Abstract—Over the past years, many algorithms have been
developed for multispectral and hyperspectral image classification.
A general approach to mixed pixel classification is linear spectral
unmixing, which uses a linear mixture model to estimate the abun-
dance fractions of signatures within a mixed pixel. As a result, the
images generated for classification are usually gray scale images,
where the gray level value of a pixel represents a combined amount
of the abundance of spectral signatures residing in this pixel. Due
to a lack of standardized data, these mixed pixel algorithms have
not been rigorously compared using a unified framework. In this
paper, we present a comparative study of some popular classifica-
tion algorithms through a standardized HYDICE data set with a
custom-designed detection and classification criterion. The algo-

Index Terms—Linear discriminant analysis (LDA), linear un-
mixing, maximum likelihood estimator (MLE), minimum distance,
mixed-to-pure pixel (M/P) converter (M/P converter), oblique sub-

I. INTRODUCTION

MAGE classification is a segmentation method that aggre-
gates image pixels into a finite number of classes by certain
rules so that each class represents a distinct entity with spe-
cific properties [1]. In general, it can be viewed as a label
assignment by which image pixels sharing similar properties
will be assigned to the same class. Since multispectral images
are acquired at different spectral wavelengths, a multispectral
image pixel can be represented by a pixel vector, in which each component corresponds to a specific wavelength. As
}

Manuscript received June 12, 1998; revised December 9, 1999.
The authors are with the Remote Sensing Signal and Image Processing Laboratory, Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250 USA (e-mail: cchang@umbc.edu).
Publisher Item Identifier S 0196-2892(00)02835-7.

An Experiment-Based Quantitative and Comparative Analysis of Target Detection and Image Classification Algorithms for Hyperspectral Imagery

Chein-I Chang, Senior Member, IEEE, and Hsuan Ren, Student Member, IEEE
the performance of any new algorithm cannot be substantiated. In this paper, we take a first step by conducting a comparative study of performance analysis among several classification algorithms. We confine our study to linear spectral mixing problems only. Additionally, we consider two types of classification: mixed pixel classification and pure pixel classification. A general approach to mixed pixel classification (such as spectral unmixing) is to estimate the abundance fraction of a material of interest present in an image pixel, and then the estimated abundance fraction is used to classify the pixel. However, this generally requires visual interpretation. Such human intervention is rather subjective and may not be reliable or repeatable. With no availability of standardized data or objective criteria, a quantitative analysis for mixed pixel classification is almost impossible. By contrast, pure pixel classification does not have such a problem. Unlike mixed pixel classification, it does not require abundance fractions of spectral signatures to be used for class assignment. Its performance is completely determined by the criteria used for classification. So, two major contributions of this paper are 1) to establish a link between pure and mixed pixel classification by designing a mixed-to-pure pixel (M/P) converter and 2) to conduct experimental comparisons among a set of selected pure and mixed classification algorithms, including quantitative performance analysis. In order to validate such a study, a standardized HYDICE data set is used where all man-made targets present in image scenes have been precisely located to the pixel level and designated as either target center pixels or target masking pixels. The reason for using target masking pixels is to include partial target pixels, target background pixels, and target shadow pixels to account for all possible pixels that may have impacts on targets of interest. In addition, a custom-designed criterion for target detection and classification is also introduced for the purpose of tallying target pixels detected and classified. By making use of this data set, along with the designed criterion, a comparative analysis for classification accuracy becomes possible. The significance of these experimental results is to offer a performance evaluation of the classification algorithms in a rigorous fashion so that each algorithm is fairly compared on the same common ground.

A standardized HYDICE data set is used for evaluation. The experiments show that the OSP-based classification algorithms resulting from an M/P conversion perform better than the minimum distance-based classification algorithms, but not as well as LDA. On the other hand, the same experiments also show that the abundance-based images generated by mixed pixel classification algorithms significantly improve classification results. These facts substantiate the need for mixed pixel classification for multispectral/hyperspectral imagery.

This paper is organized as follows. Section II formulates the mixed pixel classification problem as a linear mixture model. Section III describes various approaches to abundance estimation for mixed pixel classification (e.g., OSP-based and ML classifiers). Section IV introduces the concept of mixed-to-pure pixel conversion to reduce a mixed pixel classification problem to a conventional pure pixel classification problem. Section V derives an objective criterion for target detection and classification to used for experiments. Section VI presents a comparative performance analysis for classifiers described in Sections III and IV, and Section VII concludes with some remarks.

II. LINEAR MIXING PROBLEMS AND OSP APPROACH

Linear spectral unmixing is a widely used approach in remotely sensed imagery to determine and quantify individual components [25], [26]. Since every pixel is acquired by multiple spectral bands, it can be represented by a column vector where each component represents a particular band. Suppose that \(L \) is the number of spectral bands. Let \(\mathbf{r} \) be an \(L \times 1 \) column vector in a multispectral or hyperspectral image where vectors are all boldfaced. In this case, each pixel is considered to be a pixel vector of dimension \(L \). Assume that \(M \) is an \(L \times p \) signature matrix denoted by \((\mathbf{m}_1, \mathbf{m}_2, \ldots, \mathbf{m}_p) \), where \(\mathbf{m}_j \) is an \(L \times 1 \) column vector representing the \(j \)-th spectral signature resident in the pixel \(\mathbf{r} \), and \(p \) is the number of signatures of interest. Let \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_p)^T \) be a \(p \times 1 \) abundance column vector associated with \(\mathbf{r} \), where \(\alpha_j \) denotes the fraction of the \(j \)-th signature in the pixel \(\mathbf{r} \).

A. Linear Spectral Mixture Model

A classical approach to solving the mixed pixel classification problem is linear unmixing, which assumes that the materials (endmembers) present in a pixel vector are linearly mixed. A pixel vector can be described by a linear regression model as follows:

\[
\mathbf{r} = M\alpha + \mathbf{n}
\]

where \(\mathbf{n} \) is an \(L \times 1 \) column vector that can be viewed as either noise or an error correction term resulting from data fitting.

The algorithms to be used for our comparative study only include those derived from OSP, minimum distance approaches, and Fisher’s linear discriminant analysis (LDA). This selection is made for three major reasons.

1) As mentioned earlier, if the noise in a linear mixing problem is white Gaussian, ML estimation and the OSP approach for mixed pixel classification are equivalent and both can be viewed as a spectral unmixing method.

2) The white Gaussian noise assumption also simplifies and reduces the Gaussian ML classifier to a minimum distance classifier.

3) Fisher’s LDA has been widely used for classification since its criterion is based on the maximization of class separability.

These facts allow us to restrict the mixed pixel classification algorithms to three classes of classification algorithms listed above (the OSP-based classifiers, minimum distance-based classifiers, and LDA). The difference between the OSP and the other approaches (i.e., minimum distance, LDA) is that the OSP was designed for mixed pixel classification, whereas the latter is for pure pixel classification. Nevertheless, we will show that by imposing appropriate constraints on the abundance fractions, the mixed pixel classification can be reinterpreted and reduced to pure pixel classification. By means of a mixed-to-pure pixel (M/P) conversion, mixed pixel classification algorithms
can then be directly compared with minimum distance-based classifiers and LDA.

B. Orthogonal Subspace Projection (OSP)

Without loss of generality, we assume that there is a signature of interest in model (1), $d = m_p$. So the signature matrix M can be partitioned into the desired signature vector d and an undesired signature matrix denoted by U. By separating d from U, model (1) can be expressed as follows:

$$ r = d\alpha_p + U\gamma + n $$ \hspace{1cm} (2)

where the subscript i is suppressed throughout this paper and $U = (m_1, m_2, \cdots, m_p)$. Let $\langle d \rangle, \langle M \rangle$ and $\langle U \rangle$ be the spaces linearly spanned by $d, U,$ and M respectively. The reason for separating U from M in model (2) is to allow us to design an orthogonal subspace projector to annihilate U from an observed pixel r prior to classification. One such desired orthogonal subspace projector was derived in [15] given by $P_U^\perp = I - UU^\#$, where $UU^\# = (UTU)^{-1}UT^T$ is the pseudo-inverse of U and the notation \perp indicates that the projector P_U^\perp maps the observed pixel r into the range space $\langle U \rangle^\perp$, the orthogonal complement of $\langle U \rangle$.

Now, applying P_U^\perp to model (2) results in a new spectral signature model

$$ P_U^\perp r = P_U^\perp d\alpha_p + P_U^\perp n $$ \hspace{1cm} (3)

where the undesired signatures in U vanish due to orthogonal projection elimination, and the original noise n has been suppressed to $P_U^\perp n$.

