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ABSTRACT

Supervised hyperspectral image classification is a difficult task due
to the unbalance between the high dimensionality of the data and
the limited availability of labeled training samples in real analy-
sis scenarios. While the collection of labeled samples is generally
difficult, expensive and time-consuming, unlabeled samples can be
generated in a much easier way. This observation has fostered the
idea of adopting semi-supervised learning (SSL) techniques in hy-
perspectral image classification. The main assumption of such tech-
niques is that the new (unlabeled) training samples can be obtained
from a (limited) set of available labeled samples without significant
effort/cost. In this paper, we develop a new framework for SSL
which exploits active learning (AL) for unlabeled sample selection.
Specifically, we use AL to select the most informative unlabeled
training samples and further evaluate two different strategies for ac-
tive sample selection. In this work, the proposed approach is illus-
trated with the sparse multinomial logistic regression (SMLR) clas-
sifier learned with the MLR via variable splitting and augmented La-
grangian (LORSAL) algorithm. Our experimental results with a real
hyperspectral image collected by the NASA Jet Propulsion Labora-
tory’s Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS)
indicate that the use of AL for unlabeled sample selection represents
an effective and promising strategy in the context of semi-supervised
hyperspectral data classification.

Index Terms— Hyperspectral image classification, semi-
supervised learning, active learning, sparse multinomial logistic
regression.

1. INTRODUCTION

Remotely sensed hyperspectral imaging allows for the detailed anal-
ysis of the surface of the Earth using advanced imaging instruments
which can produce high-dimensional images with hundreds of spec-
tral bands [1]. A relevant challenge for supervised classification
techniques (which assume prior knowledge in the form of class la-
bels for different spectral signatures) is the limited availability of
labeled training sets, since their collection generally involves expen-
sive ground campaigns [2]. While the collection of labeled samples
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is generally difficult, expensive and time-consuming, unlabeled sam-
ples can be generated in a much easier way. This observation has
fostered the idea of adopting semi-supervised learning (SSL) tech-
niques in hyperspectral image classification. The main assumption
of such techniques is that new (unlabeled) training samples can be
obtained from a (limited) set of available labeled samples without
significant effort/cost [3].

In contrast to supervised classification, the aforementioned SSL
algorithms generally assume that a limited number of labeled sam-
ples are available a priori and then enlarge the training set using
unlabeled samples, thus allowing these approaches to address ill-
posed problems. However, in order for this strategy to work several
requirements need to be faced. First and foremost, the new (unla-
beled) samples should be generated without significant cost/effort.
Second, unlabeled samples should be representative enough in or-
der for the SSL classifier to model the available classes without the
need for a large number of unlabeled samples. In other words, if the
unlabeled samples are not properly selected these may confuse the
classifier, thus introducing divergence or even reducing the classifi-
cation accuracy obtained with the initial set of labeled samples. In
order to address these issues, it is very important that the most highly
informative unlabeled samples are identified, so that significant im-
provements in classification performance can be observed without
the need to increase a very high number of unlabeled samples.

In this work, we evaluate the feasibility of using active learn-
ing (AL) techniques for automatically selecting unlabeled samples.
In the literature, AL techniques have been mainly exploited in a su-
pervised context, i.e. a given supervised classifier is trained with
the most representative training samples selected after a machine-
user interaction process in which the training samples are actively
selected according to some criteria based on the considered classi-
fier, and then the labels of these samples are assigned by a trained
expert in fully supervised fashion [4]. However, in our proposed ap-
proach we exploit AL in semi-supervised fashion by allowing the
classifier to actively select and label new training samples itself. The
idea is to first use a subset of the available (labeled) training set as the
candidate pool for the AL process. However, different strategies can
be considered for generating such candidate pool. In this work, we
consider two different strategies for this purpose and illustrate them
with the sparse multinomial logistic regression (SMLR) classifier,
which is shown to achieve significant improvements in classification
accuracy resulting from its combination with the proposed AL-based
strategies. It should be noted that, in our context, using AL for un-
labeled sample selection is similar to using AL for labeled sample
selection in supervised algorithms.

The remainder of the paper is organized as follows. Section 2



describes proposed framework for semi-supervised AL. Section 3 re-
ports classification results using a real hyperspectral image collected
by the Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS)
[5] over the Indian Pines region in NW Indiana. Finally, section 4
concludes the paper with some remarks and hints at plausible future
research lines.

