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Introduction

In nature, constraints in some systems often lead to an even richer, more complex behavior
than it would be encountered in their absence. In physics, prominent examples are found in
guantum mechanics, where localization of particles leads to quantization of their energy states,
as compared to continuous spectra for vanishing potentials [Mes64]. Confinement of an electron
gas to two, one, or even zero dimensions is essential for the Quantum Hall effect and the physics
of quantum dots [BW95]. The existence of “forbidden” electron transitions increase the life time
of excited states in gas lasers [Hak70].

Also in thermodynamics, there are numerous cases where the introduction of confinements
changes the overall behavior. Spatial confinements such as limited system size and excluded
volume interactions, play an important role in many physical laws [Hil64, Sch97].

In mathematics, a major part of differential geometry deals with manifolds with an intrinsic
dimension smaller than that of the space they are embedded in [Spi70]. The topic of this thesis
are the properties of fluctuating surfaces in three-dimensional space. Here, these surfaces may
consist of molecules which are bound together to membranes. The membranes are corrugated,
but the corresponding curvature radii are far beyond the molecular length scale. This research
field can be regarded as part of polymer physics, however, membranes show some important
differences in their behavior as compared to linear polymers, often due to geometric constraints
[DESE].

The behavior of pure, “naked” membranes is interesting enough and still being investigated
intensively. One way to extend this simple system is to decorate the surface by embedding
inclusions, whose interaction with each other and the ambient membrane opened up a whole
new area of research [SI89, GBP93].

Biological cells have walls which constitute the basic compartment in the bodies of most
animals, plants, and even bacteria. These walls are dglieddnembranesand show complex
behavior that is often investigated in molecular biology. Proteins and polymers are included in
these surfaces and serve e.g. as ion pumps to sustain the life functions of the cell [HLMZ77,
Ack92]. Recently, synthetic lipid membranes have been used in medicine to “mask” (wrap)
special types of drugs, which are more or less poisonous and have to be transported in the blood
system for example directly to the locus of a tumor. Also, there are recent applications to enclose
tiny gas bubbles in lipid membranes which, upon injection in a vein, enhance the contrast in
ultrasonic sonographs of organs. Using gas bubbles is favorable due to the corresponding harsh
density gradient on their surface which yields large contributions in (Rayleigh) scattering theory,
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but would lead to embolisms if unmasked [SHLU93].

Deriving laws that govern the behavior of fluctuating membranes in a purely analytical way is
very hard, although a couple of notable predictions were found that way. Theoretical treatments
started out in the early seventies based on differential geometry and of course statistical mechan-
ics [Can70, Hel73]. Methods such as renormalization group (RG) calculations and perturbation
theory were employed later to find scaling laws and phase transitions [Hel85, Pel86, Dav88].
However, to test these results and give new input to theory, numerical simulation is another cor-
nerstone of research efforts and the link to experiment.

The goal of this thesis is to compare the results of a Monte Carlo simulation of a bending
stiff, fluid, closed random surface with theory. As an extension, anisotropic, rigid particles are
simulated on this surface. The membrane thus serves as a laboratory for simulating statistical
mechanics in a special geometry.

In chapter I, the physics of biological membranes will be discussed as a motivation and base
for later models. Chapter Il deals with the derivation of a bending Hamiltonian and its micro-
scopic justification by molecular forces. In chapter lll, the connection with thermodynamics
is treated, both for the pure membrane and with particles embedded in it. Also, characteristic
lengths are defined. Chapter IV is devoted to theoretical foundations of the Monte Carlo method,
chapter V describes the program that was developed, and its results are presented in chapter VI.
In chapter VII, the results are reviewed and an outlook for future research is given.

Some mathematical details are summarized in the appendix.



l. Lipid Membranes

.1 Whatis a Lipid Membrane?

This chapter aims at describing physical and biological properties of lipid membranes in nature.

Biological lipid membranes constitute the basic building blocks of all cells. Also, they serve
as functional elements, being both a barrier between in- and outside of a cell and carrying larger
molecules such as inclusions that are permeable for specific chemicals.

A lipid molecule consists of a hydrophilic (water-loving) head group and one or
two hydrophobic (water-repelling) hydrocarbon tails. This property is caléad-
phiphilic; corresponding chemicals include fats, tensids, and some liquid crystals.
Often phospholipidsare encountered, since
most of the biological lipids contain a phos-
phor atom in their head group. Typi-
cal chemical compounds includgalmitoyl- DMPC
phosphatidyl-cholifDPPC) andlimyristoyl- '
phosphatidyl-cholilDMPC, Fig. 1.1), the

latter having for instance two tail chains of C

13 carbon atoms each (see also Fig. 11.2). C C

Also natural mixtures such aggg yoke O=C\ /C=O CH2CH2N+(CH3)3
phosphatidyl-choline (EYPC) appear fre- O O 6

quently. When immersed in a polar solvent
such as water, they spontaneously form ag-
gregates (Fig. 1.2) such as layers (a) or so- O

called micelles (b). This aggregation is drivepjgyre 1.1: chemical structure of DMPC. The two

by a corresponding lowering of potential erfail chains contain 13 carbon atoms each.

ergy, as hydrophobic parts can be “hidden”

from the solvent that way and the number of hydrogen bonds in the water can be maximized.
Two lipid layers usually form dilayer (Fig. 1.3) by joining two monolayers on the tail side. The
typical thickness of a bilayer is 4-6 nanometers and thus wave microscopy is difficult even in the
X-ray range. Common structures that bilayers can assumeeareles which are closed sur-

faces (bubbles) of a diameter from 40 nm up to a few hundred nanometers [HLMZ77]. Vesicles
are the structures considered in this thesis, as they both constitute important biological systems
and can be simulated easily [GK95].

I I | .
CHz CH-CHz 0-P-0
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Figure 1.3: Section of a lipid bilayer with some typical inclusions.

First proposals of the bilayer structure)
were published as early as 1925 by Gort
and Grendel (see references in [HLMZ77]k
They compared the amount of lipids extracte
from dissolved cell walls of known surface
area with a monolayer floating on a wa- (a) (b)
ter surface and found a ratio of about two.
The parallel “palisade” alignment of the tails
was indicated even before by polarization-
microscopy, when it was shown that nerve tissue is strongly birefringent [HLMZ77]. Freeze-
fracture experiments with subsequent etching showed that lipid membranes break preferably
along inner planes, which further supports bilayer theories. Modern imaging methods include
cryo-transmission electron-microscopy (cryo-TEM, see Fig. |.5), scanning tunnel-, and atomic
force microscopy (STM, AFM).

Figure 1.2: Lipid layer (a) and micelle (b).

.2 Phases

Perhaps the most stunning feature of lipid membranes is their fluidity: The shear mod-
ulus in the membrane plane is low, correspondingly, the lateral diffusion coefficient of
lipids or embedded test particles is quite high. This makes lipid membranes appear as
a viscous2D-fluid. Moreover, at least in some temperature range, translational symme-
try is only broken in the direction normal to the plane, i.e., the bilayer shows rotational
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and in-plane translational symmetry. This is the symmetry of a smectic-A liquid crys-
tal [Mac97] and therefore this phase is also calleplid crystal phase Multiple bilay-
ers in addition often assemble in stacked-up sheets, known asatmalar fluid phase

As temperature is lowered, a first-order 330+ c
transition from the lamellar fluid phasé () T(K)
to a so-calledgel phase(Ls) is observed 30+ pympC ] Lot EW
(Fig. 1.4). For DMPC, this occurs around (ff‘uid)
T, ~ 45°C. This gel phase is characterized a0 Lg
by freezing of the lipid tails into a six-fold (gel)
symmetry, thenexatic phaselevelops. Lg+ EW

In addition to these two simple phases, “* | : :

0 0.2 0.4 0.6

many more sub-phases have been found, 1-¢

depending on the chemical and mechaniGgyre 1.4: Qualitative phase diagram for DMPC as
properties of the constituents. These inclu@giunction of lipid volume fractiorp. “EW" denotes

for instance theripple’—phase [Mac97] in féig???)water, “C” is the triple point (reproduced after
which the membrane forms a superstructure

in the shape of an egg-carton. This was investigated in the Studienarbeit [Hol97]. Superstructures
are of special interest in the scope of this work since they introduce an intermediate, mesoscopic
length scale between microscopic (lipid head sizecanm) and “macroscopic” (som&0 nm)
lengths. Internal degrees of freedom such as chirality or molecular tilt [LM93, ML91, GL89], as
well as anisotropic inclusions [Fou96, Hol97], see Fig. 1.5, were employed to explain this phase
by breaking the in-plane symmetry. A global molecular tilt would correspond to a smectic-C
liquid crystal. All these biological data are important to find a reasonable simplified model for

the Monte Carlo simulation, as explained in chapters IV and V.

1.3 Further Mechanical Properties

Fluidity enables lipid membranes to form cusps and in extreme cases even elongated branches
(“dumbbells”). Besides fluidity (at least in the fluid phase), lipid membranes have two other
essential characteristics: Vanishing surface tension and finite bending stiffness [Isr92, HLMZ77,
Lip98]. This is somehow opposite from soap bubbles: A soap-water solution is a (3D-)isotropic
fluid, which tries to minimize its energetically unfavorable interface to the air. Thus, a global
surface tension results. On the other hand, the curvature of the bubble does not directly influence
its internal energy, since at least the bulk of the soap film (the shell of a typical soap bubble might
have a thickness of several tens of microns) does not feel curvature due to its isotropy.

In contrast, the surface area of a lipid membrane is more or less determined by its total
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number of lipids since the membrane is a monomolecular sheet (see also the next chapter). Strong
stretching of the membrane just leads to tearing, whereas compression induces a corrugation,
without changing the true surface area, either.

In addition, curving a lipid membrane leads to splay of the lipids, which can be seen in Figs.
[.2 and 1.3. This implies a deviation from the preferred intermolecular distances, which results
in an intrinsic bending rigidity. In the physical literature, thin surface tension controlled systems
are referred to as “films”, as opposed to bending stiff “membranes”. A 2D-fluid that resists
curving is quite strange to everyday experience and a macroscopic mechanical model hard to
conceive. Appropriate quantities to express this bending rigidity will be given in the next chapter.

The lateral viscosity of lipid membranes in the—phase was measured to be in the range of
0.1 —1 Pas [HLMZ77] which approximately equals the value for viscous oil [Kuc91]. Measure-
ments are conducted by applying EMR or NMR to determine the rotational relaxation times of
the lipids, which turns out to be abold~" — 10~® s. Hence, a single molecule can travel as far
as some microns per second. Diffusion coefficients for embedded proteins (see next section) can
be measured by a method called FR@Eorescence Recovery After Photobleachjighere
fluorescent marker proteins are (irreversibly) photobleached by an intense Laser pulse and the
recovery time is measured, as particles are replaced by lateral diffusion and the bleached spot
vanishes [Ack92].

.4 Embedded Particles

As mentioned before, especially biological membranes host a large number of particles, which
“float” in the ambient membrane. The lipid layers themselves promote embedding of foreign
particles by developing gaps in “gtg-kinks”, which are zig-zag-like deviations from the regular
bilayer pattern [HLMZ77]. Even without this effect, complete absenceoe$urfactantsvould

be unfavorable due to entropy.

Especially proteins account for a large weight fraction in biomembranes (40-608gral
andmarginalinclusions are being distinguished, depending on whether they span the membrane
in its entire thickness or not. So-called “ion-pumps”, e.g. in erythrozytes, can be giant molecules
compared to the small lipids. Other impurities such as “gemini” (two lipids linked at their
head groups forming some sort of horseshoe structure, see Fig. 1.3) are less deviating in size.
Inclusions can be isotropic (rotational invariant normal to the plane) or not. It has been shown
that even small amounts of inclusions can alter membrane properties dramatically (see Fig. 1.5).
The complex interaction of these particles with each other and the membrane was, and will be
later in this treatment, object of in-depth investigation.
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Figure 1.5: Freeze-fracture cryo-TEM micrograph of cells of the bacte@iraptomyces hygroscopigus

taken from [SG87]. The area EF contains few protein particles, the other, right section of the fish-shaped
structure has a high protein density. The areas WS show a raspberry-like wafer structure with bulges of
30-40 nmin size. The bar in the lower right corner represents 100 nm (about the width of the letter “W”).