Equation (3) represents a standard signal detection problem and can be solved by a matched filter M_α given by $M_\alpha(x) = d^T x$. So, an orthogonal subspace projection (OSP) classifier q_{OSP}^T derived in [15] can be implemented by an undesired signature annihilator P_U^\perp, followed by a desired signature matched filter M_α:

$$ q_{OSP}^T = M_\alpha P_U^\perp = d^T P_U^\perp. $$ \hspace{1cm} (4)

III. HYPERSONIC A BUNDANCE ESTIMATION ALGORITHMS FOR MIXED PIXEL CLASSIFICATION

Equation (1) represents a general linear model for mixed pixel classification where the signature matrix M and the abundance vector α are assumed to be known a priori. In reality, α is generally not known and must be estimated. In order to estimate α, a common approach is spectral unmixing via an inverse of the linear mixture model given by (1) (e.g., [27]). In this paper, we will describe two general approaches in Sections III and IV, the estimation of abundance and the classification of abundance, with the former closely related to the spectral unmixing and the latter reduced to distance-based classification.

A. A Posteriori Orthogonal Subspace Projection

In order to estimate $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_p)^T$, several techniques have been developed in [20]–[24] based on a posteriori information obtained from the data cube. As a result, model (1) or (2) can be cast in terms of an a posteriori formulation and can be given by

$$ r = M\hat{\alpha}(r) + \hat{n}(r) $$

$$ = d\hat{\alpha}_p(r) + U\hat{\gamma}(r) + \hat{n}(r) $$ \hspace{1cm} (5)

where $\hat{\alpha}(r), \hat{\alpha}_p(r),$ and $\hat{\gamma}(r)$ are estimates of $\alpha, \alpha_p,$ and γ, respectively, based on the observed pixel itself r. Because of this, model (5) is called an a posteriori model as opposed to model (1), which can be viewed as a Bayes or a priori model. For simplicity, the dependency on r will be dropped from all the notations of estimates throughout the rest of this paper.

1) Signature Subspace Projection (SSP) [20], [21]: Using the least squares error as an optimal criterion for model (5) yields the optimal least squares estimate of α, $\hat{\alpha}_{LS}(r)$ given by

$$ \hat{\alpha}_{LS}(r) = (M^TM)^{-1}MT^Tr. $$ \hspace{1cm} (6)

Substituting (6) for the estimate of α in model (5) results in

$$ r = M\hat{\alpha}_{LS} + \hat{n}_{LS} $$ \hspace{1cm} (7)

where

$$ \hat{n}_{LS} = r - M\hat{\alpha}_{LS} = M(\alpha - \hat{\alpha}_{LS}) + n. $$ \hspace{1cm} (8)

From (6), we define $P_M = M(M^TM)^{-1}MT$ to be the signature space orthogonal projector that projects r into the signature space $\langle M \rangle$ and apply P_M to model (5), which yields

$$ P_Mr = P_M M\hat{\alpha}_{LS} + P_M \hat{n}_{LS} $$

$$ = M\hat{\alpha}_{LS} $$ \hspace{1cm} (9)

$$ = M\hat{\alpha}_{LS} $$ \hspace{1cm} (10)

where $P_M M = M$ and the term $P_M \hat{n}_{LS}$ vanishes in (9) since P_M annihilates \hat{n}_{LS}.

By coupling P_M with the OSP classifier q_{OSP}^T, a classifier q_{SC}^T called signature space projection classifier (SSC) derived in [21] is given by

$$ q_{SSC}^T = q_{OSP}^T P_M = d^T P_U^\perp P_M. $$ \hspace{1cm} (11)

Now we apply q_{SSC}^T to both a priori model (1) and a posteriori model (5), we obtain

$$ q_{SSC}^T r = d^T P_U^\perp P_M M \alpha + q_{SSC}^T n $$

$$ = d^T P_U^\perp P_M d\alpha_p + q_{SSC}^T n $$ \hspace{1cm} (12)

and

$$ q_{SSC}^T r = q_{SC}^T (M\hat{\alpha}_{LS} + \hat{n}_{LS}) $$

$$ = d^T P_U^\perp P_M d\hat{\alpha}_p. $$ \hspace{1cm} (13)

Equating (12) and (13) yields

$$ d^T P_U^\perp P_M d\hat{\alpha}_p = d^T P_U^\perp P_M d\alpha_p + q_{SSC}^T n $$ \hspace{1cm} (14)

Dividing (14) by $d^T P_U^\perp P_M d$, we obtain the estimate of α_p, denoted by $\hat{\alpha}_{SSC,p}$:

$$ \hat{\alpha}_{SSC,p} = \alpha_p + \frac{q_{SSC}^T n}{d^T P_U^\perp P_M d} = \alpha_p + \frac{q_{SSC}^T n}{d^T P_U^\perp d} $$ \hspace{1cm} (15)
where the last equality holds because \(\mathbf{d}^T \mathbf{P}_U^\perp \mathbf{P}_M \mathbf{d} = \mathbf{d}^T \mathbf{P}_U^\perp \mathbf{d} \).

The estimation error resulting from (15) is given by

\[
\varepsilon_{SSC,p} = \hat{\alpha}_{SSC,p} - \alpha_p = (\mathbf{d}^T \mathbf{P}_U^\perp \mathbf{d})^{-1} \mathbf{d}^T \mathbf{P}_U^\perp \mathbf{P}_M \mathbf{n}. \tag{16}
\]

2) Oblique Subspace Projection (OBSP) [21]:

In SSP, the noise is suppressed by making use of \(\mathbf{P}_U \), and the undesired signatures in \(\mathbf{U} \) are subsequently nulled by the projector \(\mathbf{P}_U^\perp \). It would be convenient if we could have these two operations done in one step. One such operator, called an oblique subspace projection, was developed in [21] and designates \(\mathbf{d} \) as its range space and \(\langle \mathbf{U} \rangle \) as its null space. In this case, the oblique subspace projection is no longer orthogonal. Furthermore, it was shown in [28] that the orthogonal subspace projector \(\mathbf{P}_M \) can be decomposed as a sum of two oblique projectors, one of which is the oblique subspace projection.

Let \(\mathbf{E}_{XY} \) be a projector with its range space \(X \) and null space \(Y \). The \(\mathbf{P}_M \) can be decomposed and expressed by

\[
\mathbf{P}_M = \mathbf{E}_{dU} + \mathbf{E}_{dUd} \tag{17}
\]

with

\[
\mathbf{E}_{dU} = \mathbf{d}(\mathbf{d}^T \mathbf{P}_U^\perp \mathbf{d})^{-1} \mathbf{d}^T \mathbf{P}_U^\perp \\
\mathbf{E}_{dUd} = \mathbf{U}(\mathbf{U}^T \mathbf{P}_U^\perp \mathbf{U})^{-1} \mathbf{U}^T \mathbf{P}_U^\perp
\]

particularly, \(\mathbf{E}_{dUd} = \mathbf{d} \) and \(\mathbf{E}_{dUd} \mathbf{U} = 0 \).

Applying (18) to model (1) and model (5) results in

\[
\mathbf{q}_{OBSC}^\perp \mathbf{r} = \mathbf{d}^T \mathbf{E}_{dUd} \mathbf{r} = \mathbf{d}^T \mathbf{d} \hat{\alpha}_{OBSC,p} + \mathbf{d}^T \mathbf{E}_{dUd} \mathbf{n} \tag{20}
\]

where \(\mathbf{d}^T \mathbf{E}_{dUd} \mathbf{n} = 0 \).

