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1 Introduction

In current optical fiber communication systems, amplifier spontaneous emission (ASE) noise sets the lower
limit on the allowed system power [1], [2]. At the receiver, ASE noise leads to amplitude and timing jitter and
deteriorates the bit error rate (BER). The noise spectrum is white over the spectral width of one channel.
However, due to the nonlinearity of the optical fibers leading to cross-phase modulation and four-wave
mixing, the noise interacts with the signal in a complex way that usually increases the signal degradation.
The traditional computation of the probability distribution function (pdf) of the electrical signal in the
receiver, based on Monte-Carlo simulations, only works for a limited range of BERs beyond which the
BER has to be extrapolated [3]. Extrapolation methods to date assume that the noise power is Gaussian-
distributed. This assumption often yields good results in comparison of theory and experiment [4], but it is
not always reliable. First, it assumes that the nonlinear beating of the noise with itself during the optical
transmission is negligible, i.e., the system is linearizable. Second, it assumes that the actual distribution
function for the marks and spaces, which would both be chi-square distributions [5], can be replaced by
Gaussians. In this contribution, we numerically study a single-channel dispersion-managed soliton (DMS)
system for lengths up to 24,000 km, and we show that once the phase and timing jitter are properly removed,
the residual Fourier components all obey a multivariate Gaussian distribution. Thus, a linearization approach
in which one neglects the nonlinear interaction of the noise with itself during transmission is valid to within
the limits of numerical accuracy and allows us to accurately calculate the eye diagrams and error values. (Of
course, the quadratic nonlinearity in the receiver must be retained in the calculation.) We focused on this
system because it is well-characterized experimentally [4] and it is highly nonlinear and thus represents a
stringent test of our approach. We thus believe that this approach will be of use in a wide variety of systems,
although its full scope remains to be determined. We are extending previous work in which we showed that
the linearization is valid when calculating the amplitude and timing jitters for several different formats [6].

We conducted Monte-Carlo simulations of a single-channel DMS system over 24,000 km similar to [4]. We
investigated the pdfs of both the phase and timing jitters. We verified that the timing jitter is Gaussian and
that the phase jitter is distributed like a Jacobi θ-function, which is the periodic analog to a Gaussian [7].
When the phase and timing jitter is removed from the received signal with the help of a simple analytical
transform, we find that the residual noise components are Gaussian-distributed. This in turn allows us to
obtain the multivariate Gaussian distribution of the noise Fourier coefficients bi, based on the covariance
matrix Kij = 〈bib∗j 〉. We may then calculate the pdf for the spaces and the marks, taking into account the
timing jitter. The phase jitter makes no contribution. This procedure is a generalization of [8], as the diagonal
elements of K are not equal.
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Fig. 1. (a) Histogram of A and (b) histogram of tc = −B/∆ω for two different signal peak powers Pp =
5 mW and Pp = 13 mW. (c) Histogram of the two real Fourier coefficients b0,R and b5,R at ω0 = 0 and
ω5 = 2π × 25 GHz, respectively, after the linear part of the phase is removed (Pp = 5 mW). The solid
lines are fits of the Jacobi θ-function in (a) and Gaussians in (b) and (c). The simulation consists of 10,000
Monte-Carlo runs.

2 Theory and Results

We conducted Monte-Carlo simulations of a DMS system, transmitting a single soliton. We consider the
received signal in the frequency domain ũ(ω) = ũ0(ω) + δũ(ω), where ũ0 is the signal average over all noise
realizations and δũ is the total noise at the receiver. For single pulse transmission, ũ can be decomposed as

u = u0 + δu = u0 exp
[
i(α+ βω)

]
+ r, (1a)

δu ≈ iαu0 + iβωu0 + r, (1b)

where α and β are real numbers. The part of the noise that is responsible for a phase shift is proportional
to iu0, while the component iβωu0 leads to timing jitter. For each noise realization of the Monte-Carlo
simulation, we fit a linear function to the phase of ũ(ω) using a least-squares criterion,

I = min
A,B

∫ ∞
−∞
|u|2

[
arctan

ũI
ũR
−A−Bω

]2

dω, (2)

where ũ = ũR + i ũI . We found the linear phase assumption is good as long as the receiver is placed at
the chirp-free maximum compression point of the dispersion map. The fit then yields the estimates α ≈ A
and β ≈ B from which we obtain ũrem = ũ exp[−i(A + Bω)] ≈ ũ0 + r exp[−i(A + Bω)]. The Fourier series
expansion of urem(t) is urem(t) =