To name one prominent example, the therfhieker-phenomenoaf erythrozytes (red blood
cells), a quasi-periodic global shape fluctuation, is attributed to a combination of most of the
effects summarized so far, stemming from both the pure membrane (bending rigidity, internal
order parameters etc.) as well as inclusion interaction. In addition, there is a driving pressure
difference between the in- and the outside of the vesicle (lower pressure inside).



l|. Forces

.1 Bending Hamiltonian

In this chapter, the elastomechanical properties of thin layers with bending rigidity but vanishing
surface tension shall be discussed. Following the biological terminology, these will be called
membranedn distinction tofilmswith finite surface tension (e.g. soap bubbles). However, in the
theory of elasticity, the first kind is rather termeldstic shel[LL59], whereas films are called
“membranes”.

First, an expression for a bending energy density suitable for lipid membranes will be con-
structed from simple differential geometry and symmetry arguments. After a discussion of a few
important mathematical properties, the Hamiltonian will be reviewed in terms of the theory of
elasticity. In the end, the constants in the formulation will be compared to experimental data.

As mentioned before, lipid membranes show a bending energy density controlled by the lo-
cal curvature. The remainder of this work will only deal with membranes whose curvature radii
are large compared to their thickness. Obviously, the curvature energy of a shell cannot de-
pend on its spatial orientation, i.e., the embedding in the surrounding space. Also, we assume
that the membranes have indistinguishable upper and lower surfaces. Thus, the bending energy
must be invariant with respect to rotations, translations and reflections of the coordinate sys-
tem. Therefore, only the invariants of the curvature temsatenoted byH := Tr b = ¢; + ¢
andK :=det b = ¢; ¢; (See appendix A.1, eqns. (A.5a), (A.5b)) can be of importance for the
Hamiltonian. Herec, , are the surface principal curvaturef, is twice the mean curvature
(H = ¢1 + ), and K the Gaussian curvature. Sineechanges sign when the surface is turned
upside down (reflected at a plane), only even powerH afan be part of a reasonable bending
Hamiltonian. In contrastk is bilinear in the curvatures and thus invariant with respect to re-
flections. With this input, we can find a bending energy dengity lowest order, first given by
Canham in 1970 [Can70] and Helfrich in 1973 [Hel73]

gzg(c1+02)2+/%0102:gH2+/%K : (I1.1)

The coefficients: andx are called, respectivelfaending moduluand Gaussian modulysand

have the dimension of energy. Itis assumed that curvatureRadii 1/¢;, Ry = 1/c, are always

large compared to the membrane thickness, so higher powers suéh, 88K, K2, (VH)?

etc... can be neglected here. (However, there have been different approaches [Goe93, Bal81]).

14
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Also, a surface area dependent term was omitted, based on the experimental result that surface
tension vanishes for lipid membranes [Isr92].

The total bending energy of a surfaegiven byx(u, v) can thus be written as

Etot:/s<gH2+/%K> dA:/S<gH2+RK)\/EdudU , (11.2)

whered A denotes the surface area element gid= det g is the determinant of the surface
metric tensor, see eq. (A.2b).

Two important mathematical details can immediately be concluded:

¢ The Helfrich bending energy eq. (11.2) is scale independent. Scaling the surface by a factor
x — «ax also scales the curvature radli— « R, thus it acts inversely on the curvatures:
H? — (H/a)?* K — K/(a?). This change is compensated by the scaled integration mea-
suredA — o? dA.

e By virtue of the Gaul3-Bonnet theorem [Spi70, Car83] (see appendix A.2), the identity

/ K dA = 4r(1 — g) (11.3)
S

holds, whergy is the “genus” of the surfacg & 0 for a vesicle). This equation will enable
us later to omit thé<-dependent term if;, from eq. (11.2), whenever only differences in
bending energy rather than absolute values are of interest.

Hence, eqns. (I1.1),(l.2) reduce to the simple formulas

K

9=3 H? + const |, Fior = g/H2 dA + const (11.4)
S

which is valid as long as the surface maintains constant topology, e.g. the surface cannot
change its shape from a bubble to, say, a torus.

Sometimes [Hel73], the assumption of up-down symmetry is dropped aporataneous
curvaturec, is introduced to eq. (I.1) by

K K
g:§(61+CQ—CO)2+RC102:§H2_'L€COH+RK . (”5)

However, consequences of this ansatz will not be pursued here.



16 CHAPTER Il. FORCES

y

Figure 1l.1: Exaggerated sketch of a bent plate with> 0. Upper layers are compressed, while lower
layers are expanded. The neutral surface lies=atz, which is not necessarily in the middle of the plate.
The difference betweeA(z) andAy = A(z) determines A := (A(z) — Ap) /Ao (see eq(ll.6)).

1.2 Bending Coefficients

The dependence of the coefficientsk on microscopic properties of the shell are discussed in
this section. To start, we imagine the shell as a plate of thickdless/hereh is supposed to

be small compared to its lateral extent. The plate may be laterally homogeneous and isotropic.
It is assumed to be flat in the ground state. In (Fig. Il.1), it is shown as bent alongatkis.

The plate may be thought of as divided into an imaginary stack of “layers” oriented parallel to
its surface. It is clear, without any assumption about the inner structure, that layers close to the
convex side of the plate will be stretched, while layers close to the concave side (upper side in
the figure) are compressed. Both deformations cost energy and are the microscopic reason for
the Helfrich bending energy eqns. (11.1),(1.2). This energy depends on the change in surface
area of the corresponding layer inflicted by the bending. Somewhere in the inside of the plate
lies the “neutral surface” whose surface area remains constant [LL59], the position of this layer
is denoted by, (not necessarily in the middle). The relative change in surface areis given

by [Goe93]

A(z)— A
6A(z) == % = —(z—2)H + (2 — 2)°K (11.6)
0
for a proof, see appendix A.3.
The Taylor expansion of theolumeelastic energy density in a layer around the equilibrium

state is to second order

o 89\;01 1 829Vol 2
wal2) = Foa i F 3 55 a7 a0 0AE)
ka(2)

= s(z)0A(2) + —5 (6A(2))?* (I.7)

wheres(z) is the lateral stress in the plate.slfz) = 0, eq. (11.7) is analogous to Hooke'’s law.




I1.2. BENDING COEFFICIENTS 17

Head-group
m— s Dressure

Interfacial
pressure

Figure 11.2: Lipid monolayer with double-chained amphiphiles; both heads and tail chains repel each
other. The “head groups” themselves contain 10-40 atoms (Adapted from [Isr92]).

However, even for the flat bilayes(~) does in general not vanish. Equilibrium stress dis-
tribution in lipid membranes is not simple and different models were proposed: Tail chains are
either believed to attract each other (S. Leibler in [NPW89]), or are also thought to be mutually
repulsive and attraction is constrained only to an interfacial layer between these two parts [Isr92],
see Fig. 1.2. Adjacent head groups repel each other due to their electric charge in all models.
Substituting eq. (11.6) into eq. (1.7) and omitting curvature terms beyond quadratic order, we
find (with the shorthand\z := (z — z))

h
| v dz (11.8)
-/ e (80 HE () A H o+ s(0) (AP K ds (11.9)
—h

This can be compared with eq. (11.5) to identify corresponding terms:

= /hky,_(z) (Az)? dz (1.10a)
2
h
R = /_hs(z) (Az)* dz (11.10b)
Kcy = —/};s(z) Az dz . (I.10c)

Eq. (11.10c) is of no further interest since it corresponds to spontaneous curvature which we
assumed to vanish.

For a homogeneous plate, one would expgct 0 and both constant(z) = s and con-
stant stretching modulus distributién(z) = k, = const. Substituting this in egns. (11.10a) and
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(11.10b), we end up with

1
ko= k;agh?’ (Il.11a)
R = s§h3 . (11.11b)

These results can be compared to the standard theory of elasticity of a thin, homogeneous plate
in equilibrium [LL59]

E h3 2F h3
i & —h ’
3(1— p?) 3(1+p)
—— ——

=K/2 =K

g= (11.12)

where E is the elastic modulus and Poisson’s ratio of the plate.(€ [0, 0.5] for all known
materials). The coefficients can now be identified with, respectivglyandx.

It is worth pointing out thak, < only depend ork to third order for constari,. If, however,
the stretching modulus vanishes everywhere except for small redicas h, the integration
eg. (1.8) rather yields a quadratic dependenca.iin realistic models, a relationshig & o h"
with 2 < n < 3 is expected (S. Leibler in [NPW89]).

11.3 Microscopic Physics of Lipid Membranes

Lipid molecules can form aggregates that have the strange feature of being fluid-like. This is due
to the weakness of the forces that bind them together, which are Van-der-Waals, hydrophobic,
hydrogen-bond, and screened electrostatic forces, but do not include strong ionic or covalent
forces. Unsaturated carbon atoms in the chains increase fluidity [Isr92].

Depending on the type of lipids, the ambient solvent, temperature, and presence of ions
(solved salts etc.), lipid molecules can form a variety of aggregates as discussed in chapter I. The
type of preferred aggregate shape depends very much on the form of the lipids. If the molecules
are cone-shaped, i.e. they have big head groups and slim chains, they rather form highly curved
objects such as micelles. Conversely, if head groups are small and tail chains bulky, bilayers are
assumed. In fact, most of the bilayer amphiphiles have two tail chains (see Fig. I.1), which gives
them a more cylindrical or truncated cone shape [Isr92, HLMZ77]. The critical quantity is the
packing parametev/A.l. (v, Ap, l. : molecular volume, headgroup area, total length), see Fig.
I1.3. Values ofv/A,l. < 1/2 give micelles,1/2...1 bilayers and)/Al. > 1 can form “inverted
micelles” where headgroups are directed towards the micelle interior and tails outside [Isr92].
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cone truncated cone

Figure 11.3: Critical packing shapes cone/(Al. < 1/3) and truncated coné (3 < v/Aul. < 1/2)

Some other characteristic mechanical properties:

e There is an optimal surface area per molecule (head gréyymorresponding to eq. (11.7).
The stretching energy is harmonic arousgt
ka (Ap — Apo)?
Bs(A4y) = -2 A= Ano)” O(4:%) (11.13)
2 Ay,
with values ofk4 = 100. . .230 m3m?, [Isr92]. However, the membrane tears if stretched
beyond(A;, — Anp)/An = 1% [Lip98].

e Measured values fot in bilayers lie in the rangé ... 20 x 1072 J = 5...50 kg7 at
room temperature and about half as much for monolayers [Isr92, HLMZ77]. Therefore,
lipid membranes are “soft matter” systems, where typical energies range akgiihd
The Gaussian modulusis hard to measure, since changes in membrane topology would
be required. However, there have been recent approaches to numerically simulate fluid
membranes in the sponge phase, whese V' [GK98] and thereby determine

e The lipid membrane volume compressibility, in which the membrane material is treated as
a bulk fluid

1 /oV

with values of somé<z ~ 10~? 1/Pa is comparable to that of wated.6 x 107° 1/Pa,
[Kuc91]), which is almost incompressible. Thus, stretching the total membrane area is
directly linked to a change in thickness (Poisson’s ratio is 1/2). This further supports

the notion of treating a lipid membrane as a 2D-fluid.



l1l. Fluctuations

1.1 Elementary Thermodynamics of Fluid Membranes

The last chapters dealt with the microscopic and deterministic properties of fluid membranes.
This chapter will extend the discussion to thermodynamical aspects and fluctuations. These are
crucial to define characteristic lengths on fluctuating surfaces and later to determine interactions
between surface particles.
First, a more precise discussionfrface tensions in order. A 2-dimensional surface in
3-dimensional space has a surface afedf it is framed (such as a soap film in a wire loop)
or fluctuates around an ideal shape (a soap bubble, lipid vesicle, or a tube-like structure), also a
projected aread,, can be defined (the area of the wire loop, surface of the ideal sphere/tube etc.),
whereA > A,. These two surfaces areas are independent thermodynamical variables [DL91]
and pertain to two conjugate surface tensions, respectivelydo,. Therefore, in keeping two
of these four quantities constant, we can define four different thermodynamic ensembles, listed
in the following table [DL91]:
(i) (A, A, isolated, framed
(i) (A,o0,) isolated, unframed
(i) (o,A4,) open,framed
(iv) (o,0,) open,unframed
The first two ensembles are called isolated, since the total surface area (and therefore the total
number of surface molecules, see chapter Il) is kept constant. A thermodynamical potential can
be assigned to each of these ensembles [DL91].
When stating that lipid membranes have no surface tension, it is meant tlaaishes for
some finite value ofd. This behavior is opposite to that of a soap bubble, in which surface
tension has its minimum fad — (soap bubbles are stabilized against deflation only by internal
pressure). In contrasty, is controlled by the bending stiffnessand the temperatur€ and
vanishes at some finite value df,.

