of the optical noise at the receiver is

to run Monte Carlo simulations that pick random noise realizations and hence sample the

noise ensemble. From this noise distribution, one can then calculate the distribution of the

receiver current. This method is robust and works in principle in all settings, including sit-

uations with strong amplifier gain saturation, frequency-dependent dispersion, and strong

nonlinearity. This method can handle arbitrarily strong pulse distortion, including com-

plete pulse breakdown. In addition, it is easy to program. If a system is to be investigated

in a significantly nonlinear regime, then Monte Carlo simulations might be one of the few

possible options. However, I will show in the following chapters that the linearization

assumption is valid in a soliton system, whose error-free (BER <10−9) transmission dis-

tance is hundreds of times larger than the nonlinear scale length, once phase and timing

jitter are properly treated. Consequently, I claim that linearization is capable of describ-

ing the noise evolution in a wide range of transmission systems—probably any practical
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system.



Chapter 4

Statistics of the Noise Evolution

4.1 Theoretical Foundation

In this chapter, I describe a covariance matrix method that yields a complete and accurate

statistical description of the optical noise at the end of the transmission line. In Sec-

tion 4.6, I develop exact equations to compute the pdf of the received current from this

information. The only limitation of the procedure is that the noise-noise interactionsin the

fiber are neglected in an appropriate basis set in which phase and in some cases timing jit-

ter are separated. The receiver contains a square law detector and hence it is substantially

nonlinear. Hence, we retain noise-noise terms in the receiver.

The utility of the linearization assumption stems from two key mathematical results.

The first is the Karhunen-Loève theorem [45], which states that a combination of signal

and noise over any finite time can be expanded in an orthonormal basis whose coeffi-

cients are independent random variables. When the noise is white, any orthonormal basis

will satisfy the Karhunen-Loève theorem. In optical fiber communications systems, the

ASE noise is effectively white when it is contributed by the amplifiers, but it only re-

mains white for short distances over which the nonlinear interactions between the signal

and the noise can be neglected. Over longer distances, the noise becomes correlated, and

the Karhunen-Loève basis becomes unique and distance-dependent. The second mathe-

matical result is Doob’s theorem [46], which states that when the system is linearizable

and driven by Gaussian-distributed noise, each of these independent random variables is

Gaussian. Thus, it suffices in principle to determine the Karhunen-Loève modes, as well

as the mean and variance of its coefficients, to calculate the effective noise pdf! I em-

phasize that this powerful result allows the signal to interact nonlinearly with itself and

with the noise; it only requires that the noise not interact with itself. In practice, one must
26
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use an approximate static basis from which to compute the Karhunen-Loève modes. The

choice of this basis set is important. The linearization assumption may hold in one basis

set and not in another. As we will see, it is necessary to use a basis set in which the phase

jitter, and in some systems also the timing jitter, are explicitly separated. Otherwise, the

linearization assumption only holds for short distances.

The study of the dispersion-managed soliton (DMS) system that I introduce in the

next chapter and in [47] shows that it is possible to use the linearization assumption to

calculate the effects of accumulated noise. However, this assumption breaks down after a

short propagation distance, unless the phase and timing jitter are handled separately from

the other noise components, as I show in Section 4.3. This separation is necessary be-

cause the nonlinear equation that governs the fiber transmission (2.3.3) implies that small

amounts of amplitude and frequency noise can lead to large amounts of phase and timing

jitter respectively, which invalidates the linearization assumption. I have discussed the

relationship between the parameter perturbations in Section 3.2 for a standard soliton, but

the qualitative behavior remains the same for arbitrary pulse shapes. As stated previously,

the nonlinear propagation equation is also phase and time invariant, which implies that

phase and timing jitter can be separated from the standard Fourier basis without affecting

the subsequent evolution. We will find that it is necessary to separate the phase and timing

jitter separately for each pulse, in which case the phase invariance no longer strictly holds.

However, it holds sufficiently well for the linearization to remain valid over the distances

of interest. Once phase and in some cases timing jitter are separated, the coefficients of

the modified Fourier basis, along with the phase and timing jitter, remain multivariate-

Gaussian distributed far longer than the original Fourier coefficients [47]. I note that the

phase is only Gaussian distributed if one tracks the phase change on the infinite line. If one

only tracks it in the range[0,2π], then it is Jacobi-Θ function distributed. This function is

the periodic analogue of a Gaussian distribution. Therefore, soliton perturbation theory is

a special case where the expansion of optical noise into discrete modes and a continuum

is appropriate, rather than an expansion in the usual Fourier basis [18]–[20], as shown in

Section 3.2. I validate this assumption using extensive Monte Carlo simulations.

I note again that the approach assumes that noise-noise interactions in an appropriate

basis set are negligible during the transmission, but I take them into account in the receiver,

which I also assume has a realistic, narrow-band electrical Bessel filter. Thus, the work

presented in this dissertation is a generalization of [48], in that the noise that enters the

receiver is not white, but is determined by the actual transmission, and I apply realistic



28

electrical filtering.

The optical noise in a wide range of optical transmission systems is multivariate-

Gaussian distributed with zero mean, after the phase and timing jitter are separated. This

pdf only depends on the covariance matrix of the noise. I present two ways to compute

the covariance matrix:

1. First, it is possible to run Monte Carlo simulations and average the results to approx-

imate the covariance matrix. In essence, one fits a multivariate-Gaussian distribu-

tion to the optical noise immediately prior to the receiver using a Monte Carlo simu-

lation, after separating the phase and timing jitter. This procedure is self-validating

and relatively simple to program, but requires on the order of 2000 noise realiza-

tions, as I will show in Chapter 5. However, this approach makes better use of

the simulation data and yields more accurate results than traditional Monte Carlo

simulations with the same number of noise realizations.

2. In Section 4.4, I derive an ordinary differential equation (ODE) that allows me

to propagate the covariance matrix deterministically from amplifier to amplifier,

a much more computationally efficient method than running Monte Carlo simu-

lations. I refer to this approach as the covariance matrix method, and I use it in

Chapter 6.

The entire discussion in this dissertation applies to one optical polarization only, which

is appropriate for the example transmission systems that I am using [28]. Moreover, this

choice somewhat simplifies the theoretical development. There is no reason to doubt that

the covariance matrix method can be extended to take polarization effects into account.

The remainder of this chapter is organized as follows: I derive the theory of the lin-

earization approach and define the covariance matrix in Section 4.2. The separation of

phase and timing jitter and the computation of the covariance matrix from Monte Carlo

simulations are described in Section 4.3. A deterministic computation based on the ODE

is described in Section 4.4. Section 4.5 is devoted to saturated amplifiers in the context of

noise linearization. In Section 4.6, I describe how the pdfs of the receiver current and the

accurate BERs are computed. Finally, in Section 4.7, I consider the computation of the

BER in systems with multiple bits.
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4.2 Noise Covariance Matrix

The starting point is the system of equations foru0 andδu as shown in the previous chapter

i
∂u0

∂z
+

D(z)
2

∂2u0

∂t2 + |u0|2u0 = ig(z)u0, (4.2.1a)

i
∂ δu

∂z
+

D(z)
2

∂2δu

∂t2 +2|u0|2δu+u2
0(δu)∗ = ig(z)δu+ F̂ , (4.2.1b)

where (4.2.1a) describes the evolution of the noise-free solutionu0 and (4.2.1b) describes

the accumulated noise ifδu¿ u0. The signalu0 must be known when solving (4.2.1b)

and in practice it is most convenient to solve both equations in parallel. Note that I neglect

any influence ofδu on u0. Considering all the terms in the Kerr nonlinearity of the NLS

with u = u0 + δu,

|u|2u = |u0|2u∗0 +2|u0|2δu+u2
0δu∗+u∗0 (δu)2 +2u0 |δu|2 + |δu|2δu, (4.2.2)

one finds the second and third terms on the right-hand side of (4.2.2) that appear in

(4.2.1b). The fourth and fifth terms on the right-hand side are linear inu0 and repre-

sent the next order beyond noise linearization. The term|δu|2δu is cubic inδu and can

be expected to contribute least. The termu∗0 (δu)2 describes the depletion ofu0 due to

the four-wave mixing with the noise, and the term2u0 |δu|2 describes a cross-phase mod-

ulation of the signal due to the noise. These two terms can in principle be included into

(4.2.1a), which is the statistical average of (2.3.3) foru = u0− δu, yielding

i
∂u0

∂z
+

D(z)
2

∂2u0

∂t2 + |u0|2u0 = ig(z)u0−2u0

〈
|δu|2

〉
−u∗0

〈
(δu)2〉 . (4.2.3)

The averages〈|δu|2〉 and
〈
(δu)2

〉
could be obtained by solving 4.2.1b, in which case

the equations (4.2.3) and (4.2.1b) would form a mutually dependent equation system.

However, if second-order terms become relevant, the linearization assumption is invalid

and optical noise will not be Gaussian distributed anymore. I neglect the influence ofδu

onu0 by solving the system (4.2.1a), (4.2.1b), and I show that the linearization assumption

holds in an appropriate basis set for highly nonlinear optical fiber transmission systems.
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One can expandu0(t) andδu(t) as Fourier series,1

u0(t) =
NFFT/2−1∑

n=−NFFT/2

An(z) exp(iωnt), (4.2.4a)

δu(t) =
NFFT/2−1∑

n=−NFFT/2

an(z) exp(iωnt), (4.2.4b)

whereT is the period,NFFT is the number of sample points in the Fourier transform, and

ωn ≡ 2πnT0/T . Typical values ofNFFT are powers of 2 such as 1024, 2048, and 4096.

The values ofT andNFFT are chosen so that the simulation result does not change when

either one is increased. After substituting (4.2.4a) and (4.2.4b) into (4.2.1b), one finds that

dak

dz
=

(
g− i

D

2
ω2

k

)
ak

+i

NFFT/2−1∑

n,l,m=−NFFT/2

[
2An A∗l am δn−l,k−m +An Al a

∗
m δn+l,k+m

]
− iΓk(z),(4.2.5)

where theΓk are the Fourier coefficients of the white noise inputF̂ , andδ is Kronecker’s

delta. Using (2.3.7), the correlation of theΓk is 〈Γk(z)Γ∗m(z′)〉= (2ηT0/T )δ(z−z′)δk,m,

whereη = nspgmh̄ω0LDγ/T0 is again zero outside of the amplifiers.

I now introduce a frequency cutoff and will only considerN = 2Tfmax frequencies

with |f |< fmax = (N/2)∆fFFT = N/(2T ) in the following. I choose the frequency range

[−fmax, fmax] so that the signal power outside of this range is smaller than 1% of its total

value. Hence, I neglect frequencies from the linearization at which the signal power is

small, as justified by the discussion in Section 3.2. Typical values ofN lie in the range

50–150. The large ratio ofNFFT/N & 10 demonstrates the advantage of working in the

frequency domain: The relevant modes are all concentrated at low frequencies, and high

frequency modes can be neglected. The covariance matrix can be expressed in any basis,

for example in the time domain, but then reducing the number of modes might not be as

simple.

I define the complex column vectorsα = (a−N/2, . . . ,aN/2−1)T and α∗ =
(a∗−N/2, . . . ,a

∗
N/2−1)

T , as well asΓ = (Γ−N/2, . . . ,ΓN/2−1)T , where the superscriptT

1Note that by choosing this sign convention in the exponential functions, the optical frequency that

corresponds toωn lies atωtotal = ω0−ωn, whereω0 is the carrier frequency.
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indicates the transpose operation. Then I can rewrite (4.2.5) in matrix form as

dα

dz
= Bα+Eα∗− iΓ, (4.2.6)

where the complex matricesB andE are defined as2

Bkm =
(
g− i

D

2
ω2

k

)
δkm +2i

∑

n,l

An A∗l δn−l,k−m, (4.2.7a)

Ekm = i
∑

n,l

An Al δn+l,k+m. (4.2.7b)

The matrixE is symmetric (Ekm = Emk), and, ifg is zero, the matrixB is anti-self-adjoint

(B∗km = −Bmk). The matrixB is circulant and thus corresponds to a convolution in the

time domain, whileE can be termed anti-circulant. (A matrixM is circulant if there is

a vectorx with Mkm = xk−m). The number of operations required to evaluateB andE

grows likeN3. Equation (4.2.5) depends on bothak anda∗k since the linearized noise

propagation is not self-adjoint [12], [13].

The probability space of the optical noise in the frequency domain is spanned

by the 2N real variablesak,R and ak,I . It is therefore convenient to split (4.2.5)

into its real and imaginary parts and consider the resulting system of equations. I

define the real partitioned vectora = (αR,αI) = (a−N/2,R,a−N/2+1,R . . . ,aN/2−1,R,

a−N/2,I ,a−N/2+1,I . . . ,aN/2−1,I)T of length 2N , consisting of the real and imaginary

parts ofα at theN lowest frequencies−N/2,−N/2+ 1, . . . N/2− 1. Similarly, I de-

finew = (ΓI ,−ΓR)T . I can express (4.2.6) as

da

dz
= R(z)a+w(z), (4.2.8a)

R =

[
BR +ER −BI +EI

BI +EI BR−ER

]
, (4.2.8b)

whereR is a real2N ×2N block matrix, and I have used the notationB = BR + iBI and

E = ER + iEI . One may formally write the solution to (4.2.8b) as [49]

a(z) = Ψ(z,z0)a(z0)+
∫ z

z0

Ψ(z,z′)w(z′)dz′, (4.2.9)

2In the rest of this dissertation, I will use a sans serif font to denote complexN ×N matrices likeB, a

script font for real2N ×2N matrices likeR, and a bold face font for real2N -vectors such asa. The only

exception will beα, which is a complexN -vector.
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whereΨ(z,ζ) is a propagator matrix that obeys the equation

d

dz
Ψ(z,ζ) =R(z)Ψ(z,ζ) , Ψ(ζ,ζ) = I ∀z,ζ , (4.2.10)

andI is the identity matrix. Equation (4.2.8b) describes the spatial evolution of the noise

Fourier modes. I now assume that thea(z) satisfy a multivariate-Gaussian distribution,

which is completely described by its first two moments. Making this assumption is equiv-

alent to assuming that the linearization assumption holds in a Fourier basis set. For the

system that I consider in this dissertation, this assumption only remains valid for short dis-

tances. However, it is a useful starting point for our subsequent discussion. From (2.3.6),

it follows that the mean ofa(z) is zero, while the second moments are given by the co-

variance matrixK(z). The pdfpa of a may be written as [50]

pa(a, z) = (2π)−N
√

detK−1(z) exp
[
−1

2 aTK−1(z)a
]
, (4.2.11)

where the real symmetric2N ×2N covariance matrixK is defined by,

K =
〈(

a−〈a〉)(aT −〈a〉T )〉

=

〈[
αR αT

R αR αT
I

αI αT
R αI αT

I

]〉
≡

[
RR RI

IR II

]
, (4.2.12)

where RR, RI, IR and II are four realN×N block matrices. In (4.2.12) all vector products

above are outer products. This definition ofK embodies the full covariance information in

4N2 real numbers of whichN(2N +1) are independent. The alternative complexN ×N

matrix
〈
aka

∗
l

〉
=

〈
αα†〉

kl
, where the† denotes the conjugate transpose, contains only

2N2 real numbers of whichN2 are independent, and thus
〈
aka

∗
l

〉
does not contain com-

plete information. From (4.2.8b) and (4.2.9), one now finds thatK evolves over distance

according to

d

dz
K =RK+KRT +

ηT0

T
I, (4.2.13)

whereη is defined after (2.3.7). Equation (4.2.13) is a Lyapunov equation [49] and is the

linear evolution equation for the covariance matrix. The right-hand side of (4.2.13) is sym-

metric since(RK)T =KTRT =KRT , so thatK remains symmetric as it evolves overz.