2. PROPOSED APPROACH

Let £ = {1,...,K} denote a set of K class labels, S =
{1,...,n} a set of integers indexing the n pixels of an im-
age, x = (xi1,...,X,) € R¥"™ an image of d-dimensional
feature vectors, y = (y1,...,yn) an image of labels, D, =
{(yiy, %13 )5+ -5 (Y1, %1,,) } @ set of labeled samples, I,, the num-
ber of labeled training samples, Vi = {vi,..., ., } the set of
labels in Dy, X&) = {xi,,...,xy, } the set of feature vectors in D;,
D. = { X, Vu} asetof unlabeled samples, X, = {xu,, ..., Xu, }
the set of unlabeled feature vectors in Dy, Vu = {Yuys .-+ Yun }
the set of labels associated with X, and w,, the number of unlabeled
samples. With this notation in mind, the proposed strategy consists
of two main ingredients: semi-supervised learning (SSL) and active
learning (AL).

2.1. Semi-supervised Learning (SSL)

For the SSL part, we use multinomial logistic regression (MLR) to
model the class posterior density, which is formally given by [6]:
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where h(x) = [hi(x),...,hi(x)]T is a vector of [ fixed func-

tions of the input, often termed features; w are the regressors and

w = [w®", . w7 Notice that the function h may be linear,
i.e, h(x;) = [1,2i1,...,2:4)", wWhere =, ; is the j-th compo-
nent of x;; or nonlinear, i.e, h(x;) = [1, Kx; x;» - Kx;q)" s
where Kx, x; = K(xi,x;) and K(-,-) is some symmetric ker-
nel function. Kernels have been largely used because they tend to
improve the data separability in the transformed space. In this pa-
per, we use a Gaussian Radial Basis Function (RBF) K (x;,x;) =
exp(—||x; — x;||*/202) kernel, which is widely used in hyperspec-
tral image classification [7]. From now on, d denotes the dimension
of h(x). Under the present setup, learning the class densities
amounts to estimating the logistic regressors. Following the work
in [8,9], we infer w by computing the maximum a posteriori (MAP)
estimate:

@ = arg max (w) + log p(w), )

where p(w) x exp(—A|lw||1) is a Laplacian prior to promote the
sparsity and \ is a regularization parameter controlling the degree
of sparseness of @, set empirically in this work to A = 0.001. The
optimization problem (2) is solved by the LORSAL algorithm [10]
(see also the appendix of [9]). ¢(w) is the log-likelihood function
over the training samples D,,, = D; + D, given by:
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As shown by Eq. (3), labeled and unlabeled information is integrated
to learn the regressors w. The considered SSL approach belongs to
the family of self-learning approaches, where the training set D,
is incremented in this work using AL techniques described in the
following subsection.

2.2. ActiveLearning (AL)

In this work, we adopt the AL concept from supervised learning
[4,11, 12] and combine it with the SSL strategies described in the
previous subsection. In this way, we can find the most informative
samples without the need for human supervision. In this case, the
labels are predicted by the considered SSL algorithm using two dif-
ferent strategies:

1. Strategy 1. Let DN(i) = {(/y\iuxil)v RN (ﬂin,xin)}
be the set of neighboring set of samples of (y;,x;) for
i € {l,...,ln,u1,...,un}, Where i, is the number
of samples in D) and g;; is the maximum a poste-
riori probability (MAP) estimate from the MLR classi-
fier, with i; € {i1,...,in}. If §i; = i, we incre-
ment the unlabeled training set by adding (u:;,,x:;), i.e,
Dy = {Du, (¥i;,xi,)}. This increment is reasonable due to
the following considerations. First, from a global viewpoint,
samples which have the same spectral structure likely belong
to the same class. Second, from a local viewpoint, it is very
likely that two neighboring pixels also belong to the same
class.

2. Strategy 2. A second strategy is to increment the unlabeled
training set by adding (¥i;,x;), i.e, Du = {(¥i;,%i;)} in
each iteration, i.e, the previously selected labeled and unla-
beled training samples are removed from the pool of candi-
dates at each iteration, so that at each iteration a completely
new set of unlabeled samples is selected. We emphasize that,
in this work, we run an iterative scheme to increment the
training set as this strategy can refine the estimates and en-
large the neighborhood set such that the set of potential unla-
beled training samples is increased.

Let D, be the newly generated unlabeled training set at each itera-
tion, which meets the criteria of the considered SSL algorithm. Now
we can run AL algorithms over D. to find the most informative set
D., such that D, C D.. It should be noted that we use D. as the
candidate set for the AL process instead of the whole image. This is
because, as compared with the user-oriented strategy in supervised
learning in which the labels are given by the end-users, here we use
machine-machine (instead of user-machine) interaction so that the
new labels are predicted by the learning algorithm itself. Therefore,
in order to have a good control of the newly generated samples, high-
confidence estimates are preferred. Furthermore, due to the fact that
we use a discriminative classifier and a self-learning strategy for the
SSL algorithm, AL algorithms which focus on the boundaries be-
tween the classes are preferred. In our study, we use three different
AL techniques [13] to evaluate the proposed framework: 1) margin
sampling (MS), 2) breaking ties (BT), and 3) modified breaking ties
(MBT) [9] in addition to random selection (RS).