I1l.2 Persistence Length

Fluctuating polymers and surfaces with finite bending stiffness are locally smooth, but the ori-
entation correlation decays over long length scales (S. Leibler in [NPW89], [MM94, GK97b,
Pel86]). The characteristic length which separates the two scales is paligidtence length

20
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U(S) .~ Polymer

Figure lll.1: Curved linear polymer. The correlation of the tangential vector decays on average expo-
nentially along the contour length.

¢p. The definition can be illustrated on a linear polymer of lenftim 3-D space, given by the
functionr(s) along its contour lengtk. For a finite bending stiffnessy, the bending energy of
the polymer is given in the Kratky-Porod model [DE86] by

L
_ ke [7(0u
chnd - 9 /0 (aS) ds y (”ll)

whereu is a unit tangential vector to the chairis) = 0R/ds (Fig. Ill.1). The equilibrium
conformational distribution of the polymer (the probability to find it in the st&te) is given by
the Boltzmann distribution

U[r] = exp (— i;;f) : (I1.2)

wherekg = 1.38 x 10~2 J/K is Boltzmann’s constant. Egns. (Ill.1) and (Ill.2) describe a
Gaussian diffusion processThe tangential vector correlation function is thus known to be

vp(s) = <u(so) - u(so + s)>s = exp (—g) , (11.3)
with (for the Gaussian case) &p = ;—PT . (111.4)
B

Note that eq. (I11.4) is not a definition but the special result for the Gaussian case. Two parts of a
polymer which are separated by a contour lengtirger thar¢» are uncorrelated in orientation.

In principle, eq. (111.3) can be generalized to surfaces by replacing the tangential vectors by
the surface normai(x)

V() == <n(a:1) - n(z) > , (I11.5)

{=z1,T2

1The tangential vectau(s) along the contour lengthformally equals the time evolution of a vector quantity un-
der rotational Brownian motion(t) (|[u|| = 1 in both cases) [DE86]. The persistence length is therefore equivalent
to an inverse temporal diffusion constagy = 1/(2D,.))
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where the average is taken over all pairs of poifis, x2) on the surface, whose shortest
geodesic distance s However, a regular 2-D surface in 3-D space has, similar to a 1-D polymer

in 2-D space, stronger geometrical constraints so that self-avoidance and continuity conditions
become more important. Especially if a membrane is framed or has fixed topology (e.g., a closed
surface), the normal-normal correlation cannot always be expected to decay to zero. However,
there are alternative definitions of the persistence length, which will be discussed below. The
persistence length will become important when for instance surface particle interaction is treated
in chapters V and VI.

111.3 Scaling

To further illustrate the importance of the number of dimensions and self-avoidance, the scaling
behaviors of aD-dimensional network of Hookean springd (= 1 : linear chain,D = 2 :
“membrane”) embedded irdimensional space are compared. No bending stiffness is assumed
here. LetL be the linear size of the network (e.g. the chain contour length, the diameter of the
stretched membrane etc.) afd (< L) its size in space (e.g? = R, radius of gyration, see

ed. (V.5)). ThenL andR are related by [DE86, GK97Db]

D+2
R L¥ === 1.6
> ’ © d+2 (111-6)

for self-avoiding and

LE=D)2 for D < 2,
R (111.7)
In(L) for D=2

for non-self-avoiding (self-intersecting or so-callpdantom networks. Eq. (lll.6) is known
as the Flory estimate, while (111.7) is an exact result (random walk). d~er 3 and polymers
(D = 1), we get respectively.?/®> and L'/2, and for membranes] = 2), we getL*" and
v/In(L) (Note that the phantom result is not algebraic!).

The class of structures which scales like egns. (l11.6), (11.7) is catlesmplednetworks.
This scaling type i$ractal [Man87], as the ratio of volume to surface area of a closed crumpled
surface is negligible compared to that of a body with a smooth surface in the mathematical sense
(e.g. a sphere):

vV R L3)L? =L for smooth bodies

— X — X (111.8)
A L2 L3 /L2 = [*/5 for crumpled bodie$D = 2, d = 3)

According to recent results [GK98, 1J95], even membranes with finite bending stiffness are al-
ways in the crumpled phase. In other words, for diverging membrane sizes, the spatial extent of
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lipid membranes compared to smooth bodies becomes neglidibleerefore, for finite bending
stiffness, a scaling crossover

V)
L x = O(L/¢wm) (111.9)

can be expected [1J95, GK96], where a rigid and a flaccid regime meet at lengths close to the
persistence lengthO must obeyO(z) =~ const in the rigid regime where < &, (z < 1)
andO(z) « z~! in the flaccid regime with. > &, (largex). [The latter case is calldaranched
polymerscaling; the Flory estimate would give the slightly different resul&gf) oc 273/°.]

Eq. (111.9) will be used in chapter VI.

1.4 Spherical Fluctuations

As stated earlier, lipid vesicles are similar to bubbles fluctuating around a spherical shape.
Therefore, it is reasonable to expand eq. (l.4) into (normalized, complex) spherical harmonics
[Hel86, MS87, MM94, GK96, GK97b], which form a complete orthonormal systeuf,ifH?)
[Wla72] with

Y0, ¢) = nt P (cos) €™ 1=0,1,2,...; —I<m<l (lll.10)
/ V™ (V) dQ = Sw G ym =y, ™ . (1.11)
S2

The P™(-) are the associated Legendre polynomig|8,are (real) normalizing factors,, is

Kronecker’s delta, and the asterisklenotes complex conjugation. Spherical harmonics are the
eigenbase of the Laplaciaks: on the spher&? (also called Beltrami’s operator [Wla72])

AeY™ = qY",  q=—-l+1) (111.12)
19 9 1o
Ag = — L siny Z) - = & .1
s sind 00 (Smﬁ 019) sin?d 042 (.13)

with the eigenvalues,. The vesicle shape can be expressed as a normalized radial height field
h(¥, ¢) over the sphere of radiug,

r(9,¢) = Ro[l+h(0,9)] (111.14)

and expanded in spherical harmonics

I l

h,0) = > a" " (W,¢) (111.15)

=0 m=-—1

2However, ford > 5, D > 4, there is a so-calleflat phasewhich scales non-fractally and, with decreasing
bending stiffness, arumpling transitiorto the crumpled phase [GK96] is encountered
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where(a;*)* = a, ™, since the height field is real. The summation lifpjtis a large wavenumber

cutoff determined by the conformational number of degrees of freefloiirhis cutoff is given

for a lipid membrane by a microscopic lengilivesicle head diameter) and in simulations by the
bond lengths (see next chapter). Since only lateral oscillations are of interest here, the number
of degrees of freedom approximately equals

f=0Uu+1?=N | (11.16)

[GK96, Hel86]. However, a more exact determinationfoivould involve a discussion of how
many vertices are at least necessary to unambiguously “samplg™alip to a certaird = ;.
Using eg. (111.15), we can express the Helfrich bending energy eq. (11.4) to bfder[GK96]

I

/H2 dA = 87k + = ZZ ala+2)] la"* | - (11.17)

[>2 m=—1

Spherical harmonics with < 2 do not contribute since they just correspond, respectively, to
changes in the membrane area and overall translations. Note also that the energy does not depend
onm (“magnetic quantum number”Br« is the curvature energy for a perfect sphere and thus
the minimal or ground state energy. Hence, the double sum in eq. (I1l.17) represents the excess
bending energy due to corrugations.

By virtue of eq. (111.12), eq. (I11.17) shows no mode coupling; the Helfrich Hamiltonian on
the sphere becomes diagonal. Eq. (l11.17) can therefore be combined with the equipartition the-
orem {g7'/2 on average per degree of freedom) to yield expectation values of the total bending
energy of

(F) :8m+§kBT (I11.18)

and of the magnitude of each spherical harmonic of

kpT »
ATl 7] x It (111.19)

Again, the last result is independentrafin this approximation.
A term similar to eq. (111.17) can be found for the volume of the vesicle [GK96]

- 1+— Z Z (1+ ) an? (111.20)

whereV, := (4/3)7 R,* is the volume of the ground state sphere (see definition in chapter
VI, pg. 39). Combining eq. (111.20) with eq. (111.19), and keeping in mind that 1 spherical

(Jap[?) =
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harmonics pertain to ea¢hone obtains

Iy 54
% 3kpT 20+ 1)(1 4 ¢/2) 3kpT 20 +1
! )3 — e 2

Vo 8Tk = alq+2) 8Tk = 20(1 4 2)
3kgT [™dl  3kgT
- —=— In(lp/2 .21
8TK /2 l 8Tk n(l/2) ( )

for the expectation value of the relative change in volyié / ;) — 1. A similar formula holds
for the radius of gyratio?, [GK97Db]
<Rg> _ kBT
R 1= py— In(lp/2) . (1.22)
Eq. (111.21) is scale-dependent. Therefore, a renormalized, distance dependent bending rigidity
kr(¢) can be defined which (approximately) followd’) / V4) — 1 o< —1/kr + O(kg™?). In
the limit ¢ \, a, kr should equak, while at lengths close to the membrane persistence length
(¢ 7 &), kg Should vanish:

3ksT

47

kr(l) ==k In(¢/ag) (11.23)

wherea is the microscopic cut-off length [GT82, PL85, Hel85, Hel86r%6, Kle86, DLI1,

Mor94, GK96]. Eq. (111.23) can be interpreted atharmal softenin@f the bending rigidity: Itis

easier to bend a membrane which already contains some ripples. Conversely, the assumption that
kr(¢) vanishes at ~ £, serves as an alternative, phenomenological definition of the persistence
length in membranes:

4T K
_ - v .24
u=aon( T o) (1.24)
where¢,,; depends much stronger arthanép in eq. (111.4).

Membrane softening can also be understood as a result of an increase in éntt{iggl86]

AS = kg In(f) = 2kg In(lyy +1) (111.25)

due to the additional degrees of freedom.

Note that eq. (111.21), eq. (lll.22), and thus eq. (111.23), are only valid for small corrugations
h < Ry which is the case for stiff membranes/ksT > 1). Also, the latter equations are
not valid anymore in the presence of additional constraints such as constant vol{&O7]
and/or surface ared [Kra96]. Especially the assumption of constant volume might be realistic
in many biophysical applications, if lipid vesicles are filled with an incompressible fluid.
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Figure 11l.2: Curved membrane patch with two rod-like inclusions of lengtiand widthe < L
separated by the geodesic ling of lengths. The two rods are rotated by the angigst, (in the
tangential plane) against,. All rods are assumed to be equal.

1.5 Surface Particles

While there has been extensive research completed on the microscopical and thermodynami-
cal behavior of lipid membranes (or, in mathematical terminoldgydimensional manifolds

in d-dimensional space), only a small fraction of the work has been devoted to the interaction
of surface inclusiongi.e., particles different from lipid molecules which can or cannot freely
translate within the fluid membrane, see chapter I).

There are a few analytical investigations, some of which [Fou96, Hol97] focus on inclu-
sion/membrane interaction and others on inclusion/inclusion interactiomsdtmopic (round
cross-section along the membrane plane) [GBP93, Fou96, PL96, Fou97, WKH®8$oiropig
rod-like inclusions [GGK96a, GGK96b, PL96]. The latter group is of special interest, since part
of the Monte-Carlo simulation described later deals with anisotropic surface inclusions. Inclu-
sion/inclusion interaction can be split up irdoect (electrostatic and Van-der-Waals) forces and
indirect forces, which are mediated by membrane fluctuations. Indirect forces will be of special
interest in the simulation.

In [GBP93], isotropic (round) inclusions with aref,. = 7(L/2)? are assumed and an in-
teraction potentiabry of

Drn(s) = —ksT 21 4 01 /59) (111.26)

w254

is found ([Par96] only comput@gr (s) as half as strong).
In [GGK96a, GGK96b], slim rods of length as illustrated in Fig. Ill.2 are assumed and a
result of

4
Prr(s, 01, 0:) = —% (£> cos’[2(6; + 62)] + O(1/5°) (11.27)

S
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is given, wherd),, 0, are the rotational angles with the (shortest) connecting geodesig;line

see Fig. lll.2. Hence, both contributions show the existence of an attractive interaction potential
that falls off with distance a$l/s)* to leading order inl/s. This is only valid in the case

v > s > L and forinfinitely rigid rods . The angular dependence of eq. (111.27) is the square of
a quadrupole-quadrupole interaction in two dimensions and shows the counterintuitive property
of being minimal (maximally attractive) for both parallel and perpendicular mutual orientation
of the rods [GGK96a, GGK9I6bF.