Equating (21) and (22) yields

\[
\mathbf{d}^T \mathbf{d} \hat{\alpha}_{OBSC,p} = \mathbf{d}^T \mathbf{d} \alpha_p + \mathbf{d}^T \mathbf{E}_{dUd} \mathbf{n} \tag{23}
\]

and

\[
\hat{\alpha}_{OBSC,p} = \alpha_p + (\mathbf{d}^T \mathbf{d})^{-1} \mathbf{d}^T \mathbf{E}_{dUd} \mathbf{n}. \tag{24}
\]

So, the estimation error \(\varepsilon_{OBSC,p} \) can be obtained from (24) as

\[
\varepsilon_{OBSC,p} = \hat{\alpha}_{OBSC,p} - \alpha_p = (\mathbf{d}^T \mathbf{P}_U^\perp \mathbf{d})^{-1} \mathbf{d}^T \mathbf{P}_U^\perp \mathbf{n}. \tag{25}
\]

3) Maximum Likelihood Estimation (MLE) [23]:

In the subspace projection approaches described in Subsections 1 and 2, we only assumed that the variance of the noise \(\mathbf{n} \) is given by \(\sigma^2 \mathbf{I} \) and is independent of the signatures. We further assume that \(\mathbf{n} \) is an additive white Gaussian noise. Then \(\mathbf{p}(\mathbf{r}) \) in model (1) can be expressed as a Gaussian distribution with mean \(\mu \mathbf{r} \) and variance \(\sigma^2 \mathbf{I} \), i.e., \(\mathbf{p}(\mathbf{r}) \approx N(\mathbf{m}, \sigma^2 \mathbf{I}) \). The MLE of \(\alpha \) for model (5) can be obtained in [23], [24] and [29] by

\[
\hat{\alpha}_{MLE} = \arg\left\{ \max_{\alpha} \mathbf{p}(\mathbf{r}) \right\} = (\mathbf{M}^T \mathbf{M})^{-1} \mathbf{M}^T \mathbf{r}. \tag{26}
\]

In particular, the estimate of the \(p \)-th abundance \(\alpha_p \) is given by

\[
\hat{\alpha}_{MLE,p} = (\mathbf{d}^T \mathbf{P}_U^\perp \mathbf{d})^{-1} (\mathbf{d}^T \mathbf{P}_U^\perp \mathbf{r}) \\
= (\mathbf{d}^T \mathbf{P}_U^\perp \mathbf{d})^{-1} (\mathbf{q}_{OBSC}^\perp \mathbf{r}) \\
= (\mathbf{d}^T \mathbf{P}_U^\perp \mathbf{d})^{-1} \mathbf{d}^T \mathbf{P}_U^\perp (\mathbf{d} \alpha_p + \mathbf{n}) \\
= \alpha_p + (\mathbf{d}^T \mathbf{P}_U^\perp \mathbf{d})^{-1} \mathbf{d}^T \mathbf{P}_U^\perp \mathbf{n}. \tag{27}
\]

and the associated estimation error is

\[
\hat{\alpha}_{MLE,p} - \alpha_p = (\mathbf{d}^T \mathbf{P}_U^\perp \mathbf{d})^{-1} \mathbf{d}^T \mathbf{P}_U^\perp \mathbf{n}. \tag{28}
\]

From (6) and (26), SSC and MLE both generate an identical abundance estimate \(\hat{\alpha}_{SSC} = (\mathbf{M}^T \mathbf{M})^{-1} \mathbf{M}^T \mathbf{r} = \hat{\alpha}_{MLE} \), but different noise estimates are produced, \((\mathbf{d}^T \mathbf{P}_U^\perp \mathbf{d})^{-1} \mathbf{d}^T \mathbf{P}_U^\perp \mathbf{n} \) for SSC in (16), and \((\mathbf{d}^T \mathbf{P}_U^\perp \mathbf{d})^{-1} \mathbf{d}^T \mathbf{P}_U^\perp \mathbf{n} \) for MLE in (28). However, if we further compare (24) to (27) and (25) to (28), we discover that both sets of equations are identical. This implies that MLE is indeed OBC, given the condition that the noise is white Gaussian. In this case, MLE can be replaced by OBC in mixed pixel classification.

B. Unsupervised OSP [22]

Until now, we have made an important assumption that the signature matrix was given a priori. Due to significantly improved spectral resolution, hyperspectral sensors generally extract much more information than what we expect, particularly more spectral signatures than desired. These include natural background signatures, unwanted interferers, or clutter. Under such circumstances, identifying these signatures is almost impossible and prohibitive in practice. In order to cope with this problem, an unsupervised OSP was recently developed in [22], where the undesired and unwanted signatures can be found automatically via an unsupervised process. One such algorithm, referred to as Automatic Target Detection and Classification Algorithm (ATDCA), is a two-stage process consisting of a target generation process and target classification process and can be summarized as follows.

ATDCA

Stage 1) Target Generation Process (TGP)

Step 1) Initial condition:

Select a pixel vector with the maximum length as an initial target denoted by \(\mathbf{T}_0 \), i.e.,

\[
\mathbf{T}_0 = \arg\left\{ \max_{\mathbf{r}} \mathbf{p}(\mathbf{r}) \right\}.
\]

Set \(i = 1 \) and \(U_0 = \phi \).

Step 2) Find the orthogonal projections of all image pixels with respect to \(\mathbf{T}_0 \) by applying \(\mathbf{P}^\perp_{\mathbf{T}_0} = (\mathbf{I} - \mathbf{T}_0 \mathbf{T}_0^\perp) \) to all image pixel vectors \(\mathbf{r} \), where \(\mathbf{T}_0^\perp \) is the pseudo-inverse of \(\mathbf{T}_0 \).

Step 3) Find the first target, denoted by \(\mathbf{T}_1 \), by finding

\[
\mathbf{T}_1 = \arg\left\{ \max_{\mathbf{r}} \left[(\mathbf{P}^\perp_{\mathbf{T}_0} \mathbf{r})^T (\mathbf{P}^\perp_{\mathbf{T}_0} \mathbf{r}) \right] \right\}.
\]
Step 4) If $\eta_i = \mathbf{T}_i^T \mathbf{P}_i \mathbf{T}_0 < \varepsilon$ with $U_i = \mathbf{T}_i$, go to step 7. Otherwise, let $i = i + 1$ and continue.

Step 5) Find the ith target \mathbf{T}_i generated by the i-th stage, i.e.,

$$\mathbf{T}_i = \arg \max_{\mathbf{r}} \left[\left(\mathbf{P}_i^T \mathbf{T}_{i-1} \mathbf{r} \right)^T \left(\mathbf{P}_i^T \mathbf{T}_{i-1} \mathbf{r} \right) \right].$$

Let $U_i = (\mathbf{T}_1, \mathbf{T}_2, \ldots, \mathbf{T}_i)$ be the target matrix generated in the ith stage.

Step 6) Stopping rule. Calculate

$$\eta_i = \mathbf{T}_i^T \mathbf{P}_i \mathbf{T}_0 \quad (29)$$

and compare it to the prescribed threshold ε. If $\eta_i < \varepsilon$, go to step 5. Otherwise, continue. (Note that each iteration from step 5 to step 6 in the ATDCA generates and detects one target at a time.)

Step 7) At this point, the target generation process will be terminated. In this case, the process is called to be convergent. The set $\{\{\mathbf{T}_0, U_1\}, \{\mathbf{T}_0, \mathbf{T}_1, \ldots, \mathbf{T}_i\}\}$ will be the desired target set used for the next stage of target classification.

Stage 2) Target Classification Process (TCP)

In this stage, the target set $\{\mathbf{T}_0, \mathbf{T}_2, \ldots, \mathbf{T}_i\}$ generated by TGP is ready for classification. Let \mathbf{T}_k be the kth target for $k \leq i + 1$. Apply the OSP classifier $\mathbf{a}_{OSP}^T = \mathbf{T}_k^T \mathbf{P}_i \mathbf{c}_k$ given by (4) to classify \mathbf{T}_k, where $\mathbf{c}_k = (\mathbf{T}_0, \ldots, \mathbf{T}_{k-1}, \mathbf{T}_{k+1}, \ldots, \mathbf{T}_i)$ is the undesired signature matrix made up of all signatures in $\{\mathbf{T}_0, \mathbf{T}_2, \ldots, \mathbf{T}_i\}$ except for the desired signature \mathbf{T}_k.

It is worth noting that the OPCI stopping criterion $\eta_i = \mathbf{T}_i^T \mathbf{P}_i \mathbf{T}_0$ given by (29), actually arises from the constant $\mathbf{d}^T \mathbf{P}_i \mathbf{d}$ appearing in the estimation errors derived in (16), (25) and (28). One comment on OPCI is useful regarding implementation of ATDCA. The OPCI only provides a guide to terminate ATDCA. Unfortunately, no optimal number of targets can be set for TGP to generate. The number of targets needed to be generated by TGP is determined by the prescribed error threshold ε set for OPCI in step 6, which is determined empirically. Another way to terminate ATDCA is to preset the number of targets. In this case, there is no need to use OPCI as a stopping criterion described in step 6. Which one is a better approach depends upon different applications and varies with scene-by-scene.