∑(N/2)−1
n=−N/2 bn exp(iωnt), ωn = 2πn/T , with the N complex coefficients

bn = bn,R + i bn,I , where T is the period. We tested the hypothesis that the central time of the pulses,
tc = −B/∆ω, as well as that bn,R and bn,I are Gaussian-distributed, where ∆ω = ωk+1 − ωk = 2π/T . We
fit the distribution of A to a Jacobi θ-function [7] with

θψ(µ, σ2, 2π) =
∞∑

k=−∞

Nψ+2πk(µ, σ2), (3)

where Nx(µ, σ2) is a Gaussian (normal) distribution of mean µ and variance σ2 taken at x. The θ-function
is the natural choice for the phase fit since A is only determined modulo 2π.

Our simulated transmission line consists of 225 dispersion maps of length 107 km each [4]. Each map contains
a normal span of 4 × 25 km and dispersion Dn = −1.03 ps/nm-km and an anomalous span of 6.7 km and
Da = 16.7 ps/nm-km. The average dispersion is Dav = 0.08 ps/nm-km. The fiber loss is compensated by
five EDFAs and there is a 2.8 nm optical bandpass filter in each map to reduce the amount of noise. The
spontaneous emission factor is nsp = 1.3. The signal has a Gaussian shape with a minimum FWHM duration
of about 9 ps and is launched and received in the midpoint of the anomalous span.
Figures 1 (a) and (b) show histograms of A and tc = −B/∆ω for two different signal peak powers Pp. Each
simulation consists of 10,000 Monte-Carlo runs. The linear phase fit of Eq. (2) is very good even at the large
transmission distance of 24,000 km. Pulses are launched at tc = 50 ps.
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Fig. 2. (a) Analytical pdf of the noise voltage after square-law detection and an 8.6 GHz Bessel filter. The
solid lines are the pdfs taken at t = 50 ps for the marks (1’s) and between pulses for the spaces (0’s);
the dashed lines are Gaussian fits. The pdfs include the effect of the timing jitter (the standard deviation
of tc). Note that the Gaussian fits are good over about two orders of magnitude, but deviate strongly at
low probabilities. The pdf of the marks is dominated by timing jitter at low voltages, leading to a visible
bump. The exponential decay of the pdf of the spaces results from the quadratic noise term in the receiver
[8]. The circles are results from the Monte-Carlo simulation and can be thought of as a slice through an
electrical eye diagram. Particularly for the spaces, the agreement with the analytical pdf is much better
than for the Gaussian fit. (b) A contour plot of the pdfs mimicking an eye diagram. The logarithm of the
pdf is displayed as different shades of gray. To obtain a more readable diagram, we only plot probabilities in
the range [10−4, 101], while our approach allows us to find the probability density for any voltage, thereby
enabling us to calculate exact BERs. The optimal decision level in (a) lies at 0.546 (see the dash-dotted line)
and yields a BER of 5.34× 10−13. From the Gaussian fits, we obtain a Q-factor of 13.5 implying a BER of
10−41 instead.

Figure 1 (c) shows histograms of b0,R and b5,R at the angular frequencies ω0 = 0 and ω5 = 2π × 25 GHz,
respectively. The simulated data agree very well with the Gaussian fit. The way we removed the linear part
of the signal phase causes the imaginary parts of the bn to be close to zero; so, they are not shown here.
Figure 2 (a) shows the pdf of the voltage after the electrical receiver, calculated from the covariance matrix
K, which has a generalized chi-square distribution [5, 8]. The effect of the timing jitter is analytically included
in the calculation of the pdfs. Figure 2 (b) shows the corresponding eye diagram.

3 Conclusion

We performed Monte-Carlo simulations over 24,000 km of a DMS system similar to [4] and investigated the
distribution of the phase and timing jitters. We find the timing jitter to be Gaussian-distributed, while the
phase jitter obeys a Jacobi θ-distribution, which is the periodic analog of a Gaussian distribution. We also
examined the distribution of the Fourier coefficients of the received signal after the phase and timing offsets
are removed from each signal. These components obey a multivariate Gaussian distribution. Using these
results, we can accurately calculate the eye diagrams and the bit error rates. In the future, we will determine
the applicability of this approach to other systems.
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