The s~*-dependence in eqns. (111.26),(111.27) was verified by [PL96] with different methods
such as field-theoretic approaches for many similar cases (isotropic/anisotropic incl., proteins
etc.) which preserve up-down symmetry in the membrane. On long length scales, this attractive
potential dominates over Van-der-Waals,(w o« —s°) and is caused by the ambient mem-
brane, which can reduce the additional conformational constraints imposed by the immersed
rods (membrane fluctuations vanish on the inclusion boundaries) for certain rod-rod positions
such as parallel orientation. In other words, the membrane entropy is a function of inclusion
distribution and thus some conformations are more favorable than others. This entropic attrac-
tion is the statistical mechanics equivalent of the quantum-mechadasainir [Cas48] effect,
which describes e.g. the mutual attraction of two uncharged, conducting plates in vacuum due to
vacuum fluctuations between them. With a separation distaaod plate areal,,, the potential
IS D casimir = —he (72/720) (AL /s%) [Cas48, KG97] (the different power? is due to assuming
2-D plates as opposed to 1-D rods).

In conclusion, the problem connected to egns. (111.26),(111.27) is that it just holds for rod-rod
distancess > L. For smaller separations, analytical calculations are very hard to do. Given
the total magnitude ob < kg7'/128 in eq. (111.27) which is two orders of magnitude smaller
than the thermal energys 7', it seems intriguing to find the short-range interaction for distances
s < L, taking into account mutual rod-rod avoidance.

31t might seem strange that the interaction potential depends on thesamgée + 05 in eq. (111.27), rather than
the angle difference. See also the comment in the end of chapter V, pg. 42.



V. Simulation

The Monte Carlo integration method will be discussed in this chapter from the mathematical
point of view, followed by a section on surface and curvature discretizations.

IV.1 Monte Carlo Simulation

In order to find thehermal averageg-) of a quantity.A for a certain thermodynamic ensemble, we
have to integrate that quantity, weighted by the corresponding probability distribution function
(PDF) over phase space. For the case of the canonical ensemble, this is simply the Boltzmann
probability [AT87]

NVT / A /)NVT (a; (lV- 1)

exp( (:13))
Jrexp(= @(z)) dz

wheres = 1/kgT is the inverse temperature afd )nyr denotes the thermal average with
respect to the const-NVT-ensemble (NVT: particle number, volume, and temperature).

Typical numerical integration methods such as Simpson’s rule are no practical means to solve
eg. (IV.1), since the phase spaCean easily reach some hundred dimensions (e.g.Olopoint-
like particles, the configurational part of the phase space alon€ kag800 dimensions). The
efficiency of these deterministic integration techniques decreases rapidly with the number of
dimensions because of the orden6f function evaluations are needed [AT87]. A better method
is the random sampling algorithm, whekerandom pointse; € I" are chosen and eq. (IV.1) is
replaced by a sum

pvr () (IV.2)

N . .

with |I'| := [.dz. Although random sampling is by far more efficient than deterministic proce-
dures, it can yet be improved, especially in the cases where the intedfang(x) in eq. (1V.3)

almost only contributes in a small part of the phase space and is close to zero at all others (see
Fig. IV.1). This is often the case in statistical mechanics, when the quatity varies slowly

compared to the exponential PDFEx), eq. (IV.2). The remedy is to emplagnportance sam-
pling by visiting some parts of the range of integration more often than others. When choosing

28
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1.2 I I I I

1| (3+sinl0z)/3 -e™® =

0.8
¥y 0.6
reject
0.4

0.2

Figure IV.1: Importance sampling: For integrals suchf§$3 +sin10x)/3 - e~ * dx, where the inte-
grand is “concentrated” in some part of the integration domain, it is far more efficient to pick the sample
points with a non-uniform probability (here eqg.”). In the above plot, random points;, y;) within the
bounding box could be chosen. The points which satjsfz e~ are “accepted”, all others discarded,

as sketched by the small circles under the dashed curve. Th&$MWN cept) > (3 + sin 1025 accept)/3

then approximates the integral, see @4.5).

the sample points from a PDhs(x), eq. (IV.1) must be rewritten as

/.A d:v-/r(%) pis(x) de | (IV.4)

where the choices = p is most efficient. To approximate eq. (IV.4) by a sum, new random
pointsz; € I" are chosen which are not uniformly distributed, but with the probabili#;). In
this case, eq. (IV.3) just becomes a mere sum over subsequent ¥dlags

r
(A), = lim |N| ZA . (IV.5)
The problem with eq. (IV.5) is that in order to pick sample points distributed @3, the nor-
malizing factorZ = [,.p(x) da (which equals the partition suf) must be known. However,

this is usually as hard as solving eq. (IV.1) itself. One solution to the problem was found by
Metropoliset al. in 1949 [MU49]: It is possible to set up larkov chainwith the limiting
distributionp.

IV.1.1 Markov Chains

A Markov chain is a mapping of a state space into itsélf— I", p9 — p(+V) i c Z, where
pU*Y just depends on the preceding vapié (independent of the indexitself). In the case of
a Monte Carlo (MC) simulation on a computer, the state space is discrete and findave can

1The phase space can be thought of as divided into tiny cells whose width is e.g. given by the digital number
resolution on the computer, that is, the relative uncertainty of a floating point ¥glue.g.eys ~ 2.2 x 10716 in
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write the mapping as a linear functiop{*? = p( & [AT87], where thep” are PDFs o’
(which implies Y, p'(x,,) = 1) andr is a so-callecstochastianatrix. A quadratic matrixr
Is called stochastic, if it contains only non-negative elements and its rows add to unity [Bor76]:

Ton > 0 (IV.6a)
> on = 1 <:> > (=), =1, keN) . (IV.6b)

A Markov chain is calledrreducible or ergodig if every state vector can be reached from
any other. A sufficient condition for this that the matrix mgular. =, > 0 [Rei80]. For
ergodic stochastic matrices, the Perron-Frobenius theorem [AT87] holds which states that the
largest eigenvalue af is unity. The corresponding eigenvector is in our case the limiting PDF
lim; oo p(i) =p

pT=p . (IV.7)

IV.1.2 The Metropolis Algorithm

One method to solve eq. (IV.7) is to impoasecroscopic reversibility

Pm Tmn = Pp Tnm (IV8)
wherep,, = p(x,,) stands for the probability to find the system in the “call,, in phase space.
The Metropolis algorithm sets

- O, - min(p, /p,,, 1) if m#n, (V.9)

L= s Tmn else
wherea is a symmetrical matrix which must not depend on the energy. The probability ratio in
the canonical ensemble simulation ts,/p,, = exp (=3 (¢, — ®,,)) . Hence, the Metropolis
algorithm always accepts a step which reduces/maintains the previous energy and sometimes also
accepts steps which increase the energy, with a probability depending on the Boltzmann ratio. In
theT — 0 limit, this is therefore just equivalent to a simple minimizing algorithm, whereas for
very large temperaturég 7 > @, it equals the random walk.

Since the 1940s, many refineries and variations (e.g. biased MC, isothermal MC, grand
canonical MC) as well as other algorithms to satisfy eq. (IV.7), have been developed. The
strength of MC lies in its simplicity and, in opposition to molecular dynamics (MD), in the
total neglection of the dynamics of a system. Therefore, the MC-step index is by no means a
physical timescale and consequently quantities such as velocities or acceleration cannot be com-
puted from subsequent particle positions during the simulation. In MC, “leaps” between remote

8-bytes representation). The total number of cells is thus of the orderef;)? > d
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areas of phase space are allowed (and very favorable [AT87] — this corresponds to nonzero ele-
ments ina far off the principal diagonal), since they help to ensure ergodicity. In fact, simulation
efficiency decreases with mutual dependence of subsequent states, as measuredtogdine
relation “time” 7,4, which is assumed to be connected to élocorrelation functiomd(k) as

(Wi - Wiw) = (Wi)* (Wi - Wigg) — (W5)?

Alh) = e = = l (IV.10)
% = /0 A(k) dk (assumption: A(k:)zexp(—k/m)) (IV.11)

where théV; are an arbitrary data sequence with méaf) and variance. A random sequence

of numbers would be uncorrelated for> 1 ((W; - Wi, i) = (W;)? = 74 = 1), while W; =
const results inty, — oo. To achieve the statistical relevancemfandom numbers (“rolling
dice” n times),n.s = n - 74 MC-steps have to be performed. Since typical subsequent MC-
conformations differ very little due to system constraints, autocorrelation time ef10° steps

are common and thus often of the ordern 6f — 10® MC-steps are required in total.

IV.2 Discretization of Random Surfaces

The exact partition sum of a fluctuating surface with the Helfrich-Hamiltofi&his

2 = [ exp(~5Hie)) Dl (IV.12)

where the functional integral runs over all regular, closed, non-self-intersecting 2D-sugfaces
embedded iiR? with A = A,. When solving eq. (IV.12) analytically, special attention needs to
be taken to find a suitable functional gauge [CL96] in the integration to avoid counting surfaces
twice.

There are numerous examples of MC simulations on random surfaces in the literature
[KN87a, KN87b, BH90, HB90, BR92, Bau93, DFIJ94, 1J95, GK96, GK98]. Usually, the sur-
face is approximated by a triangulatidiy, = ({X;}i=1.~,S), where the{X;} € R? are the
coordinates ofV vertices on the surface aisds the N x N connectivity matrix withS,; = 1 if
verticesX; andX; are connected by a “tether” or “bond”, andtherwise. The bond lengths
are controlled by an infinite square potential

O If i 4 € Tmins Tmax]|s
Ubond = i€l ] (IV.13)
oo else

rij = |1 X = X

The partition sum can now be approximated by splitting it up into an integration over the conti-
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nous vertex positions iR? and a sum over all possible connectivity matrices

Z’TN = /exp(—ﬁ(H[TN] + Ubond)) d7n

= > / exp(=B(H[Tv] + Upona)) [[dX: (IV.14)
S i=1

which is exploited by the simulation algorithm, as will be described in the next chapter.

IV.2.1 Triangulations

A body which is bound by polygons is callgmblyeder Alternatively, one might think of a
polyeder as a network aoferticesat the polyeder corners, connecteddmndsor tethersalong

the edges. The enclosed polygons form an orientable, piecewise smooth surface. The numbers
of vertices (V), bonds (Vz), and polygons (or facets)\-) are connected by the Euler relation
[Car83]

X =N — Np+ Np X :=2(1-g) , (IV.15)

wherey is called theEuler-Poincaé characteristicof the surface and is the surface genus
(see eq. (I1.3) and appendix A.2). Examples: “spherg™= 0, y =2, “torus”™ g=1, x =0
etc. Eqg. (IV.15) is a very general relationship and holds for any kind of polyeder, even multiply
connected ones. It can also be applied to flat figures if the structure is thought of as a polyeder
of depth zero, in which all vertices and bonds which are not part of the outer border and all the
facets are counted twice (front- and backside).

Some 3-D examplesy(= 2)

polyeder name N Ny Np

tetraeder 4

square pyramid 5 8

octahedron (8 triangles) 6 12 8

icosahedron (20 triangles) |12 30 20

Cgo (soccer ball) 60 90 32
(12 pentagons, 20 hexagons)

For closed triangulationg = 0, where all the polygons are triangles, we thus obtain:

Np=2(N-2), Np=3(N-2) (IV.16)

(this can be interpreted in a way that except for two vertices, e.g. the two poles on the sphere,
two triangles and three bonds can be assigned to each vertex).
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IV.2.2 Curvature Discretization

In order to find the discretization of the Helfrich-Hamiltonian eq. (11.4) in a triangulation, con-
sider the (smooth) surfacg parametrized bye(u!, u?). Then for any pointu!, «?), a local
Cartesian base (moving trihedral) can be found, as given in eq. (A.3) in the appendix. Using
Weingarten’s identity eq. (A.6b)

dn=—ble; |, (IV.17)

(2

(where Einstein’s summation convention was used), the gradient of the normal field can be ex-
pressed in local coordinates as

(Vsn)® = (9m)(0'n) = b/ e, by e’ = b/ bij =
= (Trb)* —2detb=(c; +2)? —2cic (IV.18)

(c1, co are again the principal curvatures), and eq. (l1.4) can be rewritten as

E = g/(cl +cp)? dA = g/(VB n)? dA+ k& /0102 dA . (IV.19)
¢ ¢ <

=A4r

Eq. (IV.19) can be approximated by a sum

E—drk = E/(vgn)2 dA
2 Js

Np Np
~ A Y (a,—np) =2 Y (1-namnp,) (IV.20)
<AaAb> <AaAb>

where(A,A,) denotes summation over all pairs of triangle normals between nearest-neighbor
trianglesn,,, na, (see Fig. IV.2) and the normals must have uniform orientation (e.g. pointing
outside of the vesicle). There afé; summands (one per bond) pertaining to the triangulation.