IV. CONVERSION OF HYPERSPECTRAL ABUNDANCE ESTIMATION ALGORITHMS TO PURE PIXEL CLASSIFICATION

The objective of mixed pixel classification algorithms is to estimate $\alpha = (\alpha_1 \alpha_2 \ldots \alpha_p)^T$ in a pixel vector \mathbf{r} using the linear mixture model described by (1) or (5). Since the abundance vector α in the a priori model (1) is assumed to be known, there is no need to estimate α for OSP. On the other hand, (5) is an a posteriori model and requires an estimate of α. This results in an a posteriori OSP approach where the abundance estimation is solved as an unconstrained least squares problem. In the latter case, α_p is an estimate of the abundance fraction α_p of a desired signature specified by \mathbf{d} in model (1). The images generated by these algorithms are presented as gray scale, with the gray level value used to represent the estimated abundance fraction of a desired signature \mathbf{d} present in a mixed pixel vector. The classification of any given pixel vector \mathbf{r} is then based on the estimated abundance fraction $\hat{\alpha}_p$. In the past, this has been done by visual interpretation and later supported by ground truth. So, technically speaking, OSP and a posteriori OSP are signature abundance estimation algorithms, not classification algorithms. In order to use these algorithms as classifiers, we need a process, called a mixed-to-pure pixel converter that can convert mixed pixel abundance estimation to mixed pixel classification. A similar process, referred to an analog-to-digital converter (A/D converter) has been widely used in communications and signal processing. Such an A/D converter is generally implemented by vector quantization. As a matter of fact, the concept of using vector quantization (VQ) to generate desired targets has been explored in [30], where each codeword in the VQ-generated codebook corresponded to one potential target in an image scene. Furthermore, to make classification fully automated, a computer-aided classification criterion must be also provided.

A. Winner-Take-All Mixed-to-Pure Pixel Converter (WTAMPC)

In order to compare pure pixel classification to mixed pixel classification, we need to interpret a mixed pixel classification problem in the context of pure pixel classification. One way is to convert the abundance estimation for mixed pixels to the classification of pure pixels by considering model (1) as a constrained problem with some specific restrictions imposed on the estimated abundance vector $\hat{\alpha}$.

Assume that the abundance vector α in model (1) satisfies constraints $\alpha_j \geq 0$ for all $1 \leq j \leq p$ and $\sum_{j=1}^{p} \alpha_j = 1$. Additionally, the estimate $\hat{\alpha}$ is constrained to a set of p-dimensional vectors with one in only one component and zeros in the remaining $p-1$ components. Such vectors will be denoted by p-dimensional unit vectors. If \mathbf{u}_j is a p-dimensional vector with 1 in the j-th component and 0’s in all other remaining components (i.e., $\mathbf{u}_j = (0, \ldots, 0, \underbrace{1}_{j\text{-th component}}, 0, \ldots, 0)^T$), then \mathbf{u}_j is called the j-th p-dimensional unit vector. In this case, the estimated abundance vector $\hat{\alpha}$ is forced to be a pure signature. Thus, there are only p choices for $\hat{\alpha}$. In other words, $\hat{\alpha}$ can be assigned to only one of p classes, which reduces a mixed pixel classification to a p-class classification problem. It then can be solved by pure pixel classification techniques. With these constraints model (5) becomes

$$\chi_{\text{MPC}}(\mathbf{r}) = \mathbf{M}\mathbf{u}_j = \mathbf{m}_j \quad \text{for some } 1 \leq j \leq p \quad (30)$$

where χ_{MPC} is called a mixed-to-pure pixel (M/P) converter operating on a pixel vector \mathbf{r} that assigns \mathbf{r} to signature \mathbf{m}_j for some j. It should be noted that the estimated noise $\hat{\mathbf{n}}$ in model (5) has been absorbed into \mathbf{u}_j for classification accuracy.
if we interpret model (1) by model (30), each signature vector in \(M \) represents a distinct class, and any sample pixel vector \(\mathbf{r} \) will be assigned to one of the signatures in \(M \) via an M/P converter \(\chi_{\text{MPC}}(\mathbf{r}) = \mathbf{u}_i \) in the sense of a certain criterion. Using (30), we can assign 1 to a target pixel and 0 otherwise. The resulting image will be a binary image which shows only target pixels. An important but difficult task is to design an effective M/P converter for (30), which will preserve as much information as possible from mixed pixels during the mixed-to-pure pixel conversion.

A simple M/P converter is to use the abundance percentage as a cut-off threshold value. If the estimated abundance fraction \(\hat{c}_p \) of a signature \(\mathbf{d} \) accounts for more than a certain percentage within \(\mathbf{r} \), we may classify \(\mathbf{r} \) to the material specified by the signature \(\mathbf{d} \). However, in order for such an M/P converter to be effective, a percentage value needs to be appropriately selected to threshold an abundance-based image to a binary image with target pixels assigned by 1 and others by 0. Unfortunately, this was shown not effective in [31].

An alternative way is the one proposed in [31], called the WTA thresholding criterion as described later, and is very similar to the winner-take-all learning algorithm used in neural networks [32]. This WTA thresholding criterion can be used as an M/P converter and serve as a mechanism for (30) to convert a mixed pixel to a pure pixel. Instead of focusing on the abundance estimation of the desired signature \(\alpha_p \), as done in all OSP-based classifiers, we look at the complete spectrum of abundance estimates for all signatures present in \(\mathbf{r} \). Assume that there are \(p \) signatures \(\{\mathbf{m}_j\}_{j=1}^p \), where \(\mathbf{m}_j \) is the \(j \)-th signature. Let \(\mathbf{r} \) be a mixed pixel vector to be classified and \(\alpha(\mathbf{r}) = (\alpha_1(\mathbf{r}), \ldots, \alpha_p(\mathbf{r}))^T \) be the associated \(p \)-dimensional abundance vector. Let \(\hat{\alpha}_j(\mathbf{r}) \) be the unconstrained estimated abundance fraction of \(\mathbf{m}_j \) contained in \(\mathbf{r} \) produced by mixed pixel classifiers. We then compare all estimated abundance fractions \(\{\hat{\alpha}_1(\mathbf{r}), \ldots, \hat{\alpha}_p(\mathbf{r})\} \) and find the one with the maximum fraction, say \(\hat{\alpha}_j(\mathbf{r}) \) (i.e., \(\hat{\alpha}_j = \max_{1 \leq i \leq p} \{\hat{\alpha}_i(\mathbf{r})\} \)). It will be used to classify the \(\mathbf{r} \) by assigning \(\mathbf{r} \) to the \(j \)-th signature \(\mathbf{m}_j \). In other words, using the WTA thresholding criterion and (30), we can define a WTA-based M/P converter \(\chi_{\text{WTAMPC}}(\mathbf{r}) = \hat{\alpha}_j(\mathbf{r}) \mathbf{m}_j \) (referred to as WTAMPC) by setting \(\hat{\alpha}_{j'}(\mathbf{r}) = 1 \) and \(\hat{\alpha}_{j'}(\mathbf{r}) = 0 \) for \(j' \neq j \). As a result of such assignment, the mixed abundance vector \(\hat{\alpha}(\mathbf{r}) \) is then converted to a pure abundance vector, the \(j \)-th \(p \)-dimensional unit vector \(\mathbf{u}_j = (0, \ldots, 0, 1, 0, \ldots, 0)^T \).

B. Minimum Distance-Based Classification Algorithms

In Section IV.A, we described a WTAMPC that directly converted the abundance estimation of a mixed pixel to the classification of a pure pixel. In the following two sections, we use (30) as a vehicle to reinterpret two commonly used pure pixel classification methods, minimum distance-based classification and Fisher’s linear discriminant analysis, in the context of constrained mixed pixel classification.

As noted in (30), there is no noise term present in the equation. This is because the noise can be interpreted and described as misclassification error. So, if the noise in model (1) is reinterpreted as the error resulting from classification and is also modeled as a white Gaussian, then the mixed pixel classifiers, OSP and \textit{a posteriori} OSP described above, become Gaussian maximum likelihood classifiers

\[
\hat{\alpha}_{\text{MLE}} = \arg \left\{ \max_{\alpha \in \Delta} \{\mathbf{r}\} \right\} \tag{31}
\]

where \(\Delta = \{\hat{\alpha} = (\hat{\alpha}_1, \ldots, \hat{\alpha}_p)^T | \hat{\alpha}_j = 1 \text{ for some } j, \text{ and } \hat{\alpha}_i = 0 \text{ for all } 1 \leq i \leq p \text{ and } i \neq j \} \) (i.e., \(\Delta = \{\mathbf{u}_j\}_{j=1}^p = \{(1,0,0,\ldots,0)^T, (0,1,0,\ldots,0)^T, \ldots, (0,0,\ldots,0,1)^T\} \}).