3. EXPERIMENTAL RESULTS

The hyperspectral image used in experiments was collected by the
AVIRIS sensor over the Indian Pines region in Northwestern Indiana
in 1992. This scene, with a size of 145 lines by 145 samples, was
acquired over a mixed agricultural/forest area, early in the growing
season. The scene comprises 202 spectral channels in the wave-
length range from 0.4 to 2.5 um, nominal spectral resolution of 10
nm, moderate spatial resolution of 20 meters by pixel, and 16-bit
radiometric resolution. After an initial screening, several spectral
bands were removed from the data set due to noise and water absorp-
tion phenomena, leaving a total of 164 radiance channels to be used



in the experiments. These data, including ground-truth information,
are available online!, a fact which has made this scene a widely used
benchmark for testing the accuracy of hyperspectral data classifica-
tion algorithms. This scene constitutes a challenging classification
problem due to the presence of mixed pixels in all available classes,
and because of the unbalanced number of available labeled pixels
per class.

Table 1 shows the overall, average, individual classification ac-
curacies (in percentage) and the x statistic obtained by the super-
vised MLR (trained using only [ = 5,1 = 10 and [ = 15 labeled
samples per class), and by the proposed SSL approach (based on
the same classifier) using the four considered AL algorithms (exe-
cuted using 50 iterations) and the strategy 1 for candidate selection.
Similarly, Table 2 performs the same experiments but using the strat-
egy 2 for candidate selection. Several conclusions can be obtained
from Tables 1 and 2. First of all, we can notice that the inclusion
of unlabeled samples significantly improves the classification results
in all cases. This is expected, since the uncertainty of the classifier
boundaries decreases as the training set size increases. It is also re-
markable that, in the case of the strategy 2 for candidate selection,
the improvements are more significant than the results obtained with
the strategy 1. This is because the strategy 2 selects a set of new
candidates at each iteration and the AL algorithms can perform a
better sample selection from the candidate pool, which contains new
samples at each iteration and allows exploring the spatial-contextual
information to a wider extent.

In a second experiment we evaluated the impact of the number
of unlabeled samples used to increase the classification performance
achieved by the considered classifier with the two considered sam-
ple selection strategies. Fig. 1 shows the classification accuracies
obtained by the proposed SSL approach (using only I =5, 1 = 10
and [ = 15 labeled samples per class and an increasing number
of unlabeled samples) with the two considered strategies for active
learning. Again, significant improvements can be seen when the AL
strategy 2 is used when compared to the AL strategy 1. Finally, Fig.
2 shows the classification maps obtained with the strategy 2 using
I = 10 labeled samples per class. Effective classification results can
be appreciated in these maps.

4. CONCLUSIONSAND FUTURE WORK

In this paper, we have developed a new framework for semi-
supervised classification of hyperspectral images in which unlabeled
samples are actively selected using two different strategies. Specifi-
cally, we use active learning to select the most informative unlabeled
training samples with the ultimate goal of improving classification
results obtained using randomly selected training samples. In our
semi-supervised context, the labels of the selected training samples
are estimated by the classifier itself, with the advantage that no extra
cost is required for labeling the selected samples when compared
to supervised active learning. Our experimental results, conducted
using the sparse multinomial logistic regression (MLR) classifier,
indicate that the proposed approach can increase the classification
accuracies obtained in the supervised case through the incorporation
of unlabeled samples which can be obtain with very little cost and
effort. In future work, we are planning on combining the proposed
approach with other classifiers in order to confirm the advantages
that can be gained by including actively selected unlabeled samples
in the context of semi-supervised classification of remotely sensed
hyperspectral image data sets.

! Available online: http://dynamo.ecn.purdue.edu/biehl/MultiSpec
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Table 1. Overall, average, individual classification accuracies [%], and « statistic (in the parentheses) obtained using the MLR classifier when
applied to the AVIRIS Indian Pines hyperspectral data set. Strategy 1 is used for candidate selection at each AL iteration.