Initially, K is zero since the launched signal is assumed to be noise-free. The matrixR
is distance-dependent and includes amplification/attenuation as well as the nonlinear in-

teractions of the signal with the noise. The last term describes the white noise input and
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is only nonzero inside the optical amplifiers. Newly-added noise only contributes to the

diagonal elementsKkk. In addition to being symmetric,K is also positive definite, so that

its determinant is positive.

I note that the direct derivation of (4.2.13) from (4.2.8b) is only one possible way of

obtaining (4.2.13). One can show that the pdf in (4.2.11), where the covariance matrix

K(z) is described by (4.2.13), represents the exact solution of the Fokker-Planck equa-

tion [51] corresponding to the Langevin equation (4.2.8b). Yet another approach to derive

(4.2.13) uses Itô’s method [44]. All of these methods are, of course, equivalent.

4.3 Separation of Phase and Timing Jitter

Soliton perturbation theory is based on the fact that standard solitons remain constant as

a function of the propagation distance, except for a constant phase rotation. Moreover,

solitons are uniquely characterized by the four parametersA, τ, Φ, andΩ as defined in

(2.4.2). Kodama [52] proved that a realistic fiber system with gain, loss, and variable

dispersion does not generally support constant or strictly periodic pulse shapes; instead,

pulses decay over extremely long distances. One can nevertheless generalize some results

of soliton perturbation theory.

As shown by equations (3.2.8b) and (3.2.8d), the part of the noise that is responsible

for a phase perturbation of a soliton is to first order proportional tofΦ = iu0, while the

part of the noise that shifts its central time is proportional tofτ = A tanh[A(t− τ)]us =
(dus/dt)|Ω=0. Although these results were derived for a classical soliton, they also hold

for any other pulse shape: The expansionu0exp(iϕ) = u0[1+ iϕ + O(ϕ2)] shows that

the phase ofu0 is rotated byϕ when addingiϕu0. Analogously, consider∂u0(t)/∂t ≈
[u0(t+ τ)−u0(t)]/τ for small τ , implying u0(t)+ τu′0(t) = u0(t+ τ). It is possible to

integrate arbitrarily large perturbations: Consider the initial value problem

∂u

∂z
= iϕu+ q

∂u

∂t
, (4.3.1a)

u(t,z = 0) = u0(t), (4.3.1b)

which is exactly solved byu(t,z) = u0(t+ zq)exp(iϕz). Equation (4.3.1a) describes the

optical field in an idealized transmission line without nonlinearity, dispersion, or loss,
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driven by noise that produces phase and timing jitter. Moreover, the functions

fϕ(t) ≡ iu0(t), (4.3.2a)

fτ (t) ≡ ∂u0(t)
∂t

. (4.3.2b)

are solutions of the linearized NLS (4.2.1b), showing that both perturbations are stable to

first order when propagating with an arbitrary signalu0.

Based on these observations, I define thepulse energyU , the average phaseϕ, the

central timeτ , and thecentral frequencyΩ of a pulseu(t,z) that is confined to the bit slot

[t0, t0 +Tbit] as

U =
∫ t0+Tbit

t0

|u|2dt (4.3.3a)

τ =
1
U

∫ t0+Tbit

t0

t |u|2dt, (4.3.3b)

ϕ =
1
U

∫ t0+Tbit

t0

arg(u) |u|2dt, (4.3.3c)

Ω =
1
U

Im
∫ t0+Tbit

t0

u∗t udt, (4.3.3d)

respectively, wherearg(x) = arctan[Im(x)/Re(x)]. In the case of a soliton, the parameter

setU/2, τ , ϕ, Ω agrees with the soliton parameters setA, τ , Φ, Ω. Moreover, I argue that

the setU/2, τ , ϕ, Ω is the appropriate perturbation expansion parameter set for arbitrary

pulse shapes because perturbations inU/2, τ , ϕ, Ω are independent of each other to first

order at the point in the fiber where the perturbation occurs. The pulse energy can be

varied without influencing the other parameters by scalingu(t), the central time can be

shifted in isolation, and so forth.

In (3.2.16c) and (3.2.16d), I showed that phase and timing jitter grow proportionally

to z3/2. In order for the linearization assumption to remain valid over large propagation

distances, one must separate the phase and timing jitter from the covariance matrix, while

keeping track of their magnitude. If these contributions are not separated, they distort the

distribution functions so that the noisea is no longer Gaussian distributed. Physically,

(3.2.16c) and (3.2.16d) imply that small amounts of amplitude and frequency noise can

lead to large amounts of phase and timing jitter respectively, which can invalidate the lin-

earization. The nonlinear propagation equation is phase and time invariant, which implies

that phase and timing jitter can be removed from the accumulated noise surrounding a
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Figure 4.1: Distortion of the marginal noise distributions due to phase jitter. The vectors are
shown in the complex plane,Ak: noise-free vector,ak: accumulated noise vector at frequency
componentk.

pulse without affecting the pulse’s subsequent evolution. While this statement is strictly

valid only for isolated pulses, not for systems with multiple pulses and/or multiple chan-

nels, we have found it works well enough in practice for the linearization assumption to

hold, once phase and timing jitter are properly separated from the individual pulses.

Fig. 4.1 shows the distortion of the marginal distributions due to phase jitter. The

impact of timing jitter on a system is similar in concept but not as easy to depict. In the

left diagram, I show the vectors of one Fourier coefficientAk of the noise-free signalu0

in the complex plane and one of the Fourier coefficientsak of the accumulated noiseδu.

The contour of constant noise probability density aroundAk in the presence of weak

phase jitter is in general an ellipse and the projection of the pdf onto the axes yields the

marginal pdfs. If the accumulated noiseδu is multivariate-Gaussian distributed, then all

the marginals must be one-dimensional Gaussian pdfs [45]. However, if the phase jitter

becomes large and the linearization breaks down, the jitter tends to rotate the signal around

the origin. The contour of constant probability density spreads out along a circle around

the origin, and it is slightly skewed since noise realizations with large phase deviations are

usually caused by large amplitude deviations, resulting in a tilted, banana-shaped contour

as shown in the right diagram. The projections of this contour are not Gaussian. A similar

discussion applies to timing jitter.

In the dispersion-managed soliton system that I consider in the next chapter, the timing
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jitter grows only linearly with distance, rather than proportionally toz3/2, due to inline

filtering in the loop [23]. Nevertheless, timing jitter can become on the order of the pulse

duration once it reaches the receiver so that it is not a small perturbation anymore. Phase

jitter is mainly driven by amplitude jitter, as shown in (3.2.16c), so that it is not reduced

by the inline filter. I find that phase jitter has to be separated in the DMS system that I

introduce in the next chapter, as well as in the much less nonlinear CRZ system that I will

introduce in Section 6.2. Timing jitter only has to be separated in the DMS system.

In the following, I show how to separate large phase and timing jitter from the cal-

culation of the covariance matrix by using Monte Carlo simulations. I will deal with the

deterministic covariance matrix method and the incremental separation of small phase and

timing jitter in the next section.

In Monte Carlo simulations, one focuses on the received optical signalu(t) = u0(t)+
δu(t), whereu0 = 〈u〉 is the signal averaged over all noise realizations, andδu is one

particular realization of the accumulated noise at the receiver. The Fourier expansion ofu

is u(t) =
∑N/2−1

k=−N/2Bk exp(iωkt), whereBk = Ak +ak andωk = 2πkT0/T , conforming

to (4.2.4a) and (4.2.4b). The phase and timing offsetsϕ andτ cannot be considered small

anymore at the receiver, corresponding to the situation depicted in Fig. 4.1(b). In fact, the

jitter can become so strong that the marginal pdfs become Gaussians around zero and then

the averagesAk = 〈Bk〉 tend to zero!

The approach that my colleagues and I use is to apply the nonlinear transformation

from Bk to Bk

Bk ≡Bk exp[−i(ϕ+ωkτ)] = Ak + rk, (4.3.4)

whereAk ≡ 〈Bk〉 is the new signal average and〈rk〉 = 0 is a residual noise. For single

pulse transmission and for each noise realization, we determineϕ and τ by fitting the

linear functionα+βωk to the phase of theBk using the least-squares criterion

H = min
α,β

N/2−1∑

k=−N/2

|Bk|2
[
argBk− (α+βωk)

]2
, (4.3.5)

whereBk = Bk,R + iBk,I , and then settingϕ = α andτ = β. We have found that the

linear phase assumption of (4.3.5) in the DMS system is good as long as the receiver is

placed at the chirp-free maximum pulse compression point of the dispersion map. This

renormalization separates the large phase and timing fluctuations from the total signal

and hence the new average power|Ak|2 À |Ak|2 is larger than without the separation.
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Conversely, the average power of the residual noise〈∑k |rk|2〉 ¿ 〈∑k |ak|2〉 is reduced.

I show in Appendix A.1 that (4.3.5) and (4.3.3c) are consistent for arbitrary pulse shapes.

One can compute the pdfs ofϕ andτ by averaging over all Monte Carlo noise re-

alizations. Moreover, with the real partitioned2N -vectorr = (r−N/2,R, . . . , rN/2−1,R,

r−N/2,I , . . . , rN/2−1,I)T and, analogously,B = (B−N/2,R, . . .)T , one may define a re-

duced covariance matrixK(r)as

K(r) =
〈
BB

T
〉
−〈

B
〉〈

B
〉T

=
〈
rrT

〉
. (4.3.6)

I will use (4.3.6) in the next chapter. The quantityr obeys a multivariate-Gaussian distri-

bution, and one may replacea by r andK byK(r) in (4.2.11).

Fig. 4.2 shows simulation results of the dispersion-managed soliton (DMS) system that

I will treat in the next chapter. I transmit a single soliton with a peak power of 7.9 mW

and a FWHM duration of 9 ps. The dots show 750 Monte Carlo noise realizations of the

10 GHz Fourier modeB8 for nsp = 1.2 in the complex plane. Fig. 4.2(a)–(c) showB8

without jitter separation, while Fig. 4.2(d)–(f) showB8 after employing phase and timing

jitter separation. The solid curve is a probability density contour under the assumption

that the magnitude and the angles of the dots are independently Gaussian distributed. The

radius of the dash-dotted circle equals〈|B8|〉 ≈ |A8|, the average magnitude of the dots.

Next, I consider the set of the angles{arg(B8)}. The quantityr is the ratio of the standard

deviation of these angles over the standard deviation of the magnitude of the samples.

When r is large, the contour assumes a banana-like or even doughnut-like shape and

wraps around the unit circle. The upper row of figures shows thatr grows quickly with

the transmission distance, indicating strong phase jitter. However,r can be kept close to

unity if we separate the phase and timing jitter. I note also that ifnsp or the degree of fiber

nonlinearity is reduced, the value ofr converges toward unity.

Fig. 4.2(g)–(i) showUeiϕ for the same 750 noise realizations, using (4.3.3a) and

(4.3.3c). The quantityr here is the ratio of the standard deviation ofϕ to that of U .

Again, the solid sickle-shaped contours are drawn at a constant probability density. The

contours are visibly skewed, indicating a coupling betweenU andϕ that is analogous to

a similar coupling that occurs in soliton perturbation theory, expressed in (3.2.11b) and

(3.2.16c). This skew is not visible in the upper six subfigures, since theBk only represent

a small fraction of the signal energy, and hence their individual fluctuations overwhelm

the skew.

After the jitter separation, the coefficients of the Fourier basis remain multivariate-

Gaussian distributed far longer than the original Fourier coefficients. In principle, one
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Figure 4.2: (a) Simulation results in the DMS system introduced in the next chapter with ASE
noise. The dots show 750 Monte Carlo realizations of the 10 GHz noisy Fourier modeB8 for nsp=
1.2. (a)–(c):B8 without jitter separation, (d)–(f):B8 with jitter separation. (g)–(h):Ueiϕ for the
same 750 noise realizations, using (4.3.3a) and (4.3.3c).
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should take into account the off-diagonal matrix elements of the covariance matrix that

result from the interactions of the modified Fourier coefficientsBk and the phase and tim-

ing jitter. However, these elements can be ignored for reasons that I will explain later. If

one assumes that soliton perturbation theory can be approximately generalized to arbitrary

pulse shapes, then the noise in the Fourier basis after the phase and timing jitter separation

is a representation of the energy jitterδU and central frequency jitterδΩ, plus the noise

continuum. Energy and frequency jitter can be expected to grow much slower than phase

and timing jitter due to (3.2.16a)–(3.2.16d), and the simulations presented here show that

it is not necessary to separate them from the continuum.

4.4 Deterministic calculation of the covariance matrix

In this section, we obtain the covariance matrix by solving the linearized evolution equa-

tion directly, without the use of Monte Carlo simulations. The basic approach that I follow

is to propagate the covariance matrix from amplifier to amplifier, while projecting out and

separating the contribution to the phase and timing jitter, before the fluctuations have had

the opportunity to accumulate significantly.

The propagation of the accumulated noise is governed by (4.2.1b), which is a linear

equation and is homogeneous everywhere except at the amplifiers sinceF̂ = 0 in the fiber.

Its Fourier transform must be linear and homogeneous as well, and I can write it in terms

of a as in (4.2.8b),

da

dz
= R(z)a, (4.4.1)

where I set the ASE termw(z) to zero. I write the solution of (4.4.1) asa(z) = Ψ(z)a(0),
consistent with (4.2.9). The evolution of the noise covariance matrixK=

〈
aaT

〉
over one

fiber leg fromz = 0 to z = L, in which no noise is added, followed by an EDFA with the

power gainG, is given by

K(L) = GΨK(0)ΨT +η
T0

T
I, (4.4.2)

whereΨ is a propagator matrix,I is the identity matrix, andη is defined in (2.3.8). By

successive application of (4.4.2), one can propagate the covariance matrix from amplifier

to amplifier.