In other words, the estimated abundance vector \(\hat{\alpha} \) in (31) must be a \(p \)-dimensional unit vector. Since there are \(p \) components, there are only \(p \) options in \(\Delta \). Due to the Gaussian structure assumed in \(p(\mathbf{r}) \), the classification using (31) can be simplified to a classifier based on the distance between class means \(\{\mathbf{m}_j\}_{j=1}^p \) and a pixel vector \(\mathbf{r} \) as shown later.

Assume that \(\mathbf{x} = (x_1, \ldots, x_L)^T \) is a general sample pixel vector to be classified in a hyperspectral image. Let \(\{\omega_1, \omega_2, \ldots, \omega_p\} \) be the set of classes of interest and let \(\omega_j \) be the class representing the \(j \)-th signature \(\mathbf{m}_j = (m_{j1}, \ldots, m_{jL})^T \). Assume that \(\mathbf{x}_{jk} \) is the \(k \)-th sample vector in class \(j \), and \(\Xi = \{\mathbf{x}_{jk}\}_{k=1}^{N_j} \) is the set of sample vectors to be used for classification where \(N_j \) is the number of sample vectors in the \(j \)-th class, and \(N = N_1 + \cdots + N_p \) is the total number of sample vectors. Two types of distance-based classifiers can be considered depending upon sample statistics.

1) The first-order statistics classifier.

Minimum distance classifier:

a) Euclidean distance

\[
\text{ED} (\mathbf{x}, \mathbf{m}_j) = (\mathbf{x} - \mathbf{m}_j)^T (\mathbf{x} - \mathbf{m}_j) = \sum_{l=1}^{L} (x_l - m_{jl})^2. \tag{32}
\]

Since the quadratic term in \(\mathbf{x} \) of (32) is independent of class \(j \), the Euclidean distance-based minimum distance classifier is a linear classifier.

b) City block distance

\[
\text{CBD} (\mathbf{x}, \mathbf{m}_j) = \sum_{l=1}^{L} |x_l - m_{jl}|. \tag{33}
\]

c) Tchebyshhev (maximum) distance (TD)

\[
\text{TD} (\mathbf{x}, \mathbf{m}_j) = \max_{1 \leq l \leq L} |x_l - m_{jl}|. \tag{34}
\]
2) Second-order statistics classifiers.
 a) Mahalanobis classifier [33]

 \[
 M(x, m_j) = (x - m_j)^T (\Sigma_j)^{-1} (x - m_j), \quad (35)
 \]

 In general, the Mahalanobis classifier is a quadratic classifier. When \(\Sigma_j = \Sigma_0 \) for any class \(j \), then the Mahalanobis classifier is reduced to the minimum-distance classifier with Euclidean distance.

 b) Bhattacharyya classifier [33]

 \[
 B_{ij} = \frac{1}{8} (m_i - m_j)^T \left(\frac{\Sigma_i + \Sigma_j}{2} \right)^{-1} (m_i - m_j) + \frac{1}{2} \ln \left(\frac{\Sigma_i + \Sigma_j}{2} \right) \left(\sqrt{\|\Sigma_i\|} \sqrt{\|\Sigma_j\|} \right). \quad (36)
 \]

 When \(\Sigma_i = \Sigma_j \) for classes \(i \) and \(j \), then the Bhattacharyya classifier is reduced to the Mahalanobis classifier.

 If the covariance matrices \(\Sigma \) in (35) and (36) are not of full rank, their inverses will be replaced by their pseudo-inverses \(\Sigma^\# = (\Sigma^T \Sigma)^{-1} \Sigma^T \).

C. Fisher's Linear Discriminant Analysis (LDA)

From Fisher's discriminant analysis [1], we can form total, between-class and within-class scatter matrices as follows. Let \(\mu = \frac{1}{N} \sum_{j=1}^{p} \sum_{i=1}^{N_j} x_{ij} \) be the global mean.

\[
S_T = \frac{1}{N} \sum_{i=1}^{p} \sum_{j=1}^{N_j} (x_{ij} - \mu)(x_{ij} - \mu)^T \quad (37)
\]

\[
S_W = \frac{1}{N} \sum_{i=1}^{p} \sum_{x_{ij} \in C_j} \frac{1}{N}(x_{ij} - m_i)(x_{ij} - m_i)^T \quad (38)
\]

\[
S_B = \sum_{i=1}^{p} \frac{N_i}{N}(m_i - \mu)(m_i - \mu)^T. \quad (39)
\]

From (37)–(39)

\[
S_T = S_W + S_B. \quad (40)
\]

In order to minimize the misclassification error, we maximize the Raleigh quotient

\[
J(Z) = \frac{Z^T S_B Z}{Z^T S_W Z} \quad \text{over } Z. \quad (41)
\]
Finding the solution to (41) is equivalent to solving the following generalized eigenvalue problem

$$(42)$$

or equivalently

$$(43)$$

where the eigenvector v_i is called the i-th Fisher’s linear discriminant.

Since only p signatures need to be classified, there are only $p - 1$ nonzero eigenvalues. Assume that $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{p-1} > 0$ are such $p - 1$ values arranged in decreasing order of magnitude. Then their corresponding eigenvectors $\{v_i\}_{i=1}^{p-1}$ resulting from (42) are called Fisher’s discriminants. For instance, v_1 corresponding to λ_1 is the first Fisher’s discriminant, v_2 corresponding to λ_2 is the second Fisher’s discriminant, etc. Using these $p - 1$ Fisher’s discriminants $\{v_i\}_{i=1}^{p-1}$, we construct an eigenmatrix Ψ given by $\Psi = [v_1 \ v_2 \ \cdots \ v_{p-1}]$ to map the pixel vector x into a new vector $\rho = \Psi x$ in a new space Z linearly spanned by $\{v_i\}_{i=1}^{p-1}$. Then the LDA classification is carried out in the space Z using the minimum distance measures given by (32)–(36).

D. Unsupervised Classification

Although the distance-based classifiers described above are supervised based on a set of training samples, they can be extended to unsupervised classifiers by including a clustering process such as the nearest neighboring rule [1] or a neural network-based, self-organization algorithm [32]. For example, the minimum distance classifier can be implemented by its unsupervised version, ISODATA [1].

V. Criterion for Target Detection and Classification

The standardized HYDICE data set used for the following experiments contains ten vehicles and four man-made objects. The precise spatial locations of all these targets are provided by ground truth where two types of target pixels are designated, BLACK and WHITE. The BLACK-masked (B) pixels are assumed to be target center pixels, while WHITE-masked (W) pixels may be target boundary pixels or target pixels mixed with background pixels [see Fig. 2(b)]. The positions of these two types of pixels were located in the image by (x, y) coordinates, where x and y represent row and column, respectively. The size of a mask used for a target varies and depends upon the size of the target. A typical masked target of size 4×4 is shown in Fig. 1 where black (B) pixels are centered in the mask that are considered to be the target center pixels and white (W) pixels surrounding B pixels are target pixels that may be either target boundary pixels or target pixels mixed with background pixels. Here we make a subtle distinction between a target detected and a target hit. When a target is detected, it means that at least one B target pixel is detected. When a target is hit, it means that at least either one B or one W pixel is detected. As long as one of these B or W pixels is detected, we declare the target is hit. So, by way of this definition, a target detected always implies a target hit, but not vice versa. Using these B and W pixels, we
Fig. 5. (a) Images produced by OSP, (b) images produced by OBSP, and (c) Images produced by SSP.
can actually tally the number of target pixels detected or hit by a particular algorithm.

The criteria that we use in this paper are
1) How many target B pixels are detected;
2) How many target W pixels are detected;
3) How many pixels are detected as false alarms for a target in which case neither a BLACK-masked pixel or a WHITE-masked pixel is detected;
4) How many target B pixels are missed.

For example, suppose that the shaded pixels in Fig. 1 are those detected by a detection algorithm. We declare the target to be detected with one B pixel as well as hit with one B and two W pixels. There are no false alarm pixels, but have three B pixels missed. In order to quantitatively study target detection performance, the following definitions are introduced.

\[N_{\text{BD}}(T) \] total number of BLACK-masked T pixels detected;
\[N_{\text{WD}}(T) \] total number of WHITE-masked T pixels detected;
\[N_{\text{TPF}}(T) \] total number of false alarms pixels, i.e., total number of pixels which are neither BLACK-masked nor WHITE-masked T pixels detected;
\[N_{\text{TPM}}(T) = N_{B+W}(T) - N_{(B+W)D}(T) \] total number of BLACK-masked or WHITE-masked T pixels missed.