A detailed comparison with a sphere, covered by uniform equilateral triangles, yields a prefactor
of A = v/3in the limit N — oo [SN88, GK96].2 The discretization in eqns. (IV.19), (1V.20)

has been used extensively in computer simulations. Recently, it was argued ithahape-
dependent [GK96], and that a discretization based on the square of local averages of the mean
curvatureH /2 yields slightly more precise results.

2In the limit N — oo, Ng/Np = 3/2 and(167/+/3) (R/a)? equilateral triangles of side lengthfit on the
sphere of radiusk. Then each pair of normals i& = a/+/3 apart and the scalar products yiald, - nn, =
cos(d/R) ~ 1 — (1/2)(d/R)?. Thus, the sum in eq. (IV.20) equals/3 = A = /3
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Figure IV.2: Two adjacent triangled.,, \, on the surface with their normalsa, andnp, .



V. The Program

In this chapter, the MC simulation program used to simulate a fluctuating closed surface with
surface inclusions will be described in detail. Next, the nature and calculation of the quantities
we are interested in will be explained.

V.1 The Algorithm

The Monte Carlo algorithm used to produce the results presented in chapter VI is in part of its
methods similar to various preceding examples [KN87a, KN87b, BH90, HB90, BR92, Bau93,
DFI1J94, 1395, GK96, GK98], but was completely developed from scratch in the course of this
thesis. The simulation program contains about 11,000 lines of C code and runs under the UNIX
operating system. For a simulation run of & x 10° MCS (MCS: Monte Carlo steps) @50
times the autocorrelation time of, ~ 30,000 MCS, around 17 CPU hours are necessary on
a MIPS R10000 CPU (Silicon Graphics Indigo). The pseudo-random number generator used
is the routineran2 in [PV88] according to L'Ecuyer with Bays-Durharn shuffle. Its period is
larger thar x 10'8,

The MC-simulation takes place in the canonical NVT-ensemble [AT87]. It simulates a closed
surface with finite bending stiffness, given By vertices (typicallyN = 500), which are con-
nected byNg = 3(N — 2) bonds and thus enclosé, = 2(/N — 2) triangles (see eq. (1V.16)
and Fig. V.6 at the end of this chapter). There are alternative methods of simulating a discretized
3D-surface such as going over to the const-NPT ensemble (NPT: particle number, pressure, and
temperature) and taking a square, not-closed surface patch while assuming periodic boundary
conditions (PBC). The linear sizes of the surface patch and thus its projected, aseald then
be the free quantity, controlled by keeping the membrane line sitreand A constant, corre-
sponding to ensemble (ii) on pg. 20. However, this implies assigning real particles to the vertices
in the simulation, while in the const NVT-ensemble, no such controlling mechanism is required
and thus it does not need to be specified where the microscopic lipids exactly are. Moreover,
PBC are usually simulated in a box (with variable box lengths) and thus the membrane patch has
to stay in this topology (and cannot, for instance, roll up into a tube etc.) In the topology of a
genus-zero closed surface, none of these are problems that one has to worry about. Finally, one
could think of neglecting PBC altogether and just simulate a finite membrane patch (e.g. as done
in [KN87a, KN87b]). This corresponds to a cluster rather than an infinite network and can be
expected to show finite-size effects. In [KN87b], this effect can indeed be seen, as a membrane
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at the transition rigid/flaccid begins to crumple in the fringes first. Of course there are always
finite-size effects in computer simulation. However, all parts in a closed, fluid surface are equal
and thus homogeneous.

For moderate values of the bending stiffness kg7, itis not necessary to explicitly employ
a self-avoidance potential. Self-intersection of two remote parts of the vesicle is not impossible,
but very improbable.

In order to simulatéluid membranes, which are thought of as 2-D fluids and therefore cannot
sustain shear stress, thend-flip algorithms applied, which was first proposed and implemented
by Kazakov and Kostov in 1985 [KKM85, Bil86, BH90]. A bond with its two adjacent triangles
can be regarded as the diagonal in a surrounding quadrilateral (diamond). Thus, each bond can
be “flipped” (rotated by abou?(0°) to form two new triangles, see Figs. V.1, V.3. By virtue
of eq. (IV.16), N, Ng, and Nr remain constant. If flipping is performed constantly, vertices
can diffuse around the vesicle (see Fig. V.1).The number of bonds that join at a vertex is
constrained to lie between four and eleven (see also Fig. V.6).

In addition to the homogeneous membrane, inclusions can be simulated in it. According to
the knowledge of the author, there have not been any numerical 3D off-lattice simulations of
mobile inclusions on fluctuating surfaces published so far (as of August 1998). Thus, this might
be the first such investigation. In the present model, rod-like inclusions are bound to a small
number (typically five) vertices on the surface, thereby forcing them to align along a straight
line, forming a string of vertices. Also, they are free to fluctuate along the rod, similar to water
molecules next to a floating log. To ensure mutual rod-rod avoidance, rods may not intersect or
share vertices. Rods are head-taH(°)-symmetrical (see Fig. V.2).

One might wonder why anisotropic rods were chosen, as opposed to round or square shapes
(e.g.5 x 5 vertices). There are various reasons: Firstly, rod-like inclusions have a large linear
length compared to their area, thus more inclusions can be simulated on the vesicle at the same
time. Secondly, there are examples in biology for rod-like, directed inclusions, see chapter I.
Finally, anisotropic inclusions were the subject of the Studienarbeit [Hol97] and this thesis can
be regarded as a continuation thereof.

The core of the program consists of three MC-routines, representingrtioee classeer
sub-sweeps:

1. Vertex moves within a cube-Az, Az]* centered at their former position. This corre-
sponds to performing the integral in eq. (1V.14) (variatior{ &; }).

2. Bond-flips: Variation of the connectivity matrix, thereby performing the sum over all pos-
sibleS) in eq. (1V.14) (see last paragraph).

LIn fact, every triangulation can be transformed by a sequence of bond-flips into any other with the same number
of verticesN [KKM85].
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@ o @

vertex move

@ @
bond flip

Figure V.1: Two different MC move classes: Vertex moves and bond-flips

(Rod tion)
new position
/IO

Figure V.2: Rod move: The rod as a whole tries to “leap” to a different set of vertices (dashed line, left
picture). In the Metropolis step, the energy of the old and the new conformations are compared, where 5
new vertices have to be moved to lie on the new rod position (see arrows).

3. Inclusion moves: Entire rods are allowed to “leap” and “land” on a nearby set of vertices.

Some kind of rod-leap is required, as the membrane is bound to static positions wherever the
vertices lie on the rod. This situation is of course unphysical, since rods are not fixed in space.

It is obvious that forAxz — 0, every Metropolis step will be accepted (no change in confor-
mation, constant energy). On the other hand, for very |&geonly few steps will be accepted,
since most “proposals” lead to bond lengths outside of the square potential range. Thus, by vary-
ing Az, theacceptance ratean be adjusted. This is usually done so that around 50% of the
steps are accepted. Of course this method only works for move classes with a continuous pertur-
bation width parameter. For discrete move classes such as bond flips or rod moves for instance,
acceptance rates ranged around, respectiveh,5% and2.5-5%.

In general, when several MC-classes are intertwined, the outcome of the simulation is inde-
pendent of the order and/or relative frequency of the classes (one could, for instance, pick only
Ng/2 bonds each time, while keeping the other sub-steps the same). However, the relaxation
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Figure V.3: Quadrilateral convexity in the plane: bond-flip in the convex a) and non-convex b) case.
In the (forbidden) case b), the newly created trianle = ABD includes triangle/\;, = BDC and the
triangle normalsan,, na, are anti-parallel. In 3D-space, the four vertices do not lie in one plane in
general. In the simulation, the two new triangle normals are simply required to satishma, > 0.

speedl /7, does depend on these additional choices and thus the simulation efficiency can be
optimized. References concerning this problem are hard to find and test simulations can be very
time-consuming. The system used in the present work is to “touch” each degree of freedom with
about equal frequency: Vertex-moves are performetimes per MC-step, and/ particles in

3-D space hav8N degrees of freedom. Out of théz ~ 3N bonds,N bonds are randomly
selected. Each bond has one degree of freedom (flip or don't), givVirdggrees of freedom

in total. Finally, each of theéVy rods is touched once, and a rod has two translational plus one
rotational degree of freedom on the surfagd’f in total). Thus, in all three cases, we end up
with ratios of1/3. It is important to emphasize again that e.g. vertices within one vertex-move
sweep must be touched iandom orderto avoid artifacts.

There is one autocorrelation timg[I1/] for each computed quantity” (see eq. (1V.10)).

The net autocorrelation time, ., is defined as the maximum of all [IW/].

One might think that shear stress cannot be avoided when using a square potential which
just keeps bond lengths within a certain range. This, however, is not the case since bonds in
a stretched area (where the bond lengths in the stretched direction lie close to the upper bound
rmax) @re more likely to be flipped and thus relax the network, than in zero-stress areas. Hence,
the square potential @n averageequivalent to a continuous (e.g. parabolic) length potential (but
needs much less CPU time).

The simulations performed here do not necessarily render a physical situation in which each
vertex represents one atom or lipid molecule. Rather, vertices and the connecting bonds merely
state “the membrane is here”, corresponding to a more general simulation in statistical mechan-
ics. For this reason, it was possible to keep fluctuation intervals large, typicall.5 a, 1.5 a]

(this is larger than e.g. in [I395] and favorable, singe,,., x (@/("max — min))? [KN87b]). On
the other hand, this implies the necessity of two additional consistency tests:
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e Sincer,., > 2 rum, triangles can “deflate”, i.e. one of the vertices lies on the opposite
bond (triangle has zero area). This case is avoided by requiring a minimal triangle area of
e.0.Anin = (\/3/2) r2 . (area of equilateral triangle with sideg;,,).

e When a bond is flipped, it can happen that the new, rotated bond does not lie within the
surrounding quadrilateral (“diamond”). This is the case when the quadrilateral is V-shaped,
or non-convex and is also forbidden (Fig. V.3).

To perform the above mentioned tasks, simulation data are stored in three separate lists,
organized respectively by vertices, bonds, and triangles. The number of elements in each list
remains constant, but the mutual dependence (pointer structure) is constantly changed. Each
vertex has aneighbor list(of a length up to eleven nearest neighbors) to avoid searching for
adjacent vertices and triangles.

Definition 1. ground state sphere

The ground state sphere is defined asithe: oo limit of the vesicle with its center of gravity at
X. Its radius of gyration will be called?, := R,(k — o0). (R,) is a little smaller thanR, for

an MC-simulation with finite: (see eq(l11.22) and Fig. VI1.4). If the conformation of the ground
state sphere is taken and its bending energy is computed for any finite vaiyehef result is
that of a perfect spherdy, = 87« (see eq(ll1.17)). The ground state sphere is the equivalent of
the plane in flat topology.

The program structure can be split up into parts:

1. Initialization : The triangulatiorZy with N vertices, connected h¥z bonds (enclosing
N triangles) are positioned on the ground state sphere. Rods are randomly distributed
over the sphere, lists are initialized etc. Initialization parameters indNid¥'z, x/kgT,
Tmin,"max, @N €stimation for the autocorrelation timg..;;,,, and how many times of this
to run (z,).

2. “Thermalization”: The three different move classes are iterated in a loop. One “sweep”
of vertex moves (each vertex is tried to be moved once, in random order) is followed by a
bond-flip sweep /' of the Nz bonds are tried to be flipped), then each rod is tried to be
moved once. No quantities are computed. After & 4.4im, the main loop starts. The
purpose of the thermalization is to lead the system with the probapifitym the starting
state (whergp might be very small, see chapter 1V) to a random point in phase space. This
procedure is reminiscent of tempering a piece of cast iron (keeping its temperature close
to the melting point for a while) to relax inner stresses.