Number of labeled samples per class
=5 =10 =15
Supervised MS BT MBT RS Supervised MS BT MBT RS Supervised MS BT MBT RS
OA 51.78 75.07 7390 7332 63.33 60.12 7750 79.09 7628 67.36 66.20 78.82 7950 7740 7254
AA 63.82 79.40 78.86 80.79  70.97 71.74 81.87 8374 8422 78.88 77.39 8458 84.92 8546  79.97
K 46.26 7163 7039 69.92 5853 55.43 7441 7630 7332 6329 62.09 7590 76,71 7457  68.87

Table 2. Overall, average, individual classification accuracies [%], and « statistic (in the parentheses) obtained using the MLR classifier when
applied to the AVIRIS Indian Pines hyperspectral data set. Strategy 2 is used for candidate selection at each AL iteration.

Number of labeled samples per class
l=5 I =10 1 =15
Supervised MS BT MBT RS Supervised MS BT MBT RS Supervised MS BT MBT RS
Alfalfa (54) 83.88 84.29 84.49 86.33 81.63 83.64 84.32 85.68 88.86 77.50 85.38 84.87 84.62 86.67 81.79
Corn-Notill (1434) 39.10 71.20 72.32 70.22 48.12 48.38 71.83 76.08 75.18 63.01 51.40 74.50 74.27 74.93 58.44
Corn-Min (834) 34.26 52.64 54.62 60.33 38.70 47.65 67.69 65.52 65.95 55.01 59.61 72.20 73.28 71.95 57.80
Corn (234) 53.62 78.38 76.86 82.27 61.09 70.63 87.01 89.06 93.13 66.79 78.54 87.72 87.72 92.56 77.81
Grass-Pasture (497) 60.33 68.78 69.23 69.88 68.64 75.42 86.39 86.26 87.19 82.87 81.47 87.28 87.95 90.02 84.32
Grass-Trees (747) 78.68 96.47 96.67 97.30 94.61 86.01 96.70 96.45 96.81 94.75 93.44 96.89 96.89 97.45 96.09
Grass-Pasture-Mowed (26) 90.48 93.81 91.43 93.81 90.48 88.12 91.87 93.13 91.87 85.00 94.55 95.45 96.36 93.64 92.73
Hay-Windrowed (489) 74.42 99.07 99.30 99.42 96.26 88.89 98.18 98.79 99.16 97.72 90.70 98.35 98.71 98.95 97.19
Oats (20) 95.33 97.33 98.67 100.00 92.00 98.00 92.00 92.00 99.00 98.00 100.00 96.00 100.00 100.00 100.00
Soybeans-Notill (968) 52.72 74.55 76.53 76.50 63.71 58.68 82.67 84.67 82.22 68.38 61.72 77.28 78.94 77.99 65.67
Soybeans-Min (2468) 4259 75.59 74.96 65.41 57.32 44.85 78.50 76.00 65.45 53.46 51.56 76.22 77.82 66.09 63.17
Soybeans-Clean (614) 40.21 80.66 79.98 82.25 57.45 52.50 82.52 83.56 86.90 64.39 62.25 89.65 87.41 89.72 72.95
Wheat (212) 9531 98.99 99.03 99.23 99.08 98.76 99.50 99.36 99.60 99.55 99.24 99.39 99.19 99.44 99.54
Woods (1294) 65.03 95.77 94.77 95.02 93.20 75.63 95.02 94.89 95.13 90.79 82.24 96.51 96.46 96.80 93.74
Bldg-Grass-Tree-Drives (380) 36.85 54.27 62.24 61.79 39.36 50.84 67.41 69.59 70.92 56.97 59.15 66.41 69.89 70.74 61.10
Stone-Steel-Towers (95) 78.33 88.33 91.78 93.78 79.44 79.88 84.24 81.06 91.41 77.41 87.00 89.87 88.50 92.25 84.75
OA 51.78 78.13 78.64 76.91 65.40 60.12 82.33 82.48 80.18 69.85 66.20 82.68 83.31 80.87 72.97
AA 63.82 81.88 82.68 83.35 72.57 71.74 85.37 85.76 86.80 76.98 77.39 86.79 87.38 87.45 80.44
3 46.26 75.08 75.69 73.93 60.84 55.43 79.88 80.09 77.67 66.02 62.09 80.29 80.99 78.37 69.38
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Fig. 1. Overall classification accuracies (as a function of the number of unlabeled samples) obtained for the AVIRIS Indian Pines data set
using the proposed SSL approach with the two considered AL strategies.
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Fig. 2. Classification maps and overall classification accuracies (in the parentheses) obtained after applying the MLR classifier to the AVIRIS
Indian Pines data set using the proposed AL framework based on strategy 2 (in all cases, [ = 10).