We choose a perturbative method to computeΨ. Letu0(t,0) andu0(t,L) be the noise-

free optical field at the beginning and end of the fiber span respectively. Then we perturb
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u0(t,0) in a single frequency modem by a small amountε and launch the perturbed signal

u(m)(t,0) = u0(t,0)+ εexp(iωmt). (4.4.3)

At z = L, we obtainu(m)(t,L) by solving the nonlinear transmission equation (4.2.1a)

and calculate the deviationδu(m)(t) = u(m)(t,L)−u0(t,L) and its Fourier space vector

a(m). The elements ofΨ are given by

Ψkm =
a

(m)
k

ε
. (4.4.4)

This perturbative approach corresponds to the Lyapunov method described by Ben-

netin et al. [53]. Note thatε must be a positive real number if1≤ k ≤ N and a purely

imaginary positive number ifN +1≤ k ≤ 2N , sinceΨ is defined in the2N -dimensional

space of partitioned vectors. The real and imaginary perturbations must be computed

separately since the operatorL defined in (3.2.3) is not linear whenδu is scaled by an

imaginary number:L[iδu] 6= iL[δu], due to the non-self-adjoint FWM termu2
0(δu)∗.

When carrying out Monte Carlo simulations as described in the previous section, the

phase and timing jitter are large by the time they reach the receiver. By contrast, when

propagatingK, one can separate the jitter incrementally, on a scale that is small com-

pared to the nonlinear scale length of the system. We do that at every amplifier. Fol-

lowing the discussion of the previous section, I consider the functionsfϕ(t) = iu0(t) and

fτ (t) = ∂u0(t)/∂t, defined in (4.3.2a) and (4.3.2b). Each pulse in the signal has a differ-

ent average phaseϕ (4.3.3c) and central timeτ (4.3.3b). In a system in which pulses do

not overlap, such as a soliton system,ϕ andτ evolve independently for each pulse and

must be removed separately from each other. To deal with non-overlapping pulses, we de-

compose the functionsfϕ(t), fτ (t), andδu(m)(t) into sums of mutually orthogonal pulse

functions,i.e.h(t) =
∑

l hl(t), wherehl(t) = h(t) for (l−1)Tbit ≤ t < lTbit, andhl(t) = 0

otherwise for an arbitrary functionh. I later discuss how to generalize this decomposition

to the case where pulses overlap during the transmission.

The next step is to orthogonalize the functional basis[fϕ,l(t), fτ,l(t), δu
(m)
l (t)] analo-

gously to [23]. The goal is to obtain a new set of basis vectors[fϕ,l(t), f̃τ,l(t), δ̃u
(m)
l (t)]

so that(fϕ,l, f̃τ,l) = (f̃τ,l, δ̃ul
(m)

) = (fϕ,l, δ̃u
(m)
l ) = 0 with the real scalar product (3.2.4).
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We apply the Gram-Schmidt orthogonalization procedure [54]

f̃τ,l = fτ,l−
(fτ,l,fϕ,l)
(fϕ,l,fϕ,l)

fϕ,l, (4.4.5a)

δ̃u
(m)
l = δu

(m)
l − (δu(m)

l , f̃τ,l)

(f̃τ,l, f̃τ,l)
f̃τ,l−

(δu(m)
l ,fϕ,l)

(fϕ,l,fϕ,l)
fϕ,l. (4.4.5b)

The Fourier decomposition vectorr(m) of the reduced noisẽδu
(m)

=
∑

l δ̃u
(m)
l then re-

placesa(m) in (4.4.4), and the covariance matrixK in (4.4.2) is reduced toK(r) analo-

gously to (4.3.6). Note that the functionsfϕ,l andfτ,l are not orthogonal for asymmetric

pulses; therefore, (4.4.5a) is not redundant in general. Even thoughfϕ,l(t) andδ̃u
(m)
l are

orthogonal, the quantitiesϕ andK(r) are not statistically independent becauseϕ depends

on the pulse power due to the nonlinear phase rotation. A noise realization in which the

noise increases the pulse power will tend to have both large|δ̃u(m)| and large|ϕ|, leading

to a correlation. However, these correlations, like the phase jitter itself, have no effect on

a receiver with a square law detector and can be neglected. There is a similar correlation

betweenτ and|δ̃u(m)|, and, in contrast to the phase jitter, the timing jitter cannot simply

be ignored. However, I will show in Section 6.1 that the correlations betweenτ and the

modified Fourier components has a negligible effect on the receiver current, so that these

correlations do not influence the pdf of the receiver current.

I briefly return to the problem of overlapping pulses. In most modern transmis-

sion systems, optical pulses overlap during the transmission even though they are well-

separated when they are launched and detected. In the CRZ system introduced in Chap-

ter 6.2, the maximum FWHM pulse duration is 210 ps, leading to a significant over-

lap of adjacent pulses. In this case, the phase jitter can still be removed separately for

each pulse after applying artificial dispersion compensation. One passes the functions

{fϕ,l(t), fτ,l(t), δu
(m)
l (t)} through an ideal linear and lossless fiber whose total disper-

sion is−D(L), whereD(L) is the total accumulated dispersion at the pointL in the

transmission system. This procedure separates the pulses, Since it is linear, it is fully

reversible [55]. Then, one applies the orthogonalization (4.4.5a) and (4.4.5b) to the sep-

arated pulses and sends the signal corresponding toδ̃u
(m)
l back to the pointL through

an ideal fiber with total dispersion+D(L). One might argue that the phases of the over-

lapped pulses will not evolve independently and hence might become correlated; however,

we find by comparison to Monte Carlo simulations that the procedure just described leads

to accurate BERs in the CRZ system, indicating that the coupling of the signal in one
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pulse to the phase jitter in an overlapping pulse is negligible.

I will summarize the algorithm for propagatingK in Appendix A.4. Propagating the

covariance matrix requires the propagation ofu0, plus the2N perturbed fields. The total

computational cost of this algorithm is thus roughly2N +1 times that of a single Monte

Carlo noise realization, plus the time required for the matrix multiplications in (4.4.2).

Since matrix multiplications scale with the cube of the dimensionN3, there is a practical

limit to the size ofN . I will demonstrate in Chapter 6.2 that the solution of a problem

with N = 140is computationally feasible on a Pentium P4 workstation.

I have also attempted a direct solution of (4.2.13) using the matrix ODE solver package

CVODE [56], but the solution was numerically inefficient. I find that the perturbation

method is numerically stable and its result is independent of the value ofε over several

orders of magnitude.

4.5 Gain Saturation

In the dispersion-managed soliton system, I must include gain saturation in order to obtain

good agreement with the experimentally-observed evolution [28]. The basic assumption

of the linearization approach is thatu0 = 〈u〉, namely that the average of the received sig-

nal including the noise equals the noise-free transmission. However, one must be careful

in the presence of saturable amplifiers, since the noise power that the amplifiers add to the

signal increases the total power ofu(t) = u0(t)+ δu(t), according to
〈
‖u‖2

〉
= ‖u0‖2 +

〈
‖δu‖2

〉
, (4.5.1)

where‖f‖2 = (1/T )
∫ T

0 |f(t)|2dt for any functionf(t). The term
〈
‖δu‖2

〉
is always

finite and positive. Saturable amplifiers tend to keep the power of signal plus noise‖u‖2

constant, hence when more noise is added to the signal, the noise-free signal power de-

creases. If one attempts to computeu0 by simply switching off the ASE noise input in

the simulation of the saturated EDFAs, the gains and hence the magnitude of the result-

ing field will be too large. Fortunately, EDFA saturation is a slow process that happens

on a time scale of 1 ms, corresponding to 10–40 million bit periods in modern systems.

Consequently, the amplifier gains adapt to the constant average power
〈
‖u‖2

〉
and can-

not follow variations in the noise. Hence, the effect of amplifier saturation is a mere gain

renormalization. Setting the amplifiers to match these reduced gains in a static gain model

(static gain corresponds to infinite saturation power), one can obtain the correct zero-order
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solutionu0. In practice, my colleagues and I run about 100 Monte Carlo simulations and

record the effective amplifier gains. We use these gains in the propagation of the noise-free

signalu0, while setting the saturation power to infinity.

4.6 Derivation of the Eye Diagram

In this section, I derive the pdf of the filtered output current of a square law detector. Sim-

ilar pdfs have already been derived by Marcuse [48], Leeet al. [57], Boscoet al. [21], and

Forestieri [58]. One can use this pdf to compute an electrical eye diagram that displays a

continuous probability density rather than, as is traditional in simulations, overlaying a fi-

nite number of traces of marks and spaces with different noise realizations. The following

derivation is valid for both the Monte Carlo method of Section 4.3 and the ODE method

of Section 4.4. The inputs are the pdf of the timing jitterpτ , the Fourier modes̄Ak of

the renormalized noise-free signal, and the reduced covariance matrixK(r). Below, I will

drop the superscript and just writeK for convenience.

The photodetector in the receiver converts the optical input signal plus noise to an

electrical currentI(t). One may assume that the photodetector is an ideal square law

detector withI = κ|u|2, whereκ is the receiver responsivity. I apply the transformation

(4.3.4) and hence start by describingI(t) in the absence of timing jitter. The electrical

current is

I(t) = κ |u0(t)+ δu(t)|2

= κ

N/2−1∑

k=−N/2

N/2−1∑

l=−N/2

(
Ak + rk

)∗ (
Al + rl

)
exp[it(ωl−ωk)]

= κ

N−1∑

n=−N+1

exp(itωn)
k2(n)∑

k=k!(n)

(
Ak + rk

)∗ (
An+k + rn+k

)
, (4.6.1)

where the rk, rl are the residual noise coefficients,n = l − k, k1(n) =
max(−N/2,−N/2−n), andk2(n) = min(N/2−1, N/2−1−n). The currentI(t) then

passes through a low-pass electrical filter. The last line in (4.6.1) represents the Fourier

decomposition ofI(t) in the electrical domain, whose2N −1 coefficients are given by

the sum overk. Optical and electrical filtering can be introduced by multiplying the re-

spective Fourier components by filter functionsHopt andHel, respectively. The combined
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filtering operation yields the filtered voltagey(t)

y(t) = κ

N/2−1∑

k=−N/2

N/2−1∑

l=−N/2

H
opt,∗
k

(
Ak + rk

)∗
H

opt
l

(
Al + rl

)
Hel

l−k exp[it(ωl−ωk)]

= κ

N−1∑

n=−N+1

Hel
n exp(itωn)

k2(n)∑

k=k1(n)

H
opt,∗
k

(
Ak + rk

)∗
H

opt
n+k

(
An+k + rn+k

)
.(4.6.2)

The frequency term and all three filter terms can be combined into a complexN ×N

matrix

Wkl(t) = κH
opt,∗
k H

opt
l Hel

l−k exp
(
itωl−k

)
. (4.6.3)

One can write the filtered currenty(t) more compactly as

y(t) =
N/2−1∑

k,l=−N/2

(Ak + rk)∗Wkl(t)(Al + rl). (4.6.4)

Sincey is a real quantity,W must be self-adjoint. I introduce the real partitioned vector

A = (A−N/2,R, . . . ,AN/2−1,R, A−N/2,I , . . . ,AN/2−1,I)T to rewritey(t) as

y(t) =
(
A+r

)TW(t)
(
A+r

)
, (4.6.5a)

W =

[
WR −WI

WI WR

]
=WT . (4.6.5b)

The minus sign in the matrix in (4.6.5b) appears becauseWI is anti-symmetric. The right-

hand side of (4.6.5a) is a symmetric bilinear form, but, due to filtering, it is not necessarily

positive. The receiver currentynf(t) in the absence of noise at timet is

ynf(t)≡A
TW(t)A. (4.6.6)

In order to obtain an eye diagram, I must derivepy(y, t), the pdf of the currenty

at time t. The derivation ofpy is a generalization of Marcuse’s [48] in that I consider

all noise correlations and allow for arbitrary optical and electrical filtering. By contrast,

Marcuse assumes optical white noise at the receiver and an integrate-and-dump circuit.

The procedure of computingpy starts with computing the Karhunen-Loève modes, the

basis in which (4.6.5a) can be decomposed into a sum of independent random variables.

In a second step, I calculate the pdfpy,τ=0(y, t), where the subscriptτ = 0 means the
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exclusion of the effect of the timing jitter, as the convolution of the individual pdfs of

these random variables. I solve the convolution by multiplying characteristic functions.

In a third step, I add the effect of the timing jitter by convolvingpy,τ=0 with the pdf of the

timing jitter pτ .

One must first find the functional basis that diagonalizes both the square law detection

followed by the filtering,W(t), and the inverse covariance matrixK−1. Since bothW(t)
andK−1 are symmetric matrices and in additionK−1 is positive definite, one can apply

the theorem of simultaneous diagonalization [59] which states that there is a real square

matrixC satisfying

K−1 = CTC, and (4.6.7a)

W = CT ΛC. (4.6.7b)

One procedure to obtainΛ(t) andC(t) is to solve the generalized eigenproblemWC−1 =
K−1C−1Λ. The solution can be performed on the computer, using a generalized eigen-

value routine such as the routineeig() in Matlab, or the procedure outlined in Ap-

pendix A.3. The matrixΛ(t) is diagonal, and I write it asΛ = diag(λ1, . . .λ2N ), where

theλk(t) are real [59]. Note that if the impulse response of the filter can become negative,

as in the case of a Bessel filter, some of theλk are negative. The transformationC yields

the Karhunen-Loève modes ofy, which are the noise-free signal modesQk(t)≡ Ckl(t)Āl

and the independent noise modesqk(t)≡ Ckl(t)rl. I simplify (4.6.5a) to

y(t) =
(
A+r

)TCT ΛC(A+r
)

=
(
Q+q

)T Λ
(
Q+q

)

=
2N∑

k=1

λk

(
Q2

k +2Qkqk + q2
k

)
=

2N∑

k=1

gk, (4.6.8)

where thegk(qk, t) ≡ λk

(
Q2

k + 2Qkqk + q2
k

)
represent a new set of independent random

variables.

