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Abstract: We find that the signal evolution of a chirped return-to-zero (CRZ) pulse over
6,100 km is fully linearizable, and the noise Fourier components are multivariate Gaussian-
distributed. We introduce a deterministic method to accurately calculate eye diagrams and
error rates, avoiding Monte Carlo simulations altogether.

Introduction

In current optical fiber communication systems, amplifier
spontaneous emission (ASE) noise sets the lower limit on
the allowed system power [1], [2]. At the receiver, ASE
noise leads to amplitude and timing jitter and deteriorates
the bit error rate (BER). The noise spectrum is white over
the spectral width of one channel. However, because of the
optical fiber nonlinearity leading to cross-phase modulation
and four-wave mixing, the noise interacts with the signal in
a complex way that usually increases the signal degradation.
The traditional computation of the probability distribution
function (pdf) of the electrical signal in the receiver, based
on Monte-Carlo simulations, only works for a limited range
of BERs beyond which the BER has to be extrapolated [3].
Extrapolation methods to date assume that the noise power
is Gaussian-distributed. This assumption sometimes yields
good results in comparison of theory and experiment [4], but
it is not always reliable.

In this contribution, we consider the transmission of a
chirped return-to-zero (CRZ) pulse [5] over a distance of
6,100 km. Due to the low peak power, relative to the soliton
format, we find that the Fourier components are all Gaussian-
distributed. Both phase and timing jitter are very small.
Hence, we infer that the noise-noise interaction is negligi-
ble, and the system is linearizable. In formats with higher
optical peak powers such as in soliton systems, phase and
timing jitter grow much faster and must be removed in order
to maintain the linearity [6]. In a linearizable system, the
distribution of the accumulated noise is multivariate Gaus-
sian with zero mean. This pdf is completely determined by
the covariance matrixKkl = 〈bkb∗l 〉 of the noise Fourier
modesbk. We employ the standard split-step algorithm to
numerically compute the evolution of the covariance matrix.
We may then calculate the pdf of the narrow-band filtered
receiver voltage in the marks and the spaces. This last step
is a generalization of [7], in that the diagonal elements of
K are not equal and we take into account realistic electri-
cal filtering. Note that our approach is fully deterministic
and does not rely at all on Monte Carlo simulations. To ver-
ify our results, we compare them to a standard Monte Carlo
simulation.

We are extending previous work that showed that the
linearization is valid when calculating the amplitude and

timing jitter for several different formats [8].

Theory and Results

Our simulated transmission line consists of 34 dispersion
maps of length 180 km each, or 6,120 km in total [5].
Each map contains a normal span of 160 km and disper-
sion Dn = −2.44 ps/nm-km and an anomalous span of
20 km andDa = 16.55 ps/nm-km. The average dis-
persion isDav = −0.33 ps/nm-km. The fiber loss is
compensated by four EDFAs per map. We use a pre-
and postcompensating fiber of length9.8 km each with
Dc = 93.5 ps/nm-km. The spontaneous emission factor is
nsp = 1.0. A signal pulse fills the entire bit window of dura-
tion Tbit = 100 ps and has a chirped raised-cosine shape of
the form u(t) = [U0(1 + cos Ωt)/2]1/2 exp(iAπ cos Ωt),
whereΩ = 2π/Tbit andA = −0.6. The signal has an ini-
tial peak power of 1 mW before the precompensation. We
transmit a single pulse surrounded by seven zero bits, where
the zeros are required to keep the pulse tails from interact-
ing with each other due to the periodicity of of the Fourier
transform.

We consider the normalized nonlinear Schrödinger equa-
tion
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+ |u|2u = ig(z)u+ F̂ (z), (1)

whereu is the optical field envelope,z andt represent nor-
malized distance and time, respectively,D(z) is the local
dispersion andg(z) represents attenuation in the fiber and
amplification in the EDFAs. The quantitŷF is amplified
spontaneous emission (ASE) noise input and is only nonzero
inside the amplifiers. We will now express the optical fieldu
asu = u0+δu, whereu0 = 〈u〉 is the noise free field andδu
represents accumulated noise. The Fourier decomposition
of δu can be writtenδu(t) =