Using the above notations, we can further define the detection rate \(R_{\text{BTD}}(T) \) for B pixels of target T by

\[R_{\text{BTD}}(T) = \frac{N_{\text{BD}}(T)}{N_{\text{B}}(T)} \] (44)

and the detection rate \(R_{\text{WTD}}(T) \) for W pixels of target T by

\[R_{\text{WTD}}(T) = \frac{N_{\text{WD}}(T)}{N_{\text{W}}(T)} \] (45)

Since B pixels represent target center pixels and W pixels are target boundary pixels mixed with background pixels, a good detection algorithm must have a higher rate of target B pixels detected \(R_{\text{BTD}}(T) \). On the other hand, detecting a W pixel does not necessarily mean a target detected. Nevertheless, we can
declare the target to be hit. For this purpose, we define the target hit rate $R_{TH}(T)$ for target T by

$$R_{TH}(T) = \frac{N_{(B+W)D}(T)}{N_{B+W}(T)}.$$

(46)

So from (46) a higher target hit rate $R_{TH}(T)$ does not imply a higher target detection rate $R_{TDTD}(T)$ or vice versa. This is because the number of W pixels are generally much greater than the number of B pixels. Thus, the W pixels may actually dominate the performance of $R_{TH}(T)$. As will be shown in the experiments, a detection algorithm may detect all B pixels but no W pixels. In this case, this algorithm achieves 100% target pixel detection rate $R_{TDTD}(T) = 1$, but $R_{WTD}(T) = 0$. As a result, its target hit rate $R_{TH}(T)$ is very small because $R_{WTD}(T) = 0$. On the other hand, if the target hit rate $R_{TH}(T) = 1$, it implies that all B and W pixels are detected. In this case, even though the target is hit, we may still not be able to precisely locate where the target is. So the B target pixel detection rate $R_{TPB}(T)$ is more important than $R_{TH}(T)$ since it provides the information about the exact location of the target.

In addition to (44)–(46), we are also interested in target false alarm rate $R_{TTF}(T)$ and target miss rate $R_{TFM}(T)$ defined later

$$R_{TTF}(T) = \frac{N_{TTF}(T)}{N - N_{B+W}(T)}$$

(47)

$$R_{TFM}(T) = 1 - R_{TH}(T) = \frac{N_{TPM}(T)}{N_{B+W}(T)} = \frac{N_{B+W}(T) - N_{(B+W)D}(T)}{N_{B+W}(T)}.$$

(48)

If there are p targets $\Gamma = \{T_i\}^{p}_{i=1}$ needing to be classified, the overall detection rate $R_{OD}(\Gamma)$ for a class of targets Γ can be defined as

$$R_{OD}(\Gamma) = \sum_{i=1}^{p} p(T_i) R_{TDTD}(T_i)$$

(49)

where $p(T_i) = (N(T_i)/\sum_{k=1}^{p} N(T_k))$ for $1 \leq i \leq p$. As will be seen in the following experiments, a higher $R_{OD}(\Gamma)$ does not imply higher classification accuracy, because it may happen that several targets are detected in one single image due to their similar signature spectra and it is difficult to discriminate one from another. This results in poor classification. In order to account for this phenomenon we define the classification rate for a specific target T_i, $R_{C}(T_i)$ as

$$R_{C}(T_i) = \frac{N_{BHD}(T_i)}{N_{B}(T_i) + N_{TTF}(T_i)}$$

(50)

and the overall classification rate as

$$R_{OC}(\Gamma) = \sum_{i=1}^{p} p(T_i) R_{C}(T_i)$$

(51)

where $p(T_i)$ and $R_{C}(T_i)$ are defined by (49) and (50) respectively. Now using (44)–(51) as criteria, we can evaluate the detection and classification performance of various algorithms through the HYDICE experiments.

Since the target detection and classification algorithms described in Section III are based on the abundance fractions of targets estimated from mixed pixels, the images produced by mixed pixel classification are gray-scale with the gray level.
values representing the abundance fractions of targets present in mixed pixels. With the availability of standardized data and the help of the MPC algorithms developed in Section IV, we can evaluate these algorithms objectively via (44)–(51) by actually tallying the number of target pixels detected for performance analysis.

VI. COMPARATIVE PERFORMANCE ANALYSIS USING HYDICE DATA

This section contains a series of experiments which use a HYDICE standardized data set to conduct a comprehensive comparison among the OSP-based mixed pixel classification and distance-based pure pixel classification algorithms. Three comparative studies are designed. First of all, we describe the HYDICE image scene.

A. HYDICE Image Scene

The data used for the experiments are an image scene in Maryland taken by a HYDICE sensor in August 1995 using 210 bands of spectral coverage 0.4–2.5 μm with resolution 10 nm. The scene is of size 200×80, shown in Fig. 2(a), taken from a flight altitude of 10 000 ft within a GSD of approximately 1.5 m. Each pixel vector has a dimensionality of 210. This figure shows a tree line along the left edge and a large grass field on the right. This grass field contains a road along the right edge of the image. There are ten vehicles, V_1, V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, and V_{10} parked along the tree line and aligned vertically. They belong to three different types, denoted by V_1 for Type 1, V_2 for Type 2 and V_3 for Type 3. The bottom four, denoted by V_3 and V_4 belong to V_1 with size approximately 4 m × 8 m. The middle three, denoted by V_5, V_6, and V_7, belong to V_2 with size approximately 3 m × 6 m. The top three, denoted by V_8, V_9, and V_{10}, belong to V_3 but have the same size as V_2. In addition to vehicles, four man-made objects of two types are shown in the image. Two are located in the near center of the scene, the bottom one denoted by O_1, and the top one denoted by O_2, and another two are on the right edge, the bottom one denoted by O_3, and the top one denoted by O_4. O_1 and O_3 belong to the same type, indicated by O_1, O_2, and O_3 belong to another type indicated by O_2. In terms of class separation, there are five distinct classes of targets in the image scene, three for vehicles and two for man-made objects. It is worth noting that the HYDICE scene in Fig. 2(a) was geometrically corrected to precisely locate the spatial coordinates of all vehicles by either BLACK or WHITE masks, where the BLACK-masked pixels are center pixels of targets and WHITE-masked pixels may be part of the target pixels or target background pixels or target shadow pixels. So, BLACK-masked target pixels are always in WHITE mask frames. However, in this paper, the BLACK-masked pixels will be considered separately from WHITE-masked pixels since they
will be used as target signatures for classification. This information allows us to perform a quantitative analysis and comparative study of various classification algorithms. A smaller scene shown in Fig. 3, cropped from the lower part of Fig. 2 will be also used for more detailed studies. It is the exact same image scene studied in [6], [7], [19], [31] and has a different GSD 0.78 meters with the image turned upside down. It contains only four vehicles \(V_2, V_3, V_4, \) and one man-made object \(O_2. \) The top vehicle \((V_2) \) belongs to \(V_2 \) and the bottom three \((V_2, V_3, V_4) \) belong to \(V_1. \)

B. HYDICE Experiments

Since the exact locations of all the vehicles and man-made objects in Fig. 2 are available, we can extract target center pixels masked by \text{BLACK} and mixed pixels masked by \text{WHITE} directly from the image scene for each vehicle. The