The noise pdfpr (4.2.11), where I replaceda by r, can be factored into independent
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Gaussian pdfs, using (4.6.7a)

pr(r) = (2π)−N
√

det(K−1) exp
[
−1

2 rTCTCr
]

= (2π)−N
√

det(K−1) exp
[
−1

2

∑2N
k=1q2

k

]

=
√

det(K−1)
2N∏

k=1

fqk
(qk), (4.6.9)

where the marginal pdfspqk
(qk) ≡ exp(−q2

k/2)/
√

2π are Gaussians with zero mean and

unit variance. The factor
√

det(K−1) = detC does not appear in the definition of the

pqk
sincedetC dr = dqk. Equation (4.6.8) is a sum of2N random variables. The pdf

py,τ=0(y, t) therefore equals the(2N −1)-dimensional convolution [45]

py,τ=0(y, t) =
∫ ∞

−∞
pg1(y−g2−g3− . . .−g2N , t)

× pg2(g2, t)pg3(g3, t) . . .pg2N (g2N , t)dg2dg3 . . .dg2N , (4.6.10)

but this convolution can be transformed into simple multiplications using character-

istic functions, taking advantage of the convolution theorem [60]. The characteris-

tic function Φh(ζ) of a random variableh is defined as the expectationΦh(ζ) ≡
E[exp(iζh)] =

∫∞
−∞exp(iζh)ph dh [45]. With the help of the derived distribution iden-

tity pgk
dgk = pqk

dqk [45], one can write

Φgk
(ζ) =

∫ ∞

−∞
exp

[
iζgk(qk)

]
pqk

dqk

=
1√
2π

∫ ∞

−∞
exp

[
−q2

k

2
+ iζλk

(
Q2

k +2Qkqk + q2
k

)]
dqk

=
1√

1−2iλkζ
exp

(
iλkQ

2
kζ

1−2iλkζ

)
. (4.6.11)

Again, note that the integration variables are all real, and that the entire analysis so far

neglects the timing jitter. The characteristic functionΦy,τ=0(ζ, t) of pt,τ=0(y, t) equals

the product of theΦgk

Φy,τ=0 =
2N∏

k=1

Φgk

=

(
2N∏

k=1

1√
1−2iλkζ

)
exp

(
iζ

2N∑

k=1

λkQ
2
k

1−2iλkζ

)
. (4.6.12)
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Note the identityynf =
∑2N

k=1λk(t)Q2
k(t). Additive noise sources such as electrical noise

can in principle be accounted for by multiplyingΦy,τ=0 with the appropriate characteristic

functions [57]. FromΦy,τ=0 one obtainspy,τ=0 [45]

py,τ=0(y, t) =
1

2π

∫ ∞

−∞
Φy,τ=0(ζ, t) exp(−iyζ)dζ. (4.6.13)

Due to the complicated dependence ofΦy,τ=0(ζ, t) on ζ, it is not possible to evaluate

the Fourier transform in (4.6.13) analytically. However,py,τ=0(y, t) can be computed

numerically using a discrete Fourier transform.

If one sets allλk to the same positive valueλk = σ2, thenΦy,τ=0 equals the charac-

teristic function of a noncentral chi-square distribution [48, Eq. (20)], [50, Eq. (2-1-117)],

and its inverse Fourier transform, the corresponding pdf, is

pχ2(y) =
1

2σ2

(
y

ynf

)(n−2)/4

exp

(
−y +ynf

2σ2

)
In/2−1

(√
y ynf

σ2

)
, y ≥ 0, (4.6.14)

whereIl is the l-th order modified Bessel function of the first kind [61]. This function

depends on three parameters: the noncentrality parameterynf, σ2, and the degree of free-

domn = 2N . The pdfpχ2(y) is the pdf of the squared sumy of n independent Gaussian-

distributed random variables with the meansmk = σQk and identical variancesσ2 = λk.

In this sense, (4.6.12) is the characteristic function of a chi-square distribution generalized

to unequal and possibly negative “variances”λk. The reason that theλk also appear in the

meansmk = σQk =
√

λkQk is due to my choice of diagonalizingK−1 andW according

to (4.6.7a) and (4.6.7b). An alternative would be the diagonalizationK−1 = CT ΛC and

W = CTC, but this choice requires a matrixW that is positive definite, implying electrical

filters whose impulse response is positive.

I note that the mean ofpχ2(y) is 〈y〉= ynf +nσ2, where the termnσ2 is the expected

current from the noise-noise terms in the receiver, its variance isσ2
y = 4σ2ynf + 2nσ4,

where the terms are due to signal-noise and noise-noise beating in the receiver respec-

tively [50], and the third-order central moment
〈
(y−〈y〉)3

〉
equals24σ4ynf +8nσ6. The

limit of (4.6.14) forynf −→ 0 is the central chi-square pdf [50, Eq. (2-1-110)]

pχ2(y)
∣∣∣
ynf=0

=
1

σ22n/2Γ(n/2)
y(n/2−1) exp

(
− y

2σ2

)
. (4.6.15)

The relationship of the final pdfpy that includes timing jitter withpy,τ=0 is

py(y, t) =
∫ ∞

−∞
py,τ=0(y, t− τ ′)pτ (τ ′)dτ ′, (4.6.16)
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wherepτ is the pdf of the timing jitter. I will show examples ofpτ andpy(y, t) in the next

two chapters. Becausey is phase-independent, the phase variation does not contribute to

Φy,τ=0. Note that the integral in (4.6.16) is a convolution with respect toτ and could be

expressed in terms of characteristic functions; however,Φy,τ=0 is a characteristic function

with respect toy, and one cannot use it to simplify (4.6.16). Since the timing jitter is

Gaussian distributed, we use a numerical Gauss-Hermite integration [61] to solve (4.6.16)

as I will show in Appendix A.2. Although theλk are not identical in the simulations,

py(y) can sometimes be approximated by the chi-square pdfpχ2(y) with the parameters

σ2 = σ2
y/2(〈y〉+ynf) andn = 2(〈y〉2−y2

nf)/σ
2
y.

Equation (4.6.16) is only valid ifτ andr are uncorrelated. For example, if the average

pulse shape in a transmission system depends onτ , thenτ would be correlated with the

residual noiser, andτ would have to be incorporated into an extended covariance matrix

and undergo the diagonalization procedure in order to decouple it from the noise contin-

uum. I discuss this issue further in Section 6.1. We have found that these correlations can

be safely neglected in optical transmission systems.

4.7 Pattern Dependences

So far, the entire treatment of noise linearization in this dissertation has dealt with the

signal-noise interactions in the optical fiber. The previous sections show how an accurate

pdf can be computed for a given bit sequence. The functionpy(y, t) yields the probabil-

ity density of receiving the filtered currenty at time t in the presence of the noise-free

signalu0(t). However, there are other physical effects in optical fiber systems besides

ASE noise that lead to fluctuations in the currenty. One example is polarization mode

dispersion (PMD), which I do not discuss in this dissertation. A second example is phase

noise that is introduced by the transmitter. Another example is the interaction of neigh-

boring bits. In single-channel systems, neighboring pulses can overlap and interact non-

linearly [62], [63]. This interaction leads to a distortion of the pulse chirp, which in turn

causes the pulses to walk off, inducing timing jitter and amplitude jitter [64]. I will show

an example of signal distortion in a quasilinear CRZ system in Chapter 6. Signal-signal

interactions are deterministic and can easily be computed for a given signal using a numer-

ical simulation. The bit pattern ofu0(t) has an important influence on the signal-signal

interactions and I elaborate on this issue in the following. I restrict my discussion to

single-channel systems. In WDM systems, all channels interact, leading to more compli-
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cated interactions. However, these interactions are independent of ASE noise and can in

principle be treated separately.

The existence of pattern dependences affects the noise distributions. There is no longer

a single pdf for the marks and a single pdf for the spaces. Instead, there is a different con-

ditional pdf for each possible mark and each possible space in the system. The total pdfs

for the marks and the spaces are determined by summing the conditional probabilities. As

the number of channel in a WDM system grows, the number of possible patterns grows

explosively, making a calculation of the complete pdfs impractical. A complete resolution

of this problem is beyond the scope of this dissertation. However, work to date indicates

that it is sufficient to focus on some number of the worst patterns.

A computational eye diagram is traditionally produced by overlaying the signal traces

in all the bit slots in a given channel. I introduce theaverage pdfpy,eye(y, teye) for the

currenty in the eye diagram in the time range0≤ teye≤ Tbit. This pdf depends onu0(t)
and onpy(y, t) at all points in timetk = teye+kTbit that are overlaid in the eye diagram.

One then obtains

py,eye(y, teye) =
1
n

n∑

k=1

py(y, teye+kTbit), (4.7.1)

wheren = T/Tbit is the number of bits in the eye diagram. I will call thepy(y, teye+
kTbit) partial pdfs. Equation (4.7.1) can be refined by dividingpy,eye(y, teye) into two

pdfs py,eye(y, teye) =
[
py,eye,0(y, teye)+ py,eye,1(y, teye)

]
/2, one containing all the spaces

(0’s) and the other containing the marks (1’s). Each of the pdfspy,eye,0(y, teye) and

py,eye,1(y, teye) at teye≈ Tbit/2 near the center of the eye usually consist of very similar

partial pdfs. In other words,py(y, t) for a givenu0(t) mainly depends on the noise-free

currentynf at time t, defined in (4.6.6). To make this more concrete, I conjecture that

if a = ynf(t2)/ynf(t1) is the ratio of the noise-free currents at the timest1 and t2, the

approximation

py(y, t2)≈ apy(ay, t1) (4.7.2)

holds in the case ofa≈ 1. Note that
∫∞
−∞ py(y′, t2)dy′ =

∫∞
−∞apy(ay′, t1)dy′ = 1.

Pattern dependences are important in single-channel systems, just like in WDM sys-

tems. However, each bit only interacts with a limited number of neighboring bits, thus

limiting the number of relevant bit patterns. Hence, pattern dependences are simpler in

single-channel systems than in WDM systems, and it is reasonable to begin the study of

pattern dependences by focusing on single-channel systems.
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How many relevant bit patterns are there in a single-channel system? Each bit is

directly influenced by neighboring bits that overlap with it in time at any point during the

optical transmission. The neighbors are in turn influenced by their neighbors and so forth;

so, the interaction time is theoretically unlimited. However, the coupling between bits

decays rapidly with time and one can define a minimum influential bit pattern lengthd.

First, I define a minimum noise-free eye opening for patterns of lengthl,

∆ynf(l, t) = min
C1[l]

[ynf(t)]−max
C0[l]

[ynf(t)] , (4.7.3)

whereC1[l] is the set of all bit patterns of lengthl surrounded by infinitely many zero

bits whose central bit is a mark,e.g.C1[3] = {. . .00100. . . , . . .01100. . . , . . .00110. . . ,

. . .01110. . .}, and the timet lies within this central bit slot. The setsC0[l] are defined

analogously with a space in the central position instead of a mark. Note that∆ynf(l, t) can

become negative. I define∆ynf,max(t) = limn→∞∆ynf(l, t) for 0≤ t ≤ Tbit for a single-

channel system. A maximum relevant pattern lengthd can then be defined to be the

smallestl with

max
t

∣∣∆ynf,max(t)−∆ynf(l, t)
∣∣ < y0, (4.7.4)

wherey0 is a current that is small compared to the average current induced by noise.

Anderson and Lyle studied a system where only nearest-neighbor optical pulse-to-

pulse interactions occur and foundd = 3 [65]. In the CRZ system that I study in Sec-

tion 6.2,d≈ 5.

For anyd, there is a set of cyclic bit strings of lengthn = 2d that contain all2d bit

patterns of lengthd, calleddeBruijn sequences[66]. DeBruijn sequences are not unique

in general. The well-known pseudorandom bit sequences (PRBS) of length2d− 1 are

derived from the deBruijn sequences by removing one zero bit from the substring that

consists ofd consecutive zeros. For example, a deBruijn sequence ford = 3 is the cyclic

string 11101000 which contains all eight patterns 000, 001, 010, 100, 011, 110, 101, and

111, and a PRBS sequence of length23− 1 = 7 is 1110100. DeBruijn sequences are

important because they allow one to study a signal that contains all bit patterns of length

d while requiring the minimum bit string lengthn = 2d.

As noted earlier, it is useful ifpy,eye(y, teye) in (4.7.1) can be approximated by just

computing a few partial pdfs, since that would reduce the computational work. I call a
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partial pdfdominantif

py(yopt, teye+mTbit)À
n∑

k=1,k 6=m

py(yopt, teye+kTbit), (4.7.5)

where yopt, defined in the next chapter, is near the optimum decision level at which

py,eye(y, teye) assumes its minimum. If one of the partial pdfs becomes dominant, the

other partial pdfs can be neglected.



Chapter 5

Monte Carlo Simulations

5.1 Dispersion-Managed Soliton System Design

In this section, I describe Monte Carlo simulations that my colleagues and I carried out to

compute the covariance matrixK(r). We simulated a dispersion-managed soliton (DMS)

system with a transmission distance of 24,000 km. This system is very well characterized

both in simulation and in experiment [28], [67]–[69]. The system does not operate in the

quasilinear DMS regime [70], but at an optical peak power of about 8 mW, which makes

the transmission significantly nonlinear. The evolution of the pulse shape is approximately

periodic with the period given by the dispersion map. We verified that the phase jitter

obeys a Jacobi-Θ distribution, which is the periodic analogue of a Gaussian distribution,

and we also verified that the timing jitter is Gaussian distributed. Finally, we verified that

the real and imaginary parts of the residual noise Fourier coefficients, after the jitter is

separated, are Gaussian distributed.

The simulated transmission line is shown in Fig. 5.1 and consists of 225 periods of

a dispersion map of length 106.7 km [28]. Each map contains a fiber span of length

4×25 km long with a normal dispersion of−1.03 ps/nm-km and a span of length 6.7 km

with an anomalous dispersion of 16.7 ps/nm-km, denoted by the circles labeled N and

A respectively. The path average dispersion equals 0.08 ps/nm-km, which is larger than

in [28]. Third-order dispersion is not relevant in this system [28] and is set to zero. The

carrier wavelength is 1551.49 nm, matching the experimental value. The fiber loss is

compensated by five EDFAs. One EDFA follows each of the four 25-km segments of

normal-dispersion fiber, and the fifth follows the segment of anomalous-dispersion fiber.

There is a 2.8 nm (350 GHz) optical bandpass filter (OBF) in each map period to reduce

the amount of noise.
52
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Figure 5.1: Cartoon of the DMS system. PC denotes the manual polarization controller, BERT the
bit error ratio tester, ClockRec the clock recovery circuit, and OBF the optical bandpass filter.