∑N
k=1[αk + iβk] exp(iωkt),

whereωk = 2πk/T with the periodT , andαk and βk
represent the real and imaginary noise Fourier coefficients.
We define a partitioned, real vector of length2N to be
a = (α1, α2, . . . , αN , β1, β2, . . . , βN )T . We verified that
the αk andβk are individually Gaussian-distributed using
a statistical chi-square test, which is a necessary prerequisite
for a to be multivariate Gaussian-distributed. We now lin-
earize (1) aroundu0 by only keeping terms up to first order
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Figure 1: Pdf of the filtered receiver voltage. The solid
lines show the deterministic pdf resulting from our ap-
proach and the dashed lines are Gaussian fits. The circles
are results from a Monte Carlo simulation. The vertical
dash-dotted line shows the optimal decision threshold.
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Figure 2: A contour plot of the voltage probability den-
sity displayed as an eye diagram. The dashed line at
t = 50 ps shows the location of the pdf in Figure 1. The
logarithm of the pdf is displayed as different shades of
gray. To obtain a more readable diagram, we only plot
probability densities in the range [10−4,101]. However
our approach allows us to find the probability density for
any voltage, thereby enabling us to calculate exact BERs.

in δu. Inside the fiber the linearized equation is homoge-
neous sinceF̂ = 0. Consequently, its Fourier transform
must be linear and homogeneous as well, and can be written
in terms ofa as

∂a

∂z
= Ra, (2)

whereR is a distance dependent real matrix of dimension
2N × 2N . We write the solution of (2) asa(z) = Ψ(z)a(0)
whereΨ is a propagator matrix. Defining the2N × 2N
covariance matrixK = 〈aaT 〉, we infer that the evolution of
K = Kin over one fiber leg followed by an EDFA is given by

Kout = ΨKin ΨT + ηI, (3)

whereI is the identity matrix andηI represents the lumped
ASE noise input. We choose a perturbative method to com-
puteΨ rather than solving (2) directly. Letu0(0) andu0(L)
be the noise free optical field at the beginning and end of
a given fiber leg of lengthL, respectively. We then per-
turb the initial field in a single frequency modeu(k)(0) =
u0(0)+∆ exp(iωkt), solve the NLS again for the perturbed
field and obtainu(k)(L). The resulting noise vectora(k) cor-
responding toδu(k) = u(k)(L)− u(k)

0 (L). We then divide

by ∆, which yields thek-th column of the matrixΨ. We
find this method to be very stable and accurate in comparison
with the Monte Carlo simulation. The approach corresponds
to the Lyapunov method described by Bennetin et al. [9].
We find the value ofΨ to be independent of∆ over a wide
range.

Figure 1 shows the pdf of the voltage out of the
square-law detector after passing through a4.3 GHz Bessel
filter, calculated from the covariance matrixK. The final
calculation of the pdf keeps the quadratic nonlinearity in the
receiver and is a generalization of [7]; it yields a generalized
chi-square distribution [10]. The spread of the pdf in the
marks is much larger than in the spaces, reflecting the
impact of signal-noise beating. The optimal decision level
in Fig. 1 lies at0.28 (see the dash-dotted line) and yields
a BER of 1.2 × 10−35. The low BER is due to the low
value ofnsp = 1.0 and the lack of inter-symbol interference.
Figure 2 shows the corresponding eye diagram.

Conclusion

We investigate the noise propagation in a chirped return-to-
zero (CRZ) pulse over 6,100 km similar to [5]. We find that
the real and imaginary Fourier coefficients are multivariate
Gaussian-distributed and the signal-noise beating can be ne-
glected, implying that the noise propagation is linearizable.
Phase and timing jitter are both small compared to formats
with higher peak powers such as soliton systems [6]. To
determine the multivariate Gaussian noise distribution, we
compute the covariance matrix of the noise Fourier modes by
numerically solving the linearized noise propagation equa-
tion. Using these results, we can accurately calculate eye
diagrams and the bit error rates, keeping the quadratic non-
linearity in the receiver. Our approach is fully deterministic
and does not rely at any point on Monte Carlo simulations.
Thus, it has great potential to speed up the design of optical
transmission systems (the numerical computation of the eye
diagram using our approach took about 15 minutes, while the
Monte Carlo simulation of 23,000 realizations ran for several
days). In the future, we will extend our approach to realistic
pulse sequences and values ofnsp.
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