3. Main Loop: Same as thermalization, except that after regular intervals, vesicle quantities
such as curvature energy, volume, surface area, radius of gyration, correlations, magnitudes
of spherical harmonics etc. (see next section) are computed and stored.
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4. Autocorrelation Test: After n, X 7., iterations, the actualy ., is calculated from the
stored data. 14 ,.c > Taestims the missing iterations are made up to ensure a minimum
statistical relevance.

5. The simulation is complete and aggregate quantities such as data variance etc. are com-
puted.

V.2 Calculation of Physical Quantities

V.2.1 Simple Quantities
The following simple scalar properties can be computed [1J95]:

e energy (see eq. (IV.20)):

Np
E =47k + V3K Z (1 — nAanAb> (V.1)

<AaAb>

e surface area: sum over all triangle aregg\;)
Np
A=A (V.2)
=1

e volume (the vesicle is split up into non-equilateral pyramids with the cornérsuad the
triangle cornerXx, , 5 o)

1 _
Vo = 3 Z X, 0y A(A) (V.3)
=1
— 1
XAZ = § <XA1A + XAiB + XAzC)
e inertia tensor:
1 N
a3 _ a a B B
= 3 (XZ- — X ) (Xi - Xj) (V.4)

1,7=1

providing the invariants:

e radius of gyrationX: center of gravity of the vesicle):

N 1/2
R,=TrJ)= (Z(Xi - XS)2> (V.5)

=1
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e asphericity:

in(Jey, 2y, J
Ay =1 = 2inbw: Je), de) 6)
max(J(1), J(2),J(3))

(Ju): eigenvalues ofl (principal moments of inertia) , sphered,, = 0, disk?:
Ay, =1/2, slimrod: Ay, — 1)

Apart from the most simple quantities such as energy, volume and surface area, the inertia tensor
J provides additional structural information. Its trace equals the radius of gyration (which gives

a far better effective vesicle radius than exgax(X; — Xg)). The ratio of the minimum to

the maximum eigenvalue can be used to distinguish between rather spherical and more rod-like
structures.

V.2.2 More Complex Quantities

e normal—-normal correlation: In order to investigate the persistence length, the simplest
approach is of course to measw@) (eq. (111.5)) directly on the vesicle. However, one
expects the ground state sphere to obgy = 1 and thus the vesicle has to be transformed
into the flat state first

vo(s) = (Dpn(X;) - Dpn(X;) >{i’j} (V.7)

in which )A(i is the projection of verteX,; on the ground state sphere (with the spherical
coordinates(¥(X;) , ¢(X;), Ro}) ands,; is the length of the geodesic arc betwefén
andf(j. Then the two normala(X;), n(X,) are transformed into the local bas&sand

their scalar product is taken. All possible pairingX;) , n(X;) are averaged. (Of course
the shortest path betweé&q andX; in terms of the number of bonds could be determined,
which would give the the exact value one is looking for. However, this procedure would
be much more time-consuming. The method described above works welifoksT)

e Spherical harmonics coefficientss;” can be computed by projecting the radial height
field h(-) on the spherical harmonics (see also eq. (I11.10), [Wla72]). In the case of a

2For a disk of radiusR and massm, the largest moment of inertia is parallel to its symmetry axis
(o =m R?/2), while the two other, in-plane, principal moments of inertia Bre 3y = m R? /4.
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Figure V.4: Transformation of the triangle normaisinto the local bases; on the ground state sphere.

triangulation, this is written as a sum over all triangles

Np
an = / By d xS ha V(0560 with (V.8)
52 p
X AN (X ali
ha, = Al g 0 = —— (_Af.nAi), O, =47
Ry |XA1"2 |XA1| Z
— 1
X, = g(XAiA‘FXAiB‘FXAiC) — {ﬁia¢iaR0<1+hAi)} :

where theX,,, na,, A(X\;), ha,, and); are, respectively, the triangle center, unit normal
vector, surface area, normalized height field value (see eq. (111.14)), and solid angle with
respect to the ground state sphere.

V.2.3 Rod-Rod Correlation Quantities

e Mean squared rod-rod distance Mean squared geodesic distasédetween rod centers
on the ground state sphere (see eq. (V.7)).

e The rod-rod pair distribution function can be found by recording a distance-angle-
histogram, i.e. the list of the number of rod-rod pairings with respect to their distance
s12 and mutual anglé := |0, — 0,|. The distance is again measured similar to eq. (V.7).
The probability deviation from the unperturbed case (rods diffusing on a perfect sphere
with mutual avoidance) can be deduced from the pair-distribution fungtfoms [Hes91]

g? (312, 0, /4:) = g%){ 91(33 = exp(—ﬂ(@RR(/f) + (I)ma(m))> , (V.9)

wheredgg, ¢,,, are, respectively, the mutual avoidance- and interaction potentials. The
angledifferenced := |0, — 05|, rather than the sum as in [GBP93, Fou96, PL96] was taken
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Figure V.5: Rod pair with (shortest) geodesic are on the ground state sphere.

as the angle variable in eq. (V.9). This is becaése- 0, is the same for perpendicular
position (“T-formation”) and e.qg. the cage = 0, = 45°. However, for small distances

s < L, the last case is essentially a side-by-side, parallel position, and thus parallel and
perpendicular mutual orientations would be indistinguishable. For this reason, the angle
difference is a better variable here for small
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Figure V.6: Snapshot of a vesicle with = 500 vertices,r € [0.5a,1.5a], andx/kgT = 5.5. The

different colors on the surface may be thought of as reflections from three colored spotlights. The variable
number of bonds that join at a vertex can be seen. Several rods are shown on the membrane, rendered by
five spheres of radiu®.5 a) /2 each and by tubes between them. Around the rod on the upper right side

of the vesicle, one can get an impression how the membrane is locally flattened by rods.
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VI. Results

VI.1 Plain Membrane (no Rods)

VI.1.1 Simple Quantities

To verify the theoretical predictions from chapter Il and for comparison with earlier found
results, first a set of simulations is run on a membrane without inclusions. For all simula-
tions, bond length limits ofr i, "max] = [0.5a, 1.5a] are used. In the first set of eleven
runs, a vesicle ofN = 500 vertices is simulated, with bending rigidities of respectively
k/kgT = 0.8, 2.0, 4.0, 7.0, 9.0, 11.0, 12.0, 13.0, 14.0, 17.0, and20.0. After a thermalization
period of 10 74 egim, at 1€ast250 74, are performed (e.g. for = 0.8, that is8.6 x 105 MC-
steps).

To find out about the statistical relevance and the relaxation behavior of the different quan-
tities, the autocorrelation function$(k)[W] are computed for the five quantitiég: Energy
E, vesicle volumeV, surface areal, radius of gyrationR,, and asphericity4,, (Fig. VI.1).
The interesting result is that the autocorrelations of the asphericity and the radius of gyra-
tion decay by far least rapidly. The decay 4tk)[R,|, A(k)[As,] for instance seems to fol-
low well the theoretical prediction of exponential behavior, with an autocorrelation time of
€.0-TA, max = Ta[AR,] = 32100 MCS for x/kgT = 0.8 . This behavior can be understood: a
change in the asphericity involves an aggregate change in the vesicle shape, e.g. from a cigar-
like shape to a sphere. This requires a joint motion of all the vertices. In contrast, a change
in energy can happen faster, since the local bending energy depends strongly on the amount of
creases on the surface, which can be created and vanish within a few steps. Consequently, the
guantities energy and also the surface area each become (auto-)uncorrelated very quickly (about
2000 — 4000 MCS in this example). The vesicle volume shows an intermediate behavior. The
above also demonstrates how important the definition and computation of the asphericity is, as
it shows that structural properties relax much slower than simple scalars as the bending energy.
T4, max DECOMES smaller with increasirg In [Hes84], the decay behavior of simple scalar (pres-
sure, internal energy) as well as structural (pair-correlation functions, angular order parameters
etc.) quantities is measured for a fluid of particles interacting via a repufsivepotential. The
result is similar to the present one, as it shows that “simple” quantities become auto-uncorrelated
a lot faster than structural ones.
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18 T T T T T T T
energyll <©—
volumeV  —+—
N =500, k/kgT = 2.0 ~ surface areal H—
TA max & 32100 MCS radius of gyration?,  x—
’ asphericityA, A

eXp(ik/TA, maxﬁ

0 20000 40000 60000 80000 100000 120000 140000 160000
k (MC step number difference)

Figure VI.1: Autocorrelation functions for five different scalar quantities of the plain membrane. The
asphericity has the largest autocorrelation time of abaut,., = 32100 MCS (see intersection of the

graph with1/e). The dashed curve equals the functiom(—k/74 max) (S€€ €q(IV.11)). The total
simulation length i8.6 x 10 MCS = 271 TA, max- INOte that ther-axis shows only the argumeht

of the autocorrelation function, which is a difference in MC-steps — the simulation does not “start” at
k = 0! Rather, the autocorrelation value of e4(32100)[R,] ~ 1/e means that the autocorrelation of
two evaluations oR,, beingk = 32100 MCS apart, id /e on average.

The uncertaintyA of a measured quantify’ is [BL85]

A LU B (VI.1)

exact \/n—T TA[W] ’
whereos[IV] is the standard deviation of the quantity andn, is the total number of MC steps
performed.

A= (W)

sim

The next plot Fig. VI.2 shows the average energies of the eleven runs. Except for the softest
cases:/kgT = 0.8, 2.0, these show a constant slope which agrees very well with the prediction
of the ground state energdrx + (N/2) kgT. However, the number of degrees of freedom
seems to be slightly different from the valfie= IV, see eq. (I11.16) and the comment after it.

In figures V1.3 and VI.4, vesicle volume and radius of gyration are plotted agajrest-
pressed as fractions of the corresponding values of the ground state sphere. In order to find
the valuesV;, Ry, and A, for the ground state sphere, a simulation run is performed with
k/kgT = 100.0 (for largerx, the autocorrelation times increase strongly). Both volume and
radius of gyration show a very similar behavior and converge against the corresponding value
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Figure VI.2: Comparison of eleven simulation runs with differentvith eq.(111.18). The “error bars”
denote the standard deviatiofF] of the energy fluctuations, whereas the uncertainty of the avéfage

is much smaller witly[E]/ /8.6 x 106/2000 ~ o /65. The slope of the simulation data agrees very well
with the theoretical prediction (dashed curve), while the effective number of degrees of freedom seems to
be slightly larger /2 = f/2 ~ 280 instead o250).

of the ground state sphere. The comparison with egns. (111.21) and (111.22) shows a reasonable
agreement. The gap between the theoretical prediction (dashed curve) and the measured values
depends very much on the reference value that is found for the ground state sphere. Especially
for quantities that show only little total variation among all different runs (€4 for R,), the
agreement is contingent on a precise determination of the ground state sphere value, as demon-
strated by normalizing the data with a different value Rarin Fig. V1.4 (the fit for Ry = 5.700

is almost perfect for larget — for small x, the theory is not valid anymore). Producing more
precise reference data is, however, hard to accomplish since simulations+$osc cannot be
performed. Other reasons for a deviation theory/simulation might be the relatively simple bend-
ing discretization that is used here (see last sentence in chapter V), but also the mediocre degree
of sophistication of the theory itself (eqns. (111.21),(111.22)).

Note again that the “error bars” again only show the standard deviation of the measured
quantities in the simulation, not the uncertainties.

Fig. VI.5 shows the average surface areas of the eleven different runs. The true surface area
(sum of all triangle areas) is hardly expected to vary very much wjitnd indeed is does only
little. This would not be true for an “effective” surface area suchag,”.
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Figure VI.3: Vesicle volumes as fractions of the voluriig of the ground state sphere. With in-
creasing bending stiffness, the vesicle volume approaches the Waludhe “error bars” again de-
note the standard deviation of the fluctuations. The dashed curve shows the theoretical prediction

(V) Vo =1— (3kgT)/(8mk) In(lpr/2) with (Ipr + 1)? = 500, see eq(lll.21).

Fig. VI.6 shows the asphericities for the eleven different runs.<~arkgT’, extreme values
can be reached. In these cases, the assumption that the vesicle fluctuates around the ground
state sphere no longer holds; the membrane can, supported by the variable bond topology, form
extreme buds, almost part in two bubbles (connected by a think neck) and even create deep
indentations.