As described in Section 4.5, I model the amplifiers as EDFAs with static gain, as

opposed to explicitly including gain saturation. I carefully adjust the static gains so that

they equal the effective gains one would obtain using EDFAs with a saturation time of

1 ms and a saturation power of 10 mW, similar to [28]. The spontaneous emission factor

is nsp = 1.4. In each amplifier, I add a random amount of lumped noise separately to

the real and imaginary parts of the signal in the Fourier domain. This noise input by

each amplifier is Gaussian-distributed with zero means and variancesρ2
m/2, whereρ2

m =
(Gm−1)η, andGm is the power gain associated with them-th amplifier [28]. All other

parameters are defined in Section 4.2. I choose a Box-Mueller generator [71] to obtain the

Gaussian-distributed random variables; the generator takes its inputs from a 48-bit random

number generator. The launched pulses have a Gaussian shape with a FWHM duration of

9 ps, and the signal is injected and received at the chirp-free midpoint of the anomalous

span. The transmission distance of 24,000 km is 400 times larger than nonlinear scale
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Figure 5.2: Phase space portraits for the DMS system at the beginning of each fiber span. (a) First
map period; (b) Last map period, arrows: middle of the anomalous span; (c) All 225 periods;
(d) Same as (b), but with added ASE noise.

lengthLnl (2.3.5). I transmit the4-bit sequence 1000 in a total simulation time window of

T = 400ps; hence, there are no optical interpulse interactions. The receiver is modeled

as in Fig. 2.1 as an ideal square law detector followed by an electrical low-pass 5th-order

Bessel filter with a one-sided 3-dB bandwidth of 4.3 GHz. This bandwidth is much smaller

than the commonly used bandwidth of 70–80% of the data rate, but it was shown to be

advantageous in this experiment to suppress the effects of timing jitter [28].

I use the split-step Fourier method to solve the scalar nonlinear Schrödinger equation,

which only takes into account one optical polarization. In the recirculating loop that I am

modeling, the polarization dependent loss (PDL) is large and the polarization controllers

are optimized to pass the signal with minimum loss. Consequently, the signal is dominated

by one polarization, and the orthogonal polarization can be neglected. The nonlinear

propagation equation in all simulations in this dissertation is solved using a third-order



55

0 π/2 π 3/2 π 2π
0

400

800

(a)

ϕ

5 mW 
13 mW

−20 0 20
0

1000

2000 (b)

τ (ps)

5 mW 
13 mW

0.5 0.7 0.90

400

800
(c)

B−n,R (mW1/2   )

ω0
ω5

N
um

be
r 

of
 S

am
pl

es

Figure 5.3: (a) Histogram of the phase offsetϕ and (b) histogram of the time offsetτ for two
different simulations with signal peak powersPpeak= 5 mW andPpeak= 13 mW. (c) Histogram
of the two real Fourier coefficients̄B0,R andB̄5,R atω0 = 0 andω5 = 2π×25 GHz, respectively,
after the phase and time offsets are removed (Ppeak= 5 mW). The solid lines are fits of the Jacobi-Θ
function in (a) and Gaussians in (b) and (c).

split-step algorithm [72].

I present a phase space portrait of the DMS system with the purpose of demonstrat-

ing some characteristic properties of a periodically stationary DMS system and for later

comparison with the CRZ system. Phase space portraits contain more information than

time- or frequency domain plots; for instance they are a good way of visualizing chirp.

Fig. 5.2 shows four different phase portraits, by which I mean trajectories in the space of

local frequency versus time. Related plots have been produced experimentally for various

systems, using a technique called Frequency Resolved Optical Gating (FROG) [73]. The

following discussion applies to noise-free signals. The local frequency of an optical signal

u(t) is defined as the derivative of the local phase with respect to time

floc(t) =
1

2π

darg[u(t)]
dt

, (5.1.1)

wherearg[u(t)] = arctan[Imu(t)/Reu(t)] = ϕ(t) is the local phase ofu(t). To produce

the graphs, I transmit a single pulse centered att = 0 in a 400 ps time window without

adding ASE noise. Six times during each dispersion map, at the beginning of each fiber

span and in the middle of the anomalous span, I iterate over each sample point in time and

save the pairs(t,floc) if the local pulse power|u(t)|2 is larger than 0.5% of the peak pulse

powermax(|u(t)|2).
Fig. 5.2(a) shows the six phase portraits during the first period of the dispersion map.

The straight horizontal line represents the launched signal, which is an unchirped Gaus-

sian. Chirp is defined as the second time derivative of the local phase,d2arg[u(t)]/dt2 =
2πdfloc/dt. Consequently, the portrait of a chirped pulse will have a nonzero slope. The
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oblique lines show the pulse at later points in the dispersion map. Fig. 5.2(b) shows the

same portrait as Fig. 5.2(a), but for the final map period (period 225). The difference

between Figs. 5.2(a) and (b) demonstrates that the pulse chirp of the dispersion-managed

soliton evolves. The curve that is marked by the arrows shows the pulse portrait at the

middle of the anomalous span. The chirp is small for−5ps< t < +5ps; however, the

pulse tails are strongly chirped because the chirp-free point in a map is only located in the

middle of the anomalous span if the fiber is assumed to be lossless, but it moves closer to

the beginning of the anomalous span in a lossy system [74].

Fig. 5.2(c) shows the pulse portrait at the beginning of each fiber span for the entire

transmission over 225 map periods, and Fig. 5.2(d) shows the same, but with added ASE

noise and a power cutoff of 3%. In all four graphs, one can see that the solitons never

extend beyond−40ps< t < +40ps with a significant pulse power, and hence the overlap

of the pulse tails is negligible. Note that phase portraits are not directly related to the

least-squares phase fit of (4.3.5) since the phase portraits show phase in the time domain,

not in the frequency domain.

5.2 Jitter Separation

Using the least-squares method outlined in Section 4.3, I now show that the central time

offsets of the pulsesτ are individually Gaussian-distributed. The same holds for theBn,R

andBn,I , whereBn = Bn,R + iBn,I , and theBn are the transformed Fourier coefficients

defined in (4.3.4). Furthermore, I show that the distribution of the phase offsetϕ is a

Jacobi-Θ function, which is the periodic analogue of a Gaussian [61], defined by

Θ(µϕ,σ2
ϕ,2π) =

∞∑

k=−∞
N(µϕ +2πk,σ2

ϕ), (5.2.1)

whereN(µ,σ2) is a Gaussian (normal) distribution of meanµ and varianceσ2. TheΘ-

function is the natural choice for the phase fit sinceϕ at the receiver is only determined

modulo2π unless one tracks its evolution.

Figs. 5.3(a) and (b) show histograms ofϕ and τ for the two different signal peak

powersPpeak of 5 mW and 13 mW. The two histograms are approximations topϕ(ϕ)
andpτ (τ), respectively. The simulation consists of 10,000 Monte Carlo runs. The phase

distributionpϕ(ϕ) converges to the Jacobi-Θ function, andpτ (τ) converges to a Gaussian

distribution. The number of samples per bin in each histogram in Fig. 5.3(a) never falls
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below 200, and hence the phase wrapping is relevant here. However, one could in principle

track the evolution of the phases and retain the full information, yielding a phase in the

range−∞< ϕ <∞. The corresponding pdfp′ϕ(ϕ) would be Gaussian.

Fig. 5.3(c) shows histograms ofB0,R andB5,R at the angular frequenciesω0 = 0 and

ω5 = 2π×25GHz respectively. The simulated data agree very well with the Gaussian fit.

The algorithm for removing the linear part of the signal phase causes the imaginary parts

of theBk to be close to zero; so, they are not shown here. Using a chi-square statistical

test [45], I verified that all theBk,R in the simulation are Gaussian distributed .

Adding the effect of timing jitter when the electrical pdfs are computed by employing

the convolution in (4.6.16) relies on the independence of the residual noiser, or at least

the electrical currenty, on the timing jitterτ . I compute the normalized cross-correlations

C[u,v] =
〈uv〉−〈u〉〈v〉
std(u)std(v)

, (5.2.2)

whereu and v are random variables and std(z) =
√
〈z2〉−〈z〉2 is the standard devia-

tion of a quantityz. My simulations show that bothC[Bk,R,ϕ] andC[Bk,I ,ϕ], as well

asC[Bk,R, τ ] andC[Bk,I , τ ] are significantly nonzero, whereBk = Bk,R + iBk,I are the

Fourier coefficients of the noisy signal after the separation of phase and timing jitter, and

ϕ andτ are the phase and timing offsets of a given noise realization respectively, accord-

ing to (4.3.5). These correlations seem to pose a problem in the computation offy, if not

accounted for.

The physical reason for these correlations is that noise realizations that increase the

pulse power cause a faster phase rotation which tends to lead to extreme phase excursions.

Analogously, noise realizations with extreme frequency offsets tend to produce extreme

timing offsets, the Gordon-Haus effect [17], [19]. However, I find thatC[Bk,R,y] and

C[Bk,I ,y] are zero to the limit of the numerical precision, implying that the correlations

of theB̄k with ϕ andτ have no effect on the receiver currenty. This paradox is explained

by the nature of the square law detector that both neglects the optical phase and works as

a demodulator, removing shifts in the central frequency.

5.3 Computation of the Covariance Matrix

My colleagues and I employed Monte Carlo simulations to compute the reduced covari-

ance matrixK(r) from (4.3.6). I drop the superscript(r) in the following. In this section, I
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Figure 5.4: (a) Two-dimensional plot of the RR block ofK for ωk in the rangek = [−15,15].
(b) Same for the RI block ofK. (c) Cartoon of a square matrix with three slices. Open cir-
cles: principal diagonal; hatch marks: first parallel to the principal diagonal; triangles: secondary
diagonal. (d) The values of the RR block along these slices.

showK for the dispersion-managed soliton system that we study, and I compare the result-

ing pdfs for the marks and the spaces in the following section. The point of characterizing

K is to reveal the significant difference between Marcuse’s approach of assuming optical

white noise at the receiver [48] and the covariance matrix method. Marcuse’s method sets

the principal diagonal elements to a constant value and sets all other elements to zero.

According to (4.2.12),K is a block matrix consisting of 4 blocks of sizeN ×N each.

I label the four blocks RR, RI, IR and II, where RR is the block
〈
αR αT

R

〉
, RI is

〈
αR αT

I

〉
,

and so on. SinceK is symmetric,(RI)T = IR. In the following, the elements of the matrix

K are indexed by the frequencies whose covariance is located at each element, so that the

upper left matrix element isK−N/2,−N/2, the lower right one isKN/2−1,N/2−1, and the

center element isK0,0.
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Figure 5.5: (a) Probability density function of the filtered currenty after square-law detection and a
4.3 GHz narrow-band filter. The solid lines are the pdfs calculated using linearization at the center
of the bit window of the marks (ONES) and the spaces (ZEROS); the dashed lines are Gaussian fits.
Note the bump on the left tail of the pdf of the marks. The circles are direct results from the Monte
Carlo simulation. Particularly for the spaces, the agreement with the pdf obtained by linearization
is much better than with the Gaussian fit. (b) The functionP1|0(y) is shown as a solid line, and
P0|1(y) is shown dashed. The BER is defined as their mean. The optimum decision level lies at
y = 0.55 near the intersection of the graphs, shown as the vertical dash-dotted line in (a), and it
yields a BER of5×10−13. From the Gaussian fits, one obtains aQ-factor of13.5 which would
imply an optimal BER of10−41.

Fig. 5.4(a) displays the block RR in a two-dimensional form. The ridge along the

principal diagonal represents the variancesKkk and all other elements correspond to cross-

covariances. The cw entry lies atk = 0. Fig. 5.4(b) shows the block RI whose maximum

is about one order of magnitude smaller than that in RR and II. The RI and IR blocks

are point-symmetric around their central elements (RIk,l = RI−k,−l), while RR and II

blocks are symmetric (RRk,l = RRl,k). Fig. 5.4(c) shows a cartoon of a square matrix with

the principal diagonal (solid line), a parallel to the principal diagonal (crosses), and the

secondary diagonal (circles), starting from the indices(−15,15) and ending at(15,−15).
Fig. 5.4(d) shows the values of the RR block along the slices in (c). The shape of the graph

of Kkk is a consequence of the optical inline filtering in the recirculating loop, as well as

optical signal-noise interactions. Because of the inline filter,Kkk vanishes for|k| À 15.

In the absence of inline filters,Kkk would converge for large|k| to a finite value. At small

frequencies|k| < 15, the signal-noise interactions lead to parametric gain and emerge as

a peak whose shape is similar to the signal power spectrum|Ak|2. The slices along the

circles and crosses reveal that the values ofKk,k±l at small|k| and|l| are actually negative,

leading to two elongated troughs along both sides of the principal diagonal.
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Figure 5.6: (a) Eye diagram, generated from the Monte Carlo simulation of the dispersion-
managed soliton. The probability density of the currenty is displayed as a contour plot. The dashed
line att = 50ps shows the location of the pdf in Fig. 5.5. The logarithm of the pdf is displayed as
different shades of gray. (b) Accurate eye diagram produced by the linearization approach. To ob-
tain a more readable diagram, I only plot probability densities in the range[10−4,101]. However,
the approach allows me to find the probability density at any point(t,y), thereby enabling me to
accurately calculate BERs.

5.4 Calculating the BER

We calculated the BER as a function of the decision threshold, and we determined its

value at the optimum decision point. Fig. 5.5(a) shows the pdffy of the filtered current

y(t) defined in (4.6.5a) that corresponds to the output of the electrical receiver. The current

y(t) is normalized to the mean of the pdf in the marks. The calculation is performed as

explained in the previous chapter in two different bit slots, corresponding to the 1 and

the central 0 in the 1000 bit pattern that we simulated, so that we obtained the pdfs for

the marks and the spaces separately. The effect of the timing jitter is included in the

calculation of the pdfs, using (4.6.16). The Gaussian fit is a good approximation over

about two orders of magnitude, but it deviates strongly at low probability densities. At

small values ofy, the pdf of the marks is dominated by the timing jitter, leading to a

visible bump. This bump exists because the currenty at the center of the eye is lower for

a strongly jittered pulse. Without this bump, the left tail of the accurate pdf for the marks

would cross the Gaussian fit, and then run inside, so that the error probability density

would be lower there than for a Gaussian pdf, in agreement with [48]. I conclude that

strong timing jitter can lead to an increased eye penalty that must be taken into account.

Note that the path average dispersion of0.08 ps/nm-km enhances the timing jitter and

differs from the value that was used in Section 6.1.
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Figure 5.7: (a) Convergence of optimal BER values, resulting fromK(r) andAk obtained from a
Monte Carlo simulation, as a function of the number of noise realizations. The symbols(4), (•),
and(◦) pertain to three simulations that were started with different random seeds. (b) Convergence
of the optimal decision levelyopt. Both BER andyopt converge after about 2,000 Monte Carlo
realizations.