TABLE IV

TALLIES OF TARGET PIXELS FOR ATDCA AFTER WTAMPC WITH DETECTION RATES

<table>
<thead>
<tr>
<th>Target</th>
<th>(N_B)</th>
<th>(N_W)</th>
<th>(N_{B+W})</th>
<th>(N_{BD})</th>
<th>(N_{WD})</th>
<th>(N_{(B+W)})</th>
<th>(N_{TPM})</th>
<th>(\hat{N}_{TPM})</th>
<th>(R_{BD})</th>
<th>(R_{WD})</th>
<th>(R_{WH})</th>
<th>(R_{TPM})</th>
</tr>
</thead>
<tbody>
<tr>
<td>O2</td>
<td>43</td>
<td>118</td>
<td>161</td>
<td>43</td>
<td>52</td>
<td>95</td>
<td>0</td>
<td>66</td>
<td>1.000</td>
<td>0.441</td>
<td>0.590</td>
<td>0.000</td>
</tr>
<tr>
<td>V1</td>
<td>16</td>
<td>117</td>
<td>133</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>48</td>
<td>123</td>
<td>0.250</td>
<td>0.051</td>
<td>0.075</td>
<td>0.003</td>
</tr>
<tr>
<td>V2</td>
<td>7</td>
<td>67</td>
<td>74</td>
<td>7</td>
<td>3</td>
<td>10</td>
<td>48</td>
<td>64</td>
<td>1.000</td>
<td>0.045</td>
<td>0.135</td>
<td>0.003</td>
</tr>
<tr>
<td>O1</td>
<td>73</td>
<td>146</td>
<td>219</td>
<td>21</td>
<td>13</td>
<td>34</td>
<td>24</td>
<td>185</td>
<td>0.289</td>
<td>0.089</td>
<td>0.155</td>
<td>0.015</td>
</tr>
<tr>
<td>V1</td>
<td>16</td>
<td>117</td>
<td>133</td>
<td>1</td>
<td>12</td>
<td>17</td>
<td>870</td>
<td>120</td>
<td>0.063</td>
<td>0.103</td>
<td>0.098</td>
<td>0.054</td>
</tr>
<tr>
<td>V3</td>
<td>9</td>
<td>96</td>
<td>105</td>
<td>6</td>
<td>11</td>
<td>13</td>
<td>866</td>
<td>88</td>
<td>0.067</td>
<td>0.115</td>
<td>0.162</td>
<td>0.054</td>
</tr>
<tr>
<td>V1</td>
<td>16</td>
<td>117</td>
<td>133</td>
<td>11</td>
<td>16</td>
<td>27</td>
<td>8</td>
<td>106</td>
<td>0.688</td>
<td>0.137</td>
<td>0.203</td>
<td>0.0005</td>
</tr>
<tr>
<td>V3</td>
<td>9</td>
<td>96</td>
<td>105</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>27</td>
<td>97</td>
<td>0.333</td>
<td>0.052</td>
<td>0.076</td>
<td>0.002</td>
</tr>
<tr>
<td>O1</td>
<td>73</td>
<td>146</td>
<td>219</td>
<td>49</td>
<td>32</td>
<td>81</td>
<td>0</td>
<td>138</td>
<td>0.671</td>
<td>0.219</td>
<td>0.370</td>
<td>0.000</td>
</tr>
</tbody>
</table>
average radiances for three types of vehicles were calculated and plotted in Fig. 4. The spectral signatures in Fig. 4 were used as the desired target information in implementation of the algorithms.

Example 1: The theoretical studies on comparative analysis among subspace projection methods were investigated previously and separately in [15], [16], [20], [21] based on AVIRIS data. In this example, we conduct an experiment-based comparison among OSP, OBSP, MLE and SSP using standardized HYDICE data. Since both OBSP and MLE generate an identical estimation error given by (25) and (28), a fact also reported in [21], [23] and [24], we will only focus our experiments on OSP, OBSP and SSP. It is interesting to note that if we apply a scaled OSP classifier, \((d^T P_{Y|d})^{-1} q_{OSP}\) to model (2), it results in the same equations given by Eqs. (24) and (28) with both \(\delta_{OSP, d}\) and \(\delta_{MLE, d}\) replaced by \(\sigma_d\). This implies that if the knowledge about the abundance vector \(\alpha\) is given a priori, then OBSP and MLE are reduced to OSP. On the other hand, if the abundance vector \(\alpha\) is not known and needs to be estimated by \(\hat{\alpha}\), then OBSP and MLE will be used to replace OSP. Consequently, OSP can be viewed as the a priori version of OBSP and MLE, while OBSP and MLE can be thought of as a posteriori version of OSP. So, the experiments done in [15] were actually based on the a posteriori version of OSP.

As shown in (4) and (20), OSP and OBSP produced an identical classification vector, \(d^T P_{Y|d}\) with an extra scaling constant \((d^T P_{Y|d})^{-1}\) appearing in OBSP classifier. As reported in [23] and [24], this scaling constant accounts for the amount of the abundance fractions resident in classified pixels and results in two completely different gray level ranges for OSP and OBSP. However, an interesting finding was observed. The scaling constant does not have impact on images displayed on computer because the images generated by OSP and OBSP for computer display are all scaled to 256 gray levels. In this case, the scaling constant \((d^T P_{Y|d})^{-1}\) is absorbed in the scaling process for
computer display. So, from a display point of view, they all produce identical results as shown in Fig. 5(a) and (b), where the man-made object O2 and a small portion of O4 in the scene in Fig. 3 were classified. In addition, this scaling process is also invariant to the abundance percentage, as mentioned in the end of Section V. This is because the abundance percentage is calculated based on relative proportions among abundance fractions. In order to overcome this problem, we took their absolute differences to substantiate the difference between the abundance fractions generated by OSP and OBSP and display their error images in 256 gray scales in Fig. 6(a). If OSP and OBSP generate identical results, their absolute difference should be 0 and their corresponding error images should be all black. Obviously, this is not true as we can see in Fig. 6(a), where only targets to be classified are shown in the images. This further justifies the subtle difference between OSP and OBSP. On the other hand, SSP is quite different from OBSP in that SSP includes an additional signature subspace projector in its classifier. As a result, the SSP-generated estimation error given by (16) is different from (25). In [20], it was shown via ROC (receiver operating characteristic) analysis that SSP greatly improved OSP in terms of signal to noise ratio if the additive noise is assumed to be Gaussian. An error theory using ROC analysis for a posteriori knowledge as used in the algorithms. In the case of a priori knowledge, we assume that the B pixels are available. If a posteriori knowledge is assumed, the target pixels will be extracted directly from an image scene by manual sampling (OSP), or by computer (ATDCA) which may include either B or W pixels or both. If the signatures are not correctly extracted from the data, i.e., no B pixels, what is the effect on the detection and classification performance and how robust are OSP and ATDCA? Four signature extraction methods were compared, (1) the use of B

Fig. 12. Images generated by LDAED using B pixels.

Fig. 13. Images generated by LDAMD using B pixels.

Example 2: This example is designed to demonstrate the difference between a priori knowledge and a posteriori knowledge as used in the algorithms. In the case of a priori knowledge, we assume that the B pixels are available. If a posteriori knowledge is assumed, the target pixels will be extracted directly from an image scene by manual sampling (OSP), or by computer (ATDCA) which may include either B or W pixels or both. If the signatures are not correctly extracted from the data, i.e., no B pixels, what is the effect on the detection and classification performance and how robust are OSP and ATDCA? Four signature extraction methods were compared, (1) the use of B
pixels provided by the standardized data set; (2) the use of all masking pixels, i.e., both B and W pixels provided by the standardized data set; (3) manual sampling by visual inspection as done in previous research [6], [15], [16], [20], [21]; (4) unsupervised ATDCA which requires no human intervention [22].

Three types of vehicles, V1, V2, V3, and two types of objects, O1, O2, were used for classification where the desired signatures were the average values of all target sample pixels of interest. For instance, to classify V1 (i.e., the vehicles of Type 1), the desired signature was obtained by averaging target pixels of all four vehicles: V_1, V_2, V_3, V_4. Similarly, the target pixels of O_1 and O_2 were averaged to generate the desired signature for O1, etc. Fig. 7(a) is the results of using B pixels for OSP, where a total of 16 000 pixels in Fig. 2 were used for classification. In order to tally target pixels detected, we need to convert abundance-based mixed pixels to pure target pixels.