In Fig. V1.7, the scaling crossover of the functidlr) / (A)** from eq. (111.9) is shown.
Indeed, the slope of the breakdown is very steep araudl. For even more flaccid membranes
(k — 0), the self-avoidance can not be neglected any longer, since the membrane becomes so
soft that it can self-intersect.
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Figure VI.4: Radii of gyration as fractions of the radiug, of the ground state sphere for
Ry = 5.676 (from x/kgT = 100) and for a slightly higher value aRy = 5.740. The behavior is
very similar to that of the volume, see Fig. VI.3. The dashed curve shows the theoretical prediction

(Rg) /Ro = 1 — kpT/(4mk) In(lps/2) with (1 + 1) = 500, see eq(ll1.22).
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Figure VI.5: Vesicle surface areas as fractions of the surface &geaf the ground state sphere. Since
A measures true surface area, it only depends weakky (@otal variation in this plot is only abo@t).

The relative standard deviatiofiA]/ (A) is aboutl.8% in all cases (see bars), showing that the simulation
comes close to keeping the surface area constant.
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Figure VI.6: Vesicle asphericities. With increasing bending stiffness, the vesicle approaches the ground
state sphereA,, = 0).
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Figure VI.7: The function(V') / (A)*/%, normalized by its value for the ground state sphere. The
breakdown at: ~ 1.0 can clearly be seen, cf. gdll.9). This means that fot/kgT ~ 1.0, the membrane

persistence lengtfy, should be of the order af/ (A) /(4m).
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Figure VI.8: Normal-normal correlations of triangle normals on the vesiglgs), see eq(V.7).
Distances are given as arc lengths on the unit sphere: If one of the normals in a pair is thought to lie at
the north pole, a distance ef= /2 corresponds to the other normal positioned somewhere around the
equators = r refers to the south pole. As discussed in chapter Ill, the correlation does not decay to zero,
but rather converges to a finite value, increasing witfThe slight maximums in the graphssats 37 /4

might be artifacts.

VI.1.2 More Complex Quantities

The normal-normal correlation on the vesicle is measured directly according to eq. (V.7), the
results for three different runs with/kgT = 1.6, 2.0, and 3.0 are shown in Fig. VI.8. To
achieve a higher precision, the vertex number is increaséd te 1536 in these simulations.
The normal-normal correlation does not vanish for large separatiomst rather converges to
a finite value v (k) = v (s — oo, k) . This is not an artifact, but imposed by geometrical
constraints, as discussed in chapter Ill. One can try to strip off the influencg loy defining a
normalized correlation

D(s) = vols) =ve (VI1.2)

1 —vy
In Fig. V1.9, (s) is plotted in the intervak € [0, 7/2]. The decay seems to be sufficiently
exponential, while the slope depends very littleconThis means that(s) does only depend
ON K Via v« (k) in this ansatz.
The last results make it hard to determine a persistence lgngthin chapter 1ll, three
different definitions were given (eqns. (111.3),(111.9), (111.24)).

e The direct definition eq. (I11.3) can hardly be used singgs) does not follow the expo-
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Figure VI1.9: Semi-logarithmic plot of (s) (see eq(V1.2)) in the interval0, = /2], plotted for the same
simulations as in Fig. VI1.8. The initial slope fer\, 0 depends very little oR.

nential law. The fact that~(s) never decays to zero, however, does not meansthas
infinite — the normals fluctuate around their preferred direckor X5 (pointing away
from the center) and thug,(s) remains finite. However, beyond a certain distasdbey
might not “feel” each other anymore, i.e., a local perturbation as from an inclusion would
not have any impact.

e Eq. (I1l.24) crudely defines,, to be of the order of the vesicle diameter when the function
(V) / (A)*? breaks down. The first series of runs with= 500 is better for this test as it
provides more volume data, see Fig. VI.7. The breakdown agrees with the prediction.

e Finally, according to eq. (111.24), the smallest should bea exp(—(47/3) - 0.8) =~ 29a
(for k = 0.8), while for x = 2.0, one obtaing,,; ~ 4300 a (!).

These three reasonings do not provide an exact valug forHowever, it can be deduced that
the persistence length is always larger than the system sizg'fgfl” > 1.0.

In figure Fig. VI.10, the result of a measurement of the magnitudes of the spherical harmonics
la7|? is displayed (see eqgns. (111.19),(V.8)). The vesicle with= 1536 has an “equator” with a
length of about5 a which is larger than the x 12 vertices that would be at least necessary to
“sample” the functior! ¢ (one point per extreme, according to Nyquist’s theorem, [PV88]). It
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Figure VI.10: Magnitudes of the spherical harmonics coefficieas|* with 2 < | < 12, expressed in
terms of their corresponding bending enerdiggsee eq(V1.3), eq.(l11.17)). One data point represents
the average over alll + 1 different values ofn. The values o2l + 1 are given above the-axis. The

agreement with theonqy = kgT/2) is, surprisingly, best for smai. (15, + 1)? — 4 = 165 different
spherical harmonics are used in this calculation.

is expressed as the average bending energy in the spherical hariihies < m <1 :

q(q+2) 2
=" m . VI.
=t §j| | (V1.9

Given the complexity of the computation, the data agree very well with the prediction of the
equipartition theorem (remember e.qg. that @] fall off with [ asi—, see eq. (111.19)). How-
ever, it is surprising that the agreement is best for the softest membrdpd = 1.6 and
becomes worse with increasing The reason might be the small amplitudes of the different
undulations on stiffer membranes which lead to larger numerical errors.
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V1.2 Membranes with Inclusions

This section is devoted to MC simulations of membranes with mobile inclusions, as discussed in
the last chapter. On a vesicle df = 500 vertices, a set of six simulation runs is performed with
k/kgT = 1.6, 2.0, 3.0, 4.0, 5.0, and6.0 . Nr = 6 rods of lengthL, = 4 a (four bond lengths)

are used, which “capture” five vertices each. A brief discussion on the choice of constants will
follow:

On one hand it is favorable to make the rods as long as possible to reduce discretization
artifacts. On the other, long rods flatten the vesicle and locally make it deviate from the spherical
shape. Also, the MC acceptance ratio goes strongly down with increasing rod size and thus
relaxation speeds become a lot smaller. A length ef 4 a seems like a reasonable compromise.

DecreasingVy helps reducing multi-body effects (ideal for only two rods on the vesicle),
however, if Nz becomes small, the quality of the statistics goes down quadratically, as there
can beNg(Ng — 1)/2 different pairs formed out of a set df; rods. With the choiceVy = 6
andL = 4a, 6% of the500 vertices are covered by a rod, ahds still smaller than the radius
of gyration (R,) ~ 5.5a). If one assigns a disk of sizé;, = 7(L/2)* to each rod, about
NgrAL/ (A) = 30% of the vesicle surface are covered.

First, the autocorrelation timey[s2] of the squared rod-rod distancesis calculated. Due
to the “rod-leap” algorithmy,[s?] is always lower than ca. 5000 MCS. Since this is about an
order of magnitude smaller than[A,,], the total simulation run lengths need not be longer than
for the plain membrane.

Next, the energies of plain membranes are compared with those of membranes with
inclusions (Fig. VI.11). The gap between the two curves is small, which suggests that the vesicle
is not severely perturbed by the rods.

To find rod-rod interaction potentials, pair distribution functigf?(s, #), depending on rod-
rod angled and geodesic center-center distancenust be computed during the simulation. In
this set of runs, a distance/angle histogram@®ok 25 “slots” is used: If a rod-rod pair is found
to haves andd with

7 S 1+ 1
— < < Vl.4a
25 T Smax 25 ( )
] 0 J+1

55 S

,j€0,1,2,...,24 Vl.4b
25 7T/2 < 25 ) Z?] e07 Y Y ) Y ( )

the numbern;; is incremented by one. 6¢(is mapped into the first quadrant so that
0 = |arcsin(sin d)| € [0, 7/2]). A cut-off length of s,... = 3L/2 is used, which should in all
cases be well below the membrane persistence lengilsee last section).
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Figure VI.11: Comparison between energies of the plain membrane simulation and a simulatién with
rods ofL = 4 a (four bond lengths) each. The energies of the rod simulations are slightly higher than the
corresponding values of the plain membrane since rods flatten the vesicle by forcing five vertices to lie on
a straight line.

The raw dataz;; do not become equal (independent, if), even after arbitrarily long simu-
lation runs. This is because of two different reasons:

a) the accessible space (surface area) for a cerd@pends on. If rod A is thought to be at
the north pole of the ground state sphere, the area of the stripe withs < s < s + As
is largest at the equatos, = (7/2) Ry (see also Fig. V.5 for an illustration). In the
present case, wherg,.. < (7/2) Ry, the accumulated numbers; monotonously in-
crease with.

b) mutual rod-rod avoidance has to be taken into accourt<ifL, two rods can touch each
other, but may not overlap (mutual avoidance), see Fig. VI.12. The part of the histogram
with sin(6) > 2s/L is not accessible at all. The left side of the histogram refers to, both,
pairs in a parallel and in-line position, while the right side¢ = /2) corresponds to the
“T-formation” (see Figs. VI.12 and VI.13).

The effects a) and b) can be removed from the input data in one step by normaljzibg

a reference simulation, where the rod-rod interaction due to fluctuations is somehow switched
off. The method applied here is a “frozen membrane” run, where rods are simply randomly
shifted around and rotated on a sphere of radigisNo vertices are assumed, but a move is not
performed if the new rod position would overlap with another rod. A 3D-plot of the resulting
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Figure VI.12: Iftwo rods A andB have a center-center distanée — Pg = s of less tharl., the usual
accessible rotational angle of rétlaround its centePp of 7 is reduced tor — o = m — (7w — 0, — 0p) =

0o+ 6. Fors < L/2,0,, are easily computed to Bev(0,) = 2s/L, sin(6),) = (4s/L)\/1/4 — (s/L)?.

histogram is shown in Fig. VI1.13. In order to facilitate the assessment of the graph, the shown
data result from normalizing the;; by dividing them by the corresponding stripe area on the
ground state sphere. This removes effect a), see above. The forbidden area can immediately be
seen in the lower right corner. Now, the rod-rod interaction potential can be calculated by

CI)RR 9(2) (I)RRi j Ny.j
Srr () Jo_ (M) V1.5
kBT . ( (2) kBT " N j, frozen ( )

Yfrozen

Fig. VI.14 shows the resulting potenti&ky for x/kgT = 6.0. Colored contour plots obrg
are shown for all six runs in Figs. VI.A.1 through VI.A.6 at the end of this chapter. These results
are interesting and a little amazing. First, for small distancesL /2 and small angles (parallel
side-by-side position), the most notable feature in the energy is the valley which reaches down
to drr ~ —2kpT for /kgT = 6.0 . This indicates a strong attractive rod-rod potential; rods
are more likely to align in pairs than float around by themselves. This attraction is essential in
the thermodynamical sense, since it is larger in magnitude/th@in Then, even more amazing,
the T-formation is slightly repulsive for smaidl with ®rr ~ +kg7/4 ! This means that the
net membrane fluctuations can be maximized for close, parallel positions, while the T-formation
seems to flatten the membrane locally and thus quench fluctuations even stronger than two sep-
arate rods would. The potential is maximally attractive forz L /4, which equals one bond
length. Rods of course cannot get closer to each otherd¢han-,;,. The attraction becomes
stronger with increasing. However, for all of these observations, a caveat applies. Rods in
the simulation do not only interact via (normal) membrane fluctuations, but also are very much
influenced by lattice constraints. In this regard, it is surprising that no angular preference for
6 = 60° can be found in Figs. VI.14 and VI.A.1-6 as a signature of the triangulation.