The knowledge of the separate pdfs of the marks and spaces allows one to calculate

the bit error probabilities. I define the two probabilities

P1|0(y) =
∫ ∞

y
fy(y′, t1)dy′, (5.4.1a)

P0|1(y) =
∫ y

0
fy(y′, t0)dy′. (5.4.1b)

The quantityP1|0(y) is the probability of detecting a mark when a space was transmitted,

using the decision levely, and analogouslyP0|1(y) is the probability of detecting a space

when a mark was sent. The functionfy(y, t1) is the pdf ofy, taken at the central time in

a bit windowt1 when a mark is received, andfy(y, t0) is taken at the central time in a bit

window when a space is received,t0. I define the bit error probability at the decision level

y as [48]

BER(y) = 1
2

[
P1|0(y)+P0|1(y)

]
. (5.4.2)

I define the optimum decision levelyopt to be the decision threshold at which the BER

becomes minimal. Fig. 5.5(b) showsP1|0(y) andP0|1(y), as well as the BER as a function

of y. In the DMS system, we find that atyopt = 0.55 the BER is5× 10−13. From the

Gaussian fit, we obtain aQ-factor of13.5 implying an optimal BER of10−41. This large

difference in the BERs is again a consequence of the large timing jitter.
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Fig. 5.6 shows the corresponding eye diagram, wherey is normalized the same way

as in Fig. 5.5. It is a contour plot of the pdf fory(t) at each timet. This way of plotting

the eye diagram is closer to what is measured experimentally than the common practice

of simply superimposing discrete traces ofy(t) in the different bit windows. The optimal

decision point for the system lies close to0.5. Gaussian extrapolations usually yield

optimal decision levels that are much smaller than0.5 in normalized units [48].

I now consider the off-diagonal elements inK. AlthoughK is diagonally dominant,

we find that the off-diagonal elements have a large impact on the BER. We compared

the optimal BER to a computation in which we set the off-diagonal elements to zero. It

turns out that the spread in the pdf of the spaces is reduced, as one might expect, while the

spread in the pdf of the marks is increased, leading to a loweryopt and an optimal BER

that deviates from the true value by orders of magnitude. I therefore conclude that the

nonlinearity can lead to a substantial cross-correlation inK and it is in fact necessary to

take account of off-diagonal elements.

I next turn to the question of the accuracy of the BER and the decision level that I

obtain by employing a Monte Carlo simulation to computeK. Fig. 5.7 shows the conver-

gence of the BER and the optimal decision levelyopt as the simulation proceeds. BothK
andyopt converge as we average over more noise realizations. The convergence requires

on the order of a few thousand realizations.

I note that the values for the optimal BER and the decision level both drop as the

averaging proceeds. The statistical fluctuations inK, which vanish as the number of real-

izations increases, tend to decrease the BER, irrespective of their signs. Thus, the square

law detector with its dependence offy(y) onK corresponds to a biased estimator [75].

In conclusion, the computation of the covariance matrix by averaging over Monte

Carlo simulations is robust, but it requires a large number of noise realizations in or-

der for the BER to converge. Computing the pdfs and the BER using the covariance

matrix in essence applies a multivariate-Gaussian fit to the optical noise, instead of a one-

dimensional Gaussian fit to the receiver current histogram. In traditional Monte Carlo

simulations, the only result of each noise realization that is used in the calculation of the

electrical BER is the narrow-band filtered currenty(t), a scalar variable for each point

in time. By contrast, the covariance matrix contains much more information and makes

much better use of the available information.



Chapter 6

Covariance Matrix Method: Results

In this chapter, I apply the deterministic method described in Section 4.4 to propagate

the noise covariance matrix, rather than running Monte Carlo simulations. I consider

two different systems: the DMS system introduced in Chapter 5 with the reduced path

average dispersion of 0.02 ps/nm-km and a chirped return to zero (CRZ) system with a

total transmission distance of 6,100 km. In the following, I refer to the reduced covariance

matrixK(r) asK, dropping the superscript.

6.1 The Dispersion-Managed Soliton System

The calculation that I present here is completely deterministic in contrast to Chapter 5,

where I reported on the calculation ofK based on Monte Carlo simulations [76]. This de-

terministic approach requires substantially less CPU time while producing a much higher

degree of accuracy. For the 4-bit sequence considered in the previous chapter, the approx-

imation of the covariance matrix with 5,000 Monte Carlo realizations required 72 hours

of CPU time, while the deterministic covariance matrix method required only 5 hours of

CPU time on a 400 MHz Pentium III PC. As in the last chapter, the nonlinear propa-

gation equation is solved by a third-order split-step algorithm [72]. I transmit the 8-bit

deBruijn sequence 11010001 in a time window of 800 ps in a single channel; all pulses

are co-polarized. The Fourier vector lengthNFFT is 2048.

Fig. 6.1(a) shows the optical power|u0(t,L)|2 of the noise-free 8-bit signal at the end

of the transmission in the time domain. The tic marks indicate the boundaries of the bit

slots. Fig. 6.1(b) shows the optical power spectrum at the end of the transmission as the

circles. The 10 GHz tones and their harmonics are clearly visible. The dots show the av-

erage power spectrum of the noise as obtained from|ak|2+ |ak+N |2 =Kk,k +Kk+N,k+N

63
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Figure 6.1: DMS system. (a) Noise-free optical power in the time domain|u0(t,L)|2 of the noise-
free 8-bit signal at the end of the transmission. (b) Circles: optical power spectrum|Ak|2 of the
signal in logarithmic scale. The 10 GHz tones and their harmonics are clearly visible. Dots:
average power spectrum of the noise fromK. The OSNR is8.44dB andN = 120.

. The number of modes inK is N = 120. The optical signal-to-noise ratio (OSNR), which

I define as the ratio of total signal power to total noise power in the shown bandwidth, is

6.98, or 8.44 dB. The bandwidth of 160 GHz in this definition of the OSNR seems very

large, but the OSNR would not change very much by reducing the bandwidth because of

the inline filter that attenuates both the signal and the noise at high frequencies.

Fig. 6.2(a) shows three slices through the RR part of the reduced covariance matrix

K, where the inset gives a pictorial representation of a matrix whose elements are located

at the grid points. The diagonal lines show the location of the three slices. The solid line

hence runs along the principal diagonal, the circles run on the secondary diagonal, and the

asterisks show elements on the nearest parallel to the principal diagonal. The large ratio

of the noise power at frequencyf = 0 to the power atf = 75 GHz is primarily due to the

inline optical filter in the recirculating loop and only secondarily to parametric gain.1

Fig. 6.2(b) shows the eigenvalue spectrum ofK, where the the eigenvalues are sorted

1See Section 3.1 for a discussion of parametric gain.
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Figure 6.2: DMS system. (a) Three slices through the RR part of the reduced covariance matrix
K, indicated by the inset cartoon; (b) Eigenvalue spectrum ofK. The eigenvalues are ordered by
magnitude.

by decreasing magnitude. The eigenfunctions connected to the spectrum are related to

the optical Karhunen-Loève modes, namely the modes in which the accumulated noise

can be expanded as independent Gaussian noise neglecting the receiver. If most of the

eigenvalues were very small, one could make the matrix propagation more efficient by

transforming the noise into the optical Karhunen-Loève basis and focusing on the modes

with the largest noise power, but as Fig. 6.2(b) shows, the magnitude of the eigenvalues

does not fall off very steeply.

Fig. 6.3 compares the average pdf in the marks and spaces, as defined in (4.7.1), of the

narrow-band filtered receiver current from the linearization method with the histogram of

a standard Monte Carlo simulation. Fig. 6.3(b) shows the corresponding eye diagram as a

contour plot of the logarithm of the pdf as a function of time, analogous to Fig. 5.6(b).

6.2 Submarine CRZ System

6.2.1 System Setup

The simulated transmission line of the chirped return-to-zero (CRZ) system is shown in

Fig. 6.4. It consists of 34 dispersion map periods each of length 180 km, for a total

distance of 6,120 km. Each map period contains a 160 km span of normal dispersion fiber

with −2.5 ps/nm-km, indicated by the circles labeled N, preceded and followed by two

10 km spans of anomalous dispersion fiber with 16.5 ps/nm-km, labeled A. Third-order
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Figure 6.3: DMS system. (a) Histogram from a traditional Monte Carlo simulation (dots) with
Gaussian fits of the data points in the marks and spaces based on their mean and variance (dashed
lines) and the result of the covariance matrix method (solid line). (b) Eye diagram as a contour
plot of the logarithm of the pdf as a function of time. The pdfs in (a) are computed att = 50 ps
(dashed line).

dispersion is of minor importance and I neglect it in this simulation, as I did in the DMS

system. The fibers have an attenuation of 0.2 dB/km and an effective area ofAeff = 50µm.

The loss is compensated every 45 km by an erbium-doped fiber amplifier (EDFA) with a

spontaneous emission factor ofnsp = 2.0. I use pre- and post-compensating fiber spans,

labeled C, each of which has a total dispersion of 916 ps/nm. The signal pulses are co-

polarized and have a FWHM duration of 45 ps with a bit-synchronously chirped raised-

cosine shape of the form

u(t) =
(

Ppeak

2

{
1+cos

[
πsin

(
Ωt

2

)]})1/2

exp(iAπcosΩt) , (6.2.1)

whereu(t) is the envelope of the optical field at timet, Ω = 2π/Tbit with the bit spacing

Tbit = 100ps, and the chirp parameter isA = −0.6 [77]. The initial optical peak power

is Ppeak= 1 mW before entering the pre-compensating fiber. I transmit 32 bits, corre-

sponding to a pseudorandom bit sequence of25− 1 = 31 bits, plus an additional zero

bit, thereby exhausting all possible bit patterns of length 5, with a Fourier vector length

NFFT equals to 4096. At the receiver, I model an ideal square law detector followed by a

5-th order Bessel filter with a one-sided 3-dB bandwidth of 4.3 GHz. Fig. 6.8 shows the

narrow-band filtered noise-free receiver current after 6,100 km of transmission.
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Figure 6.4: CRZ system, schematic illustration.

6.2.2 Results and Discussion

Fig. 6.5 shows the phase-space portraits of the CRZ system analogous to Fig. 5.2, shown

in Section 5.1 on p. 52. All graphs are produced by a simulation of a single CRZ pulse

centered att = 0 in an 800 ps time window. Fig. 6.5(a) shows the six lines of the pulse

portraits at the beginning of each fiber span in the first dispersion map period. It also shows

the phase portrait of the pre-compensation. The latter is strongly chirped and has an S-

shape, indicated by the arrow. Fig. 6.5(b) is the same as (a), except that I have added four

copies of the lines in (a), each offset in time by a multiple of 100 ps. The copies correspond

to pulses centered at 100 ps, 200 ps and so on. Note that the phase-space portrait of a signal

consisting of five adjacent pulses would look completely different from Fig. 6.5(b), since

the phase of the sum of two signals does not equal the sum of the phases. The point of

showing multiple copies of the portraits in one graph is to demonstrate that the individual

portraits of different pulses at a given transmission distance never overlap. Although

pulses overlap in the time domain, they are still separated in phase space. Therefore, the

phase space picture contains more information. A vertical line att = 200ps cuts through

the portraits of five pulses, and the portraits of adjacent pulses in the same fiber span are

separated by about 10 GHz. As the pulses evolve, their portraits rotate counter-clockwise

and contract, as shown in Fig. 6.5(c) for the maps 16–19. In the middle of the total

transmission distance near map 17, the pulses are maximally compressed and separated in

time, but strongly chirped. After map 17, they expand again and the final state at map 34 in
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Figure 6.5: Phase space portraits for the CRZ system at the beginning of each fiber span. (a) Arrow:
pre-compensation portrait, oblique lines: portrait during the first map period; (b) Same as (a),
but five portraits are superimposed with time offsets of 100 ps; (c) Portraits of the maps 16–19;
(d) Same as (b), but for the last map. Arrows: post-compensation portrait.

Fig. 6.5(d) has a mirror symmetry with Fig. 6.5(b). The almost vertical curves, indicated

by the arrows, correspond to the pulse after post-compensation which is slightly narrower

than the launched pulse.

Fig. 6.6(a) shows the optical power|u0|2 of the noise-free 32-bit signal at the end of

the transmission in the time domain. The tic marks indicate the boundaries of the bit slots.

Fig. 6.6(b) shows the optical power spectrum at the end of the transmission as the circles.

The 10 GHz tones and their harmonics are clearly visible. The dots show the average

power spectrum of the noise as obtained from|ak|2 + |ak+N |2 = Kk,k +Kk+N,k+N ; the

number of modes inK is N = 140. The ratio of the noise power at frequencyf = 0 to the

power atf = 22GHz is2.1 and is due to parametric gain. The OSNR, defined as the ratio

of total signal power over total noise power in the shown bandwidth, is14.83, or 11.7 dB.

Fig. 6.7(a) shows three slices through the RR part of the covariance matrixK similar
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Figure 6.6: CRZ system. (a) Optical power|u0|2 of the noise-free 32-bit signal at the end of
the transmission in the time domain. (b) Dots: optical power spectrum on a logarithmic scale.
Asterisks: average power spectrum of the noise fromK. The ratio of the noise power atf = 0 to
the power atf = 22GHz is2.1. The OSNR is11.7 dB.

to Fig. 6.2(a), where the inset gives a pictorial representation of a matrix whose elements

are located at the grid points. The oblique lines show the location of the three slices. The

solid line runs along the principal diagonal, the circles run on the secondary diagonal,

and the asterisks show elements that lie on a parallel to the principal diagonal where the

cross-correlations are particularly large. As in the DMS system, most cross-correlations

are negative.

Fig. 6.7(b) shows the eigenvalue spectrum ofK, analogous to Fig. 6.2(b). Due to

numerical imprecisions a few eigenvalues are vanishingly small and must be increased

before the pdfs are computed, as described in Appendix A.4.

Fig. 6.8 shows the narrow-band filtered noise free receiver current after transmission

over 6,120 km. The 32 partial pdfs are computed at the points in time indicated by the

dots. The variation in the peak power is due to nonlinear pulse-to-pulse interactions during

the transmission, highlighting the importance of bit patterns.