Table I is a tally of target pixels in Fig. 7(b) resulting from WTAMPC where target B pixels were used the sample pixels for OSP. Similarly, Table II is a tally of target pixels and their detection rates resulting from WTAMPC where target B and W pixels were used the sample pixels for OSP. Table III is a tally of target pixels and their detection rates resulting from WTAMPC where the sample target pixels were selected manually by visual inspection. ATDCA deserves more attention here. Unlike OSP which made use of sample pixels for target detection and classification, ATDCA does not require any such a priori information. It automatically searched for all targets of interest and further detected and classified the targets. So, Fig. 8(i) shows the target detection and classification results generated by ATDCA based on 15 target signatures it found in the image scene. Since ATDCA does not have prior knowledge about vehicles and objects, it detected all possible targets and then classified them subsequently. For instance, Fig. 8(iii) shows the object O_2 while Fig. 8(x) shows the vehicles V_1, V_2 and the object O_4. Similarly, both Fig. 8(xi) and (vi) show the vehicles V_1 and V_2 while Fig. 8(xiii) only shows O_2. So, Table IV is different from Tables I–III. The first column of the table specifies different types of targets in separate images as indicated and tabulates the number of detected target pixels and their corresponding detection rates using WTAMPC. In all the figures, images labeled by (a) are abundance-based images, images labeled by (b) are binary images thresholded by WTAMPC. As shown in these figures, there is no visible difference between using B pixels and manual sampling in abundance-scaled images. However, when we used full masks including B and W pixels in our experiments, the results were very poor and are
not comparable to the results obtained by manual sampling and ATDCA. This is because W pixels are target-background mixed pixels and their number is much greater than that of B pixels. As a consequence, the W pixels dominate target signatures and smeared the purity of target signatures. Also shown in this example, ATDCA is comparable to OSP by visually interpreting their abundance-based images. This observation demonstrates that the unsupervised OSP can do as well as OSP and allows us to replace OSP with ATDCA in unknown or blind environment where no a priori knowledge is required. This advantage is substantial in many real applications because obtaining the prior information about the signatures is considered to be very difficult or sometimes impossible.

One worthy comment is the following. Although the targets shown in Fig. 2 are ten different targets, their spectral characteristics are not necessarily very distinct. As shown in Fig. 9, the spectral signatures of some targets are very similar even though the targets themselves are completely distinct. For example, the signature of V_4 is very close to those of V_5, V_6, V_7 and the signature of V_1 is also very close to those of V_2, V_3, and V_6. However, they belong to completely different vehicle types. But if we classify V_5 using its spectral signature, it was extracted along with V_6 as shown in the above experimental results, and vice versa. Similarly, it is also true for V_1, V_2, V_3, and V_6. Some studies on this phenomenon were reported in [6] and [31]. More detailed analysis on the results on Figs. 2 and 7–9 can be found in [31].

Example 3: In the previous two examples, comparisons were made among abundance estimated-based algorithms for mixed pixel classification. The example presented here will compare these algorithms against popular pure-pixel classification algorithms widely used in pattern classification as described in Section IV. In order to make the experiments simple, we again used the image scene in Fig. 3, which is of size 600×600 and has a total of 3600 pixels. In addition to vehicles and the object, we also included signatures of tree, road and grass field in the signature matrix M. So, a total of 6 classes will be considered for this example with each class represented by a distinct signature.

Since each target (including the man-made objects) contains no more than 16 B pixels whose number is far less than the number of bands. Supervised second-order minimum distance-based classification algorithms are generally not applicable because the ranks of covariance matrices used in (35) and (36) will be very small due to a very limited set of training samples. Similarly, it is also true for LDA using MD described by (42), referred to as LDAMD. Under this circumstance, we need to create more samples to augment the training pool. One way to do so is to adopt an approach proposed in [36] which uses the second-order statistics to generate additional nonlinear correlated samples from the available samples. These new generated samples can improve the classification performance. In order to further simplify experiments, ED and MD were used for comparisons because they are representatives of the first-order and second-order minimum distance-based classification algorithms. We refer for details to [31].

Figs. 10–13 are results generated by ED, MD, LDAED (LDA using ED) and LDAMD respectively. The images in Figs. 14(a)–(b) and 15(a) are abundance-based gray scale images generated by OSP and ATDCA using six signatures while images in Figs. 14(c)–(d) and 15(b) are binary images thresholded by WTAMPC. Tables V–X tabulate the number of detected target pixels and their corresponding detection rates for ED, MD, LDAED, LDAMD, OSP and ATDCA respectively. It should be noted that the tallies for OSP and ATDCA were calculated after WTAMPC was applied. Their overall detection and classification rates R_{OD} and R_{OC} were also calculated by (49)–(51) and are tabulated in Table XI. The experiments demonstrate several facts.

1) The abundance-based gray scale images in Figs. 14(a)–(b) and 15(a) produced by mixed pixel classification algorithms, OSP and ATDCA are among the best since the gray levels provide significant visual information, which improves the classification results considerably.

2) If the abundance-based gray scale images in Figs. 14(a)–(b) and 15(a) are thresholded by the WTAMPC, the resulting images along with tallies shown in Figs. 14(c)–(d), 15(b), and Tables IX–X are better than those in Figs. 10 and 11 with tallies given in Tables V–VI (produced by the minimum distance-based classifiers, ED and MD), but not as good as those in Figs. 12–13 with tallies given in Tables VII–VIII (produced by LDAED and LDAMD). Among these cases, LDA produced the best results. This can be also seen in Table XI where the overall target detection rate of WTAMPC is right in between LDA and minimum distance classification.
It makes sense since LDA is based on the criterion of class separability. It further showed that the minimum distance-based pure pixel classification is among the worst. This means that without taking advantage of the visual information provided by abundance-based gray levels, the minimum distance-based classification simply cannot compete against LDA and WTAMPC. These results justify a very important conclusion. Pure pixel classification is generally not as informative as mixed pixel classification as demonstrated in Figs. 14(a), (c) and 15(a). The visual information generated by abundance-based gray scale images offers very useful and valuable knowledge that can significantly help interpret classification results.

3) There is no obvious advantage of using the second-order statistic-based classifier MD over the first order statistics-based classifier ED, as shown in Tables VII–VIII. This is probably due to the fact that there is not much spatial
correlation, that a second-order statistic-based classifier can take advantage, because the pool of training target samples is relatively small.

4) For the purpose of illustration, all the images produced by pure pixel classification and WTAMPC were binary to show a specific classified target.

However, as shown in [31] this is not always the case for pure pixel classification. There are in some experiments where several targets were detected in a single binary image but could not be discriminated from one another. For instance, for an unsupervised LDAED (i.e., ISOdata(LDAED)), the three targets V1, V2, and Object were detected in a single binary image with detection rates defined by (44) as high as 100%, 100%, and 95% respectively. At the same time, the number of false alarm target pixels was also very high, e.g., 87 false alarm pixels as opposed to 12 B-pixels for V1, 125 false alarm pixels as opposed to 3 B-pixels for V2 and 95 false alarm pixels as opposed to 19 B-pixels for Object. As a result, the overall classification rate among three targets can be as low as 5% while each target detection rate is very high close to 100%. This demonstrates that higher target detection rates do not necessarily result in high classification rates. For details, we refer to [31].

VII. CONCLUSION

Many hyperspectral target detection and image classification algorithms have been proposed in the literature. Comparing one relative to another has been very challenging due to a lack of standardized data. Another difficulty arises from the fact that there are no rigorous criteria to substantiate an algorithm. This paper first considered the mixed pixel classification problem and then reinterpreted mixed pixel classification from a pure pixel classification point of view by imposing some constraints on the signature abundances. As a result, the classes of classification algorithms to be evaluated in this paper were reduced to three categories: OSP-based mixed pixel classifiers, minimum distance-based pure pixel classifiers and Fisher's LDA. In addition, a winner-take-all based mixed-to-pure pixel converter (WTAMPC) was developed to translate a mixed pixel classification problem into a pure pixel classification problem so that conventional pure pixel classification techniques could be readily applied. Although WTAMPC performed better than the minimum distance-based pure pixel classification against a standardized data set, it unfortunately did not do as well as the class separability-based LDA due to the fact that WTAMPC results in the loss of gray level information about abundance fractions. Such information, provided by the abundance-based gray scale images that are generated by mixed pixel classification algorithms, contains very useful visual features which can substantially improve image interpretation of classification results. Pure pixel classification algorithms cannot provide such information. Despite our effort to conduct comprehensive and rigorous comparative analysis of various classification algorithms for hyperspectral imagery, completion is not claimed. In particular, the WTA-based converter used in this paper for tallying target pixels was a simple thresholding technique and may not necessarily be optimal. There may exist an effective MPC which can produce better pure pixel classification performance. Many thresholding algorithms are available in the literature [37]. Most of them, however, were developed based on pure pixel image processing and may not be directly applicable to our problem. A further study on this issue may be worth pursuing. Finally, it should be noted that all the algorithms considered in this paper are unconstrained in the sense that no constraints are imposed on signature abundances, such as the abundance fractions must be summed to one or must be nonnegative. Investigation of constrained mixed pixel classification problems is a separate issue and has been recently reported in [35], [38].

ACKNOWLEDGMENT

The authors would like to thank Dr. M. L. G. Althouse and A. Ifarragaerri for proofreading this paper and the anonymous reviewers for their comments which helped to improve the paper quality and presentation.

REFERENCES