The next interesting point of course is to find out about the decay behavior: Is it exponential
or does it follow a power-law? Fig. VI.15 shows (®rr (s, = 0)) for the smallest and largest
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Figure VI1.13: 3D-plot of the pair-distribution functiom(fi(s, 0) for the “frozen membrane” simulation.
The graph is obtained by normalizing the raw histogram dgtdor L = 4 a by the accessible space on

the ground state sphere, depending gsee text — without mutual avoidance, one would fiffd = 1)

values ofx. In both cases, the decay seems to be sufficiently exponential. Fig. VI.16 shows
the dependence of on the depth of the minimum iKdrr(s,0)). In the present data, this
relationship is approximately linear witin({(®gr(s,0))) ~ —kgT/3.
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Figure VI.14: 3D-plot of ®rg(s,0) for N = 500, /kgT = 6.0. The figure is rotated around the
z-axis so that the attractive dip fer— 0,60 — 0 lies at the right front corner. Also the repulsive hill is
visible (arrow). The mutual avoidance area is the plateau in the Bagl,s, 0) is not defined there. The
underlying histogram used to produce this plot consists of2&000 data entries.
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Figure VI.15: — (®gr(s,0 = 0)) in semilogarithmic display, the upper curwe/gsT = 6.0) corre-
sponds to the front row of data in Fig. VI.14. The higher the curve, the more attractive is the potential. The
distance between two tics on the x-axis equals one mean bond le(igtk 4 a). The exponential decay

of drr can be seen; a fit with the functiérexp(—3.1 s/ L) is shown for comparison (dashed curve). For
larger separations > L, the curve is disturbed by noise and extremely long simulation runs would be
required to obtain a smoother result. However, especially the grapty k¢yT' = 1.6 does not seem to
converge to zero, which might indicate the presence of another, long-range force.
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Figure VI.16: min({(®grgr(s,6 = 0))) vs. k. The dependence is negatively linear: Inclusions on stiffer
membranes feel a more attractive potential. (See also Fig. VI.15)
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VII. Discussion

In the course of this thesis, a Monte Carlo program, simulating a closed, random, triangulated
surface, was conceived. This surface is a simple model of a bending stiff, fluid lipid membrane.
There have been numerous other related numerical simulations before, starting in the late 80s
with pioneering papers [KN87a, KN87b] that reported on MC-simulations of tethered (non-fluid)
membranes. The existence ofmpling transition(spontaneous membrane deflation below a
certaink) and scaling behavior in general was disputed over a long time [BR89, BH90, HB9O0,
LG90, 1J95]. Special cases such as membranes with defects [SN88], osmotic pressure [DFIJ94],
fluid vesicles in shear flow [Kra96], phase diagrams for a pressure difference between vesicle in-
and outside [GK94, GK95], thieeezing transitior{see chapter I) [GK97a], and, among the latest
approaches, even membranes with variable surface topology [GK98] have been investigated.
However, in some regards, the present simulation is different from its predecessors:

e The algorithm with the parameter combination used is relatively fast. This might partly be
due to the large bond length limits (see chapter VI), which cannot model microscopic hard
spheres. On the other hand, it renders it possible to explore vesicles ofNip=td 500
vertices on a fast CPU.

e DuetolargeV, the spatial fluctuation spectrum could be computed. While there have been
numerous theoretical predictions, this was perhaps never done before. The results show a
good, partially very good, agreement with a quadratic approximation (see Fig. VI.10).

¢ (Anisotropic) inclusions have been simulated on the surface. In this regard, also the ana-
lytical side provided little insight before. The few publications [GGK96a, GBP93, Fou96,
PL96] are very limited in the range of validity of their predictions. The rod-rod poten-
tial predicted in [GGK96a] is very weak and holds for large distances> L only.
There have been no simulations at all of surface particles on vesicles in off-lattice, 3D-
representation. In this work, an attempt was made to close this gap. For stiff, mobile, rod-
like inclusions, an attractive exponential potential of the ordéiaf was found (see Figs.
VI.15,VI.16,VI.14). Although this potential must succumb to the algebsaiepotential
in [GGK96a] beyond some distance, it dominates for smahd can bind particles to-
gether. This is relevant in biophysics as inclusion clustering was found experimentally
[SG87], Fig. I.5.

Especially with respect to the last item, this simulation clearly suffers its limitations. The
rod-rod potential results need to be verified for fewer, but longer (more vertices) particles on a
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much larger vesicle. The surface quantization effect can be seen e.g. in Fig. VI.15, where two
inclusions cannot get closer to each other than = a/2. Also, different methods of vertex/rod
interaction should be compared in order to model inclusions in the most natural way. A more
precise formula for the bending energy discretization, as given in [GK96], might ultimately be
needed for verification. Longer runs are necessary to obtain better statistics (though this is true
for any kind of simulation).

In conclusion, a fluctuating random surface as simulated here provides an interesting “lab” to
monitor fluctuation phenomena in statistical physics. The combination of the lack of shear stress
(fluidity) and bending stiffness is ubiquitous in nature (cell membranes), but very strange to
human experience. In addition, its embedding as a 2D-manifold in 3D-space creates topological
complications.
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A. Some Differential Geometry

A.1 Curved Surfaces

Let ¢ be a surfaces C R? with the parameterizatiom = xz(u', u?) = (2!, 2?)(u',u?). The
functionsz!, 2 may be continously differentiable twice. Then thetric tensog can be defined
by

Gij ‘= 82:1: 8j93 s ’L,j = ]_, 2 s (Al)

[Spi70, Car83, BS87], F. David in [NPW89], where Einstein’s convention of summing over
identical indices is used ail = 9/du’ denotes a partial derivative with respect to the coordinate
u’. The metric tensog is a symmetric0, 2)-tensor; the elements of its inverse are writtey‘as

(9:;; ¢ = 1). The metric tensor and its inverse can be used to raise and lower indices, i.e. to find
the components of a vecterin dual space’ = ¢ v; [HK80]. Also, it gives the curvilinear
lengthds and area elemenifs by

ds)? = ¢;; du’ du? first fundamental form (A.2a)
J
d*s = dA = \/det g du’ du’ surface area element (A.2b)
——

The metric tensor gives thetrinsic properties of a surface. However, two different surfaces
(e.g. the plane and the cylinder) can have the same metric angd Hays little about the confor-
mation of¢ in the surrounding space.

At any point on the surface:', u?), a local Cartesian base (moving trihedral) can be found

by

B(b - {e17e27n} )
0; x(ut, u?) .
“ = Bawe (THPom

e X ey
= - 7 A.3
ler X ey (A.3)

with the surface unit normal field(u!, «?). In general,(du!, du?) induces a vectodz | n
tangential to the surface. The differentiakoflongda is written asin(dx) and also a tangential
vector tog. This can be used to define thervature tensob by

—dn(dz) - dz = b;; du’ du? second fundamental form (A.4a)

bij = b g curvature tensor (A.4b)
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The curvature tensas is a symmetrical(1, 1)-tensor and depends on the coordinate system
(u',u?). However, its invariants trace and determinant are independent of this choice

Trb= bzl = gij bij = C1+ Co = H (A5a)
1 y .
det b = 5(% b b b;) - e ¢ — K (A.5b)

Here,c, co are called therincipal curvatureqeigenvalues ob), H/2 themean curvatureand
K Gaussian curvature[Note: Often,H is defined to be the mean curvature itself, not twice of
it as it is done here.]

e Gaull's and Weingarten's formulas [BS87, Car83] express the derivative of the moving
trihedral

dje; = I e, +byn GauR's formula (A.63)
o;n=—0be; Weingarten’s identity (A.6b)

where theFi’;. := ey, 0;e; are the affine connections Ghristoffel's symbols
e The curvature tensor can also be defined usingtivariant derivatived);

Di vy 1= 8Z'Uj - Fk Uk (A7)

v

[Spi70]. They share all the properties of conventional partial derivatives, except that they
do not commute,D;, D;] # 0. In this formalism, the identity

[Kle86] holds.

A.2 The Gaul3-Bonnet Theorem

The Gaul3-Bonnet theorem may be the most fundamental one in the theory of curved surfaces
[Car83]. It was first published by GauB in 1928. ket) = x(u'(s), u*(s)) be a smooth curve

on the surface® C R3, parameterized by its contour length. may be the normal field to.

Then the curvature ot (s) can be separated as

d? d .
d_sf = c,n+g <n X d—j) , with (A.9)
A2z dzy\ d’z
Gn = Do Cg= <n X £> 12 (A.10)

[BS87], wherec, is callednormal curvatureand c, geodesic curvature On a geodesic line,

cg = 0.
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Consider now a closed, smooth, oriented, but not necessarily simply connectédart
S may be bound by a piecewise smooth cun(e), parameterized by its contour lengthLet
@ consist of smooth piecds; i, s;],7 = 1,2...k, with angles); at the cornersz(s) may run
aroundS counter-clockwise. Then the (global) Gauf3-Bonnet theorem holds

Z/ ds+//KdA+Z@ = 271 x(9) (A.11)

[Car83], wherey(.S) is called the Euler-Poincarcharacteristics of. It is related to thegenus
g, which counts the number of “handles” or “holes”$nh

x=21-g) . (A.12)

A closed surface has no holes, a torus would have 1, a pretzelg = 2, and Swiss Cheese

g — oo.

A.3 Proof of eq.(ll.6)

Letxz(u', u?) be the parameterization of the neutral surface, atith ||0;z| = 1 and
x:=x+Azn (A.13)
a parallel surface separated by the normal distaxee= z — z,. The partial derivatives give
0, =0;(x+Azn)=e;,+Azn; |, (A.14)

where partial derivatives are here denoted by a comma before the index:dn/du’ etc. for
the sake of brevity. Since parallel surfaces have identical normal vector fields, we find for the
corresponding surface area elements

epXxe = |le;xen=9n (A.15a)

L1 XZy = |1 xXTon=9n . (A.15b)
Combining eq. (A.14) with eq. (A.15b), we obtain
L1 XToy=e€ Xey+ Az(e1 XNg+n; X 92) + (Az)? (n,l X n,Z) =9n (A.16)
Using Weingarten’s identity eq. (A.6bh; = ej , We can write [Goe93]
An = yn-— Az(b (e; x ex) + bl (er x eg)) + (A2)* b} b(ey, x &)

= yn— Az 7(b1 + b2 )n + (AZ)Q 7(b11 bz2 - b12 b21> n
= 7(1 — Az Trb+ (Az)? det b) n

=5 = A(1-AzH+(222K) (A.17)
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Therefore, we obtain for the relative change in surface area at

-—A<Z>_A<ZO)—§_7——Z—Z z— 2)?
§A = VR (z—2)H+(z—20)K . (A.18)
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Zusammenfassung

In dieser Arbeit werden die mesoskopischen und statistischen Eigenschaften fluktuierender
Membranen untersucht. Das wichtigste Verfahren dazu ist eine Monte Carlo Simulation einer ge-
schlossenen, fluiden Obexfihe mit Biegesteifigkeit. Diese stellt ein stark vereinfachtes Modell
einer Lipidmembran dar, wie man sie z.B. in der@iden biologischer Zellen findet. Geschlos-
sene Lipidmembranen werden auch,Alssikel “ bezeichnet. In der Simulation wie in der Natur
fluktuiert das Vesikel nun um einen kug@&migen Grundzustand; die Abweichungen von der
Kugelform werden dabei durch die @e der Biegesteifigkeit bestimmt.

Die Membran wird durch eine dynamische Triangulierung diskretisiert, also ein Netzwerk
von durch Saben verbundenen Punkten, die jeweils Dreiecke einschliel3en. Zahlreiche Parame-
ter der Membran wie Biegeenergie, Obéctheninhalt, Korrelationen der Obé&dhennormalen
etc. werden berechnet. AuRerdem wird die Deformation des Vesikels in Kagedfifunktionen
entwickelt und auf diese Weise das Fluktuationsspektrum bestimimtalle diese Ergebnisse
gibt es theoretische Vorhersagen, mit denen sie verglichen werden. Der Vergleich ergibt in allen
Fallen eine zufriendenstellendiébereinstimmung, z.T. auch eine gute und sehr gute.

In einer Erweiterung der reinen Membran werden eingebettete unbiegsabuwhestbrmige
Einschlisse auf ihr simuliert, die die thermischen Membranfluktuationen loketist Dadurch
kommt es zu Wechselwirkungen zwischen den Eirisg$en, die durch die Membran vermittelt
werden. Diese werden durch ein Distanz-Winkel-Histogramm gemessen, und mit Hilfe eines
Normierungslaufes wird ein effektives Wechselwirkungspotential berechnet.

Die Einleitung und Kapitel | definieren den Begriff der biologischen Membranen iimeh
in deren physikalische Eigenschaften ein. Kapitel Il leitet einen Ausdricié Biegeenergie
der Membran her, untekgizt durch mikroskopische Betrachtungen des Membranquerschnittes.
In Kapitel 11l werden einige thermodynamische Eigenschaften von Lipidmembranen besprochen
und charakteristischedngen definiert. Kapitel IV behandelt die theoretischen Grundlagen der
Monte Carlo Simulation und Kapitel V beschreibt Einzelheiten des Simulationsprogrammes. Die
Ergebnisse der Simulation werden in Kapitel Vapentiert und in Kapitel VII diskutiert und in
Ihrer Bedeutung gewerted.

Ein mathematischer Anhang befasst sich in kurzer Form mit der Theoridigeker
Flachen.
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