Fig. 6.9(a) shows the average pdfs as defined in (4.7.1) of the receiver current that re-
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Figure 6.7: CRZ system. (a) Three slices through the RR part of the reduced covariance matrix
K, indicated by the inset cartoon; (b) Eigenvalue spectrum ofK. The eigenvalues are sorted by
magnitude.
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Figure 6.8: CRZ system. Narrow-band filtered noise-free currentynf(t) of the signal after trans-
mitting 6,120 km. The 32 partial pdfs are computed at the points in time indicated by the dots.

sult from the covariance matrix method as solid lines in comparison with a histogram from

a traditional Monte Carlo simulation, consisting of 86,000 noise realizations represented

by the dots. The current is normalized to the mean of the pdf of the marks. The dashed

lines show a Gaussian fit to the Monte Carlo data, using the mean and variance. The large

deviation between the solid and dashed curves is obvious, especially in the spaces. On the

other hand, the agreement between the covariance matrix method and the Monte Carlo

results is excellent. By integrating the pdfs, one obtains optimal BERs of1.7× 10−12

from the covariance matrix method and9.9×10−12 from the Gaussian fit of the Monte

Carlo data. The latter corresponds to aQ-factor of 6.71. Note that the relatively small

difference between these two BERs occurs because the Gaussian fit overestimates the pdf

of the marks and underestimates it in the spaces, and hence theQ-factor method relies on
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Figure 6.9: CRZ system. (a) Solid lines: average pdfs from the covariance matrix method;
dots: histogram from a Monte Carlo simulation; dashed lines: Gaussian fit to the dots using their
mean and variance; dash-dotted line: average pdf from the covariance matrix method without
phase jitter separation. (b) Solid lines: error probabilitiesP1|0 andP0|1 corresponding to the solid
lines in (a); dashed lines:P1|0 andP0|1 for the worst noise-free mark and space only.

the accidental partial cancellation of two errors. The dash-dotted line shows the pdf of the

marks that one obtains if the phase jitter is not separated, which is clearly wrong.

The left solid curve in Fig. 6.9(b) shows the error probabilityP1|0 of detecting a “1”

when a “0” was sent, using a given decision level as defined in (5.4.1a). This curve

corresponds to the left pdf in Fig. 6.9(a). The right solid curve is the probabilityP0|1 of

detecting a “0” when a “1” was sent. The dashed lines show the same, except that only the

mark with the lowest currentin the noise-free signaland the space with the highest current

are taken into account.The bit errors near the optimum decision level are dominated by

the worst mark and space. This result indicates that in the CRZ system it is sufficient to

apply the linearization method only to the patterns that exhibit the worst behavior in the
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Figure 6.10: CRZ system. A contour plot of the logarithm of the pdf as a function of time showing
the eye diagram. The pdfs in Fig. 6.9 were taken att = 50ps (dashed line).

absence of noise to obtain a good approximation of the average pdfs and the BER.

Fig. 6.10 shows the corresponding eye diagram of all 32 bits. The probability density

is displayed as a contour plot. The pdf is only plotted over a range of about four orders of

magnitude to make it look like an eye diagram, although I am able to accurately compute

the probability density at any point in the diagram. The pdfs in Fig. 6.9 are taken at

t = 50ps, indicated by the dashed line.

6.2.3 WDM System

I now discuss the application of the covariance matrix method to a WDM CRZ system.

This system is an extension of the single-channel CRZ system that I described in the pre-

vious section. We launch identical bit sequences in 5 channels, spaced 50 GHz apart. This

channel spacing is narrow, compared to the channel bandwidth of about±23 GHz, and

hence corresponds to a dense wavelength-division multiplexed (DWDM) system. While

real transmission systems have many more channels [78], work by Yu,et al. [79] shows

that it is possible to simulate a dense WDM system with a limited number of channels.

Fig. 6.11 shows the optical power spectrum at the end of the transmission line. The

channel spacing is 50 GHz and the channels are indicated by indices running from−2 to

+2.

In the following, I focus on the central channel (channel 0). The system parameters

NFFT = 4096, N = 140, andT = 3200ps, as well as all pulse parameters are identical to

the single-channel system. The propagation algorithm of the covariance matrix, as shown
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Figure 6.11: CRZ DWDM system with 5 channels. Noise-free optical power spectrum|Ak|2 at
the end of the transmission line. The channel spacing is 50 GHz, and the channels are indicated by
numbers.

in Appendix A.4, is identical to the single-channel case, except that after step 1, I apply

an artificial optical bandpass filter with a square shape and a bandwidth of±25 GHz

that only passes channel 0. The artificial filtering is necessary because the neighboring

channels would otherwise disturb the phase jitter separation. However, I simulate the

transmission ofu0 with all 5 channels. Thus, I model the signal-noise interactions of

the signal in any channel with the noise in the central channel, but I neglect theinter-

channelnoise-noise correlations. In other words, I neglect off-diagonal matrix blocks

in an extended covariance matrix that spans multiple channels. This simplification is

physically reasonable, since the noise-noise correlations decay with frequency separation,

and it is validated by Monte Carlo simulations.

As in the single-channel case, I ran a Monte Carlo simulation to validate my results.

Since I expected that the neighboring channels might distort the pdf slightly and the lin-

earization method might yield inaccurate results, I ran 100,000 noise realizations in a

simulation that took 51 days to complete.

Fig. 6.12 shows the average pdfs of the receiver current that result from the covariance

matrix method as solid lines in comparison with a histogram from a traditional Monte

Carlo simulation represented by the dots. The voltage is normalized to the mean of the

pdf of the marks. The dashed lines show a Gaussian fit to the Monte Carlo data, using

the mean and variance. The agreement between the linearization approach and the Monte

Carlo results is excellent. By integrating the pdfs I obtain an optimal BER of4.7×10−12
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Figure 6.12: CRZ DWDM system. Solid lines: average pdfs from the linearization approach; dots:
histogram from a Monte Carlo simulation; dashed lines: Gaussian fit to the dots using the mean
and variance.

from the linearization approach as compared to4.1×10−11 from the Gaussian fit of the

Monte Carlo data; the latter corresponds to aQ-factor of 6.50.

As an additional test, I record theinter-channelregions of the extended covariance

matrix, i.e., in addition to averaging over the noise realizations to obtainK(r) = K(r)
[0,0], I

also compute the matricesK(r)
[1,0] =K(r)

[0,1] andK(r)
[1,1], whereK(r)

[i,j] refers to the inter-channel

covariance matrix defined by a generalization of (4.3.6)

K(r)
[i,j] =

〈
r[i]r

T
[j]

〉
, (6.2.2)

wherer[k] = (r−N/2+n,R, . . . , rN/2−1+n,R, r−N/2+n,I , . . . , rN/2−1+n,I)T . Here, the offset

n = k|∆fch|/∆fFFT is the number of frequency modes between the center of channelk and

channel0 with the channel spacing|∆fch| = 50 GHz, and∆fFFT = 1/T is the frequency

resolution of the Fourier transform. I find thatK(r)
[0,0] = K(r)

[1,1] to within the computational

accuracy set by the split-step algorithm and
∥∥∥K(r)

[1,0]

∥∥∥
max

/∥∥∥K(r)
[0,0]

∥∥∥
max

= 0.076, where

‖·‖max is the matrix maximum norm. Inter-channel noise-noise correlations are of little

relevance since only the noise in the central channel contributes to the eye diagram.

In summary, the generalization of the covariance matrix to WDM does not seem to

pose major difficulties. The simulation time increases relative to a single-channel system,

and the size of this increase depends exclusively on the step size in the split-step algorithm

when simulating multiple channels.



Chapter 7

Conclusions

Accurately modeling bit error rates is crucial when planning, designing, or upgrading

optical transmission systems. Bit errors are primarily caused by ASE noise from the

optical amplifiers. This noise is white at the point where it is contributed. However, this

ASE noise accumulates along the transmission and interacts nonlinearly with the signal,

which influences the statistical distribution of the noise in a complicated way. On the other

hand, bit errors are very rare events. This combination of circumstances is the reason why

neither simple assumptions about the pdf of the optical noise at the receiver and the pdf of

the electrical receiver current, nor traditional Monte Carlo simulations can yield accurate

results. I show in this dissertation that the commonly usedQ-factor method, based on a

Gaussian extrapolation of the receiver current, is an unreliable approach and depends on

the fortuitous partial cancellation of two errors.

I present a covariance matrix method that yields the pdf of the optical noise at any

transmission distance, which is based on linearization. From the pdf of the optical noise,

the accurate pdf of the narrow-band filtered receiver voltage can be computed, yielding

the accurate BER and eye diagrams. I developed two different approaches to compute

the key statistical quantity, which is the covariance matrix of the optical noise, and I

show that both lead to a significant efficiency enhancement over traditional Monte Carlo

simulations.

To my knowledge, a complete linearization of the optical transmission in a realistic

transmission system has never been carried out before, as discussed in Chapter 3. My

colleagues and I started our investigations in the fall of 1998 by checking the distribution

of the optical noise at the receiver of a Monte Carlo simulation of a 10 Gb/s DMS system

over 24,000 km. This system was very well characterized both in simulation and in exper-

iment [28], [67]–[69]. We focused on the real and imaginary coefficients of the Fourier
75
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components of the noise, and we found their pdfs. Doob’s theorem [46] states that the

noise pdfs of a linear system that is driven by Gaussian noise will remain multivariate-

Gaussian distributed. If one expands the noise in a specific basis, for example the Fourier

basis, then each Fourier coefficient obeys a marginal distribution of the total noise distri-

bution, and should be Gaussian distributed. Indeed, that proved to be the case for short

transmission distances. However, over distances greater than about 2,000 km, we found

that these components were no longer Gaussian distributed, indicating the breakdown of

the linearization assumption for the Fourier basis. This breakdown is due to the phase and

timing jitter in this highly nonlinear system. we find, however, that if we use a new basis

set in which the phase and timing jitter are separated from the other noise components,

then the linearization assumption remains valid over the entire propagation distance of

24,000 km.

I describe two approaches for calculating the covariance matrix. First, it is possible to

run Monte Carlo simulations and average the results to approximate the covariance ma-

trix. In essence, one fits a multivariate-Gaussian to the Monte Carlo simulation result,

after separating the phase and timing jitter. This procedure is self-validating and rela-

tively simple to program, but requires on the order of 2000 noise realizations, as shown

in Chapter 5. However, this approach makes better use of the simulation data and yields

more accurate results than traditional Monte Carlo simulations with the same number of

noise realizations.

The second method, referred to in this dissertation as the covariance matrix method,

propagates the covariance matrix from transmitter to receiver in a deterministic way. The

propagation is accomplished by multiplying the covariance matrix with a propagator ma-

trix Ψ that describes the evolution of a noise vector over a fiber span according to (4.4.2).

In Chapter 4, I described a method for numerically computing the matrixΨ based on

the split-step algorithm. My colleagues and I applied the deterministic approach to both

the DMS system and a 10 Gb/s single-channel CRZ system. In both cases, the result is

efficient and accurate to the degree it can be compared to traditional Monte Carlo simula-

tions, as demonstrated in Chapter 6. The computational cost is roughly2N times that of

a single Monte Carlo noise realization, whereN is the number of complex Fourier modes

stored in the matrix. In a simulation of eight bits in the DMS system, I usedN = 120and

in the CRZ system with 32 bits I usedN = 140, and hence this method solves the covari-

ance matrix in a fraction of the time required by the Monte Carlo simulation, discussed

in Chapter 5. Moreover, it is intrinsically far more accurate, since the Monte Carlo meth-



77

ods have an intrinsic statistical inaccuracy, while the covariance matrix method, being

deterministic, is only limited by the accuracy of the numerical solver.

Modern propagation formats such as CRZ exhibit large pulse overlap, leading to non-

linear interactions of the signal with itself. The phase and timing jitter separation becomes

more complicated in this case, but it can still be carried out after applying artificial disper-

sion compensation [80] as discussed in Section 4.4. Another important result is that the

worst bit patterns in the noise-free signal can dominate the BER and hence it is sufficient

to apply the linearization approach to these patterns.

In addition to single-channel DMS and CRZ systems, my colleagues and I studied

WDM systems. We focused on a WDM system with five channels and a channel spacing

of 50 GHz. While five channels is small compared to the number of channels in com-

mercial systems, earlier work shows that it is possible to accurately model WDM systems

with a limited number of channels [79]. The question was not if the method worked in

principle for a WDM system, but rather what was the scaling behavior of the computa-

tional time with the number of channels. I found for the 5-channel system that computing

the pdf of a single channel still only requires2N times as much CPU time as one noise

realization in a traditional Monte Carlo simulation. This result, combined with the de-

composition mentioned in the previous paragraph, bodes well for the application of the

noise linearization approach to massive WDM systems with a lot of pulse overlap, such

as are currently used in commercial systems.

It is well known that noise-noise beating cannot be neglected in the receiver, in contrast

to the transmission. The implementation of accurate receiver models that take this beating

into account is critical when calculating the eye diagrams and bit error rates. We have

implemented an accurate receiver model for a receiver with a square law photodetector,

followed by an electrical filter. In this case, the current obeys a generalized chi-square

distribution when phase and timing jitter can be neglected. The phase jitter has no effect

on the received current because of the square law detector. By contrast, the timing jitter

does affect the distribution, which no longer obeys a generalized chi-square distribution.

We found an integral expression for the new distribution, and, in this dissertation, I show

how to calculate it.

In conclusion, my colleagues and I achieved the goals 1–4 that I described in the

Introduction: We derived a covariance matrix approach that works in two very different

transmission systems, one of which is highly nonlinear. We computed the pdf of the

optical noise and the narrow-band filtered receiver current, and we obtained an efficient
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implementation of the algorithm.

What are the limits of the noise linearization approach? Highly nonlinear formats with

optical pulse-to-pulse interactions such as 40 Gb/s DMS systems [64] are challenging to

a linearization approach. It has been found that the timing jitter in some soliton systems

with strong pulse-to-pulse interactions is not Gaussian distributed anymore [81]. If noise-

induced jitter and nonlinear pulse-to-pulse interactions are not independent of each other,

then the linearization assumption breaks down, although it is still an important starting

point for a more complete theory. Another possible challenge is strong ASE noise. In

the two systems that we have studied, the optimum BER is below10−9, but in many

commercial systems, raw BERs of10−3 or higher are acceptable with the use of forward

error correction (FEC) [1], [6]. However, it is only theprobability of noise realizations

leading to raw bit errors that is increased in systems with FEC, not the current threshold at

which these errors occur. Since the covariance matrix method can accurately compute the

electrical pdf anywhere in the eye diagram, I do not anticipate problems in dealing with

higher raw bit errors.

In the future, the covariance matrix method should be generalized and refined. It might

be possible to improve the numerical efficiency of the algorithm by further reducing the

number of frequency modes in the covariance matrix or using some interpolation scheme.

The agreement between the pdfs from the covariance matrix method should be compared

to Monte Carlo simulations all the way down to the intersection point of the marks and

the spaces pdfs. The range of the pdfs from Monte Carlo simulations might be extended

using the importance sampling technique [10], [11]. Moreover, I have not applied the

covariance matrix method to systems in which two optical polarizations and hence PMD

are relevant, systems that use Raman amplification, or modulation formats such as non-

return-to-zero (NRZ) or differential phase shift keying (DPSK). Finally, a determination of

the bit patterns that lead to the smallest eye openings should be investigated, in particular

for WDM systems.
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Appendix

A.1 Average Phase Definition

If the phase and timing jitter are small, then the averages of the noisy signalAk and of the

renormalized signalAk defined after (4.3.4) will be approximately identical,A = 〈B〉 ≈〈
B

〉
= A. In this case, one can decompose the renormalized noiseak exp[−i(ϕ+ωkτ)]

as

ak exp[−i(ϕ+ωkτ)] = Ak−Ak exp[−i(ϕ+ωkτ)]+ rk

≈ Ak

{
1−exp

[−i(ϕ+ωkτ)
]}

+ rk

≈ ϕck + τdk + rk, (A.1.1)

where

ck = iAk, (A.1.2a)

dk = iωkAk. (A.1.2b)

The termϕck is responsible to first order for a phase shiftu(t) = u0(t)exp(iϕ), while the

componentτdk produces the time shiftu(t) = u0(t+τ) and thus leads to timing jitter. The

residual noiserk is orthogonal to theck anddk with the scalar product Re
∑

k vkr
∗
k = 0,

wherevk = ck or vk = dk. The vectorsck anddk will only be orthogonal to each other if

the signal is an even function in time. I note that the decomposition (A.1.1) is similar to

(3.2.10).

At the chirp-free maximum pulse compression point in the loop, one may define the
79
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average signal phase by (4.3.3c), which can be written in the frequency domain as

αave=
N/2−1∑

k=−N/2

|Bk|2arctan

(
Bk,I

Bk,R

) / N/2−1∑

k=−N/2

|Bk|2 , (A.1.3)

whereBk = Bk,R + iBk,I = Ak + ak are the Fourier modes ofu(t). First, one would

like to determine the relationship ofαave in (A.1.3) andα in (4.3.5) toϕ in (A.1.1), and

analogously the relationship ofβ to τ , for small noise. The Taylor expansion of the signal

phase at frequency modek, using the identitydarctanx/dx = (1+x2)−1, is

arctan
Bk,I

Bk,R
= α0 +

ak,IAk,R−ak,RAk,I

|Ak|2
+O(a2

k ), (A.1.4)

whereα0 = arctan(Ak,I/Ak,R). Using (A.1.4), one may linearize the least-squares crite-

rion (4.3.5) to obtain

H = min
α,β

N/2−1∑

k=−N/2

1

|Ak|2
[
ak,IAk,R−ak,RAk,I − (δα+βωk) |Ak|2

]2
, (A.1.5)

whereδα = α−α0. The stationary points of the sum in (A.1.5) with respect toα andβ

are given by

δH

δα
= −2

∑

k

[
ak,IAk,R−ak,RAk,I − (δα+βωk) |Ak|2

]
= 0, (A.1.6a)

δH

δβ
= −2

∑

k

ωk

[
ak,IAk,R−ak,RAk,I − (δα+βωk) |Ak|2

]
= 0. (A.1.6b)

One may express the orthogonality relations(c,r) = (d,r) = 0 as∑
k

[
rk,IAk,R− rk,RAk,I

]
= 0 and

∑
k ωk

[
rk,IAk,R− rk,RAk,I

]
= 0. We infer

∑

k

[
ak,IAk,R−ak,RAk,I

]
=

∑

k

(ϕ+ τωk) |Ak|2 , (A.1.7a)

∑

k

ωk

[
ak,IAk,R−ak,RAk,I

]
=

∑

k

ωk (ϕ+ τωk) |Ak|2 . (A.1.7b)

Comparing the last two identities with (A.1.6a) and (A.1.6b), one concludes that the sums

in (A.1.6a) and (A.1.6b) vanish with the choiceδα = ϕ andβ = τ . This result shows

that the definition of an average phase (A.1.3) is reasonable and consistent with the least-

squares fit (4.3.5).
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A.2 Gauss-Hermite Integration

We chose a Gauss-Hermite integration technique as described by Abramowitz and Ste-

gun [61] to solve the convolution (4.6.16). This technique approximates the integral
∫ ∞

−∞
g(x)exp(−x2)dx≈

n∑

i=1

wi g(xi), (A.2.1)

whereg(x) is any function with which the integral in (A.2.1) exists,wi are weights, and

thexi are (unevenly spaced) abscissas. Bothwi andxi depend only onn. The values are

tabulated and can be determined using numerical routines [82]. One must approximate

the integral

fy(y, t) =
∫ ∞

−∞
fy,τ=0(y, t− τ ′)fτ (τ ′)dτ ′

=
1√

2πσt

∫ ∞

−∞
fy,τ=0(y, t− τ ′) exp

(
− τ ′2

2σ2
τ

)
dτ ′

=
1√
π

∫ ∞

−∞
fy,τ=0

(
y, t−

√
2στx

)
exp

(−x2) dx

≈
n∑

i=1

wi gi, (A.2.2)

where

gi =
1√
π

fy,τ=0(y, ti) (A.2.3a)

ti = t− tGH,i = t−
√

2στxi. (A.2.3b)

We chosen = 5. If fy(y, t) must be computed for many evenly spaced timest, for instance

for the use in an eye diagram with a high temporal resolution, it might be faster to solve

the convolution (4.6.16) by Fourier transformingfy and fτ with respect tot and take

advantage of the convolution theorem. The abscissas and weights forn = 5 are given in

the following table:

i xi wi

1 −2.020 0.01995

2 −0.9586 0.3936

3 0 0.9453

4 0.9586 0.3936

5 2.020 0.01995
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A.3 Simultaneous Diagonalization

The theorem of simultaneous diagonalization (see [59, p. 106]) holds forK−1 (real sym-

metric and positive definite) andW (symmetric) and states that in this case there is a real

2N ×2N matrixC with detC 6= 0 and

(C−1)TK−1C−1 = I and (A.3.1a)

(C−1)TWC−1 = Λ = diag(λ1, . . . ,λ2N ), (A.3.1b)

C−1 = UDV with (A.3.1c)

UTK−1U = diag(ε1, . . . , ε2N ), UTU = I, (A.3.1d)

D = diag(ε−1/2
1 , . . . , ε

−1/2
2N ), (A.3.1e)

VTHV = Λ, VTV = I, (A.3.1f)

H = DTUTWUD, (A.3.1g)

where all theλi are real numbers. This diagonalization is equivalent to solving the gen-

eralized real eigenvalue problemWC−1 = K−1C−1Λ. Note that there is no need to ever

compute the matrixC explicitly from C−1. We found that the implementation of (A.3.1a)–

(A.3.1g) is preferable to using a general-purpose generalized eigensystem solver because

the matrixUD only depends onK and has only to be calculated once, while the matrixH
depends onW and hence on the timet. In particular when calculating eye diagrams that

require many pdfs, this approach yields a computational gain.

A.4 Algorithms

The computation of the electrical pdfs can be broken down into the optical transmission

part, yielding the covariance matrixK, the computation of the electrical pdf fromK, and

additional post-processing such as drawing eye diagrams and computing the optimum

BER. Without going into the details of the programming, I just state that the transmission

part is implemented as a stand-alone C++ program, and the computation of the BER and

any post-processing is implemented as Matlab code. I will now describe three parts of the

algorithm, namely

1. The main loop of the transmission simulation routine,

2. the propagation of the covariance matrix, and
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3. the computation of the electrical pdf.

The nonlinear propagation equation (4.2.1a) in all simulations in this dissertation is solved

with a third-order split-step algorithm [72].

A.4.1 The Main Loop of the Transmission Simulation

The transmission program can be operated in four different modes:

1. Noise-free propagation, yieldingu0(t),

2. Traditional Monte Carlo simulation, yielding noise signal realizationsu(t) with

options to generate traditional eye diagrams and compute jitter averages,

3. Extended Monte Carlo: same as in mode 2., but with the additional computation of

K by averaging over noise realizations according to (4.3.6),

4. Deterministic simulation: computeu0(t) andK, using the method described in

Section (4.4).

The goal in setting up the simulation this way was to facilitate the comparison of the

different pdfs resulting from modes 2–4. The algorithm in the main loop of the simulation

can be itemized as follows:

1. Setup: Read in a parameter file that contains all physical and technical parameters,

such as the number of bits, the pulse durations, the peak power, the random gener-

ator seed, etc. Check the consistency of the parameters. Allocate and initialize all

arrays.

2. In Monte Carlo modes 2 and 3, start a loop over different noise realizations:

(a) Launch the optical signalu0(t,0).

(b) In all modes, start a loop over the dispersion map periods, possibly preceded

by a pre-compensating fiber span:

i. Compute the signal evolutions element by element of the dispersion map

such as fiber spans, amplifiers, optical filters. Add ASE noise in amplifiers

in the Monte Carlo modes 2 and 3. In mode 4, propagateK through all

dispersion map elements.
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ii. At regular intervals during the transmission, for instance every five dis-

persion maps, draw eye diagrams, compute various fluctuations such as

timing jitter, and accumulate data to computeK(z) at the local point.

(c) Write all data to the disk every 30 minutes.

3. Write the final fieldu0(t), the matrixK, and all eye diagrams and statistics to the

disk.

A.4.2 Deterministic Propagation of the Covariance Matrix

The deterministic propagation of the covariance matrixK is described in Section (4.4) and

is implemented in the C++ routinepropagator() . At every amplifier, Gaussian white

noise power is added to the principal diagonal ofK. The action of an optical filter onK is

given byKout,kl =Kk,lHkHl, whereHi is the real filter function at frequency modei.

I now summarize the algorithm for propagatingK over one fiber span fromz = 0 to

z = L, followed by an EDFA. First, propagate the fieldu0(t,0) using a standard Fourier

split-step algorithm, yieldingu0(t,L). Saveu0(t,L), return toz = 0 and repeat the fol-

lowing for eachk:

1. Computeu(k)(t,L) by perturbingu0(t,0) in thek-th frequency mode and propagat-

ing it to z = L.

2. Separate the pulses in the signal by passingu(k)(t,L) through a linear and lossless

fiber with total dispersion−D(L).

3. Compute the perturbation vectora(k) and apply the phase jitter separation (4.4.5a),

(4.4.5b) individually to each pulse, yielding the vectorã(k) of the dispersion com-

pensated signal.

4. Invert step 2 to computẽa(k) at pointL. Evaluate the propagator matrix elements

Ψjk for all j.

Finally, computeK(L) according to (4.4.2).

A.4.3 Computation of the Electrical pdf from the Covariance Matrix

The computation of the electrical pdf from the covariance matrix is implemented in the

Matlab routinenoise.m.
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1. Read inA, the noise-free optical field vector in frequency domain, andK, the co-

variance matrix at the receiver.

2. To increase the numerical accuracy, scaleA andK so that the maximum element of

K becomes 1.

3. As Figs. 6.2(b) and 6.7(b) show, some of the eigenvalues ofK can become very

small or even negative during the propagation, due to numerical inaccuracies. These

small eigenvalues would inhibit the inversion ofK. If there are any eigenvalues

of K that are smaller thanε = 1/300 times the maximum eigenvalue, diagonalize

MTKM = ΛK whereΛK is the diagonal matrix of the eigenvalues, increase the

small eigenvalues to the threshold value, and compute a corrected covariance matrix

K′ = MΛ′KMT . I verified that the resulting pdf is independent ofε over a wide

range.

4. InvertK′.

5. Compute the matrixUD by applying (A.3.1d) and (A.3.1e).

6. Compute the self-adjoint matrixWkl as described in (4.6.3).

7. Start a loop over all points in timet = tk for which the pdf must be computed:

(a) If timing jitter was separated and must be added again by applying (A.2.1),

start a loop over then Gauss-Hermite sample timestk,i = tk − tGH,i with

1≤ i≤ n:

i. ComputeW(tk,i) from F.

ii. Compute the matrixH by evaluating (A.3.1g), then computeV andΛ.

iii. Compute the valuessl(tk,i) = λlQ
2
l =

∑
m AlWlm(tk,i)Am and

ynf(tk,i) =
∑

l sl.

iv. Invert step 2.

v. Evaluate the characteristic functionΦτ=0(ζ, tk,i) for zero timing jitter ac-

cording to (4.6.12), usingsk.

vi. Prepare the discrete Fourier transform to computefy,τ=0(y, tk,i) : If

i = 1, optimize the grid increment∆ζk to yield the best resolution in

fy,τ=0(y, tk,i) This ∆ζk is then used for alli.
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Figure A.1: Simulated values of global versus local relative errorε(δ) shown by the circles for the
(a) DMS system and (b) CRZ system. The lines are fits to a power law.

vii. Compute fy,τ=0(y, tk,i) by taking the discrete Fourier transform of

Φτ=0(ζ, tk,i).

viii. Verify that fy,τ=0(y, tk,i) is normalized andfy,τ=0(0, tk,i) = 0, then save

it.

(b) Computefy(y, tk) from thefy,τ=0(y, tk,i) by applying (A.2.2).

(c) Saveynf(tk), ∆ζk , andfy(y, tk).

8. Write all ynf(tk), ∆ζk , andfy(y, tk) to the disk.

It turns out that that the steps 2, 3, and 7(a)vi significantly improve the numerical accuracy

of the resulting pdf. The computation can fail altogether if step 3 is omitted. Both steps 2

and 7(a)vi improvefy(y, t) by lowering the roundoff floor. According to my experience,

fy(y, t) will never span more than about 16 orders of magnitude when usingdouble

floating point arithmetic (64 bits). I use a Fourier transform vector length of 1024 in

step 7(a)vi.

A.5 Split-Step Accuracy

All simulation in this dissertation are based on the third-order split-step algorithm [72]. In

order to compare traditional Monte Carlo simulations to the deterministic method, one has

to verify that the numerical accuracy is sufficient. We propagate one single Monte Carlo
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noise realization in both the 8-bit DMS system over 24,000 km as described in Section 6.1

and in the 32-bit CRZ system over 6,100 km as described in Section 6.2, while varying

the local relative error boundδ =
∥∥uc−uf

∥∥/
∥∥uf

∥∥, whereuc anduf are the coarse and

the fine solutions respectively [72]. The noise is only added in theN lowest frequency

modes and the random generator’s seed is the same in all simulations.

In Fig. A.1 I show the global relative errorε =
∥∥u(δ)−u

∥∥/‖u‖ versus the local relative

error δ in double-logarithmic scale, whereu(δ) is the optical field at the receiver that

was obtained using the error boundδ, andu is the solution forδ = 10−12. The circles

in Fig. A.1(a) show simulation values ofε(δ) for the DMS system, and the line is a fit

with the functionqδm, whereq = 1.737×104 andm = 1.594. Fig. A.1(b) displays the

same for the CRZ system, whereq = 33.19 andm = 1.258. For a global error goal of

ε≤ 10−5 that I used in the Monte Carlo simulations, the fit yields the local relative errors

of δ = 1.6×10−6 andδ = 6.6×10−6 for the DMS and CRZ systems, respectively. For

ε = 10−4, one findsδ = 6.8×10−6 andδ = 4.0×10−5.
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