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ABSTRACT

Spectral unmixing is an important task for remotely
sensed hyperspectral data exploitation. It expresses each
(possibly mixed) pixel of the hyperspectral image as a com-
bination of spectrally pure substances (called endmembers)
weighted by their corresponding abundances. The spectral
unmixing chain usually consists of three main steps: 1) esti-
mation of the number of endmembers in a scene; 2) automatic
identification of the spectral signatures of these endmembers;
and 3) estimation of the endmember abundances in each pixel
of the scene. Over the last years, several algorithms have
been developed for each part of the chain. In this paper, we
develop a new algorithm which can perform the three steps of
the unmixing chain (at once) for hyperspectral images with
significant amount of noise. The proposed algorithm, which
does not require a previous subspace identification step to
estimate the number of endmembers, starts with an overes-
timated number of endmember and then iteratively removes
the less relevant endmember detected by a collaborative reg-
ularization prior. Our experimental results demonstrate that
the proposed method exhibits very good performance when
the number of endmember is not available a priori, a situation
that is very common in practice.

Index Terms— Hyperspectral imaging, spectral unmix-
ing, collaborativity, nonnegative matrix factorization

1. INTRODUCTION

Spectral unmixing is an important task for remotely sensed
hyperspectral data exploitation [1]. It amounts at estimat-
ing the abundance of spectrally pure components (called end-
members in hyperspectral imaging literature). The spectral
unmixing chain usually consists of three main steps: 1) esti-
mation of the number of endmembers in a scene; 2) automatic
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identification of the spectral signatures of these endmembers;
and 3) estimation of the endmember abundances in each pixel
of the scene. In the last few years, several techniques have
been developed for addressing each part of the chain, with
particular emphasis on the identification of endmembers (with
and without assuming the presence of pure spectral signatures
in the input hyperspectral data [2, 3]). However, there are
very few spectral unmixing algorithms that can address all the
stages involved in the hyperspectral unmixing process simul-
taneously. Further, the estimation of the number of endmem-
bers by means of subspace identification algorithms is gen-
erally very effective when the hyperspectral images are noise
free [4,5], but this part of the chain is more challenging when
the amount of noise increases. Let p denote the true num-
ber of endmembers in a hyperspectral image and let p̂ denote
the number of endmembers estimated by a certain algorithm.
When p̂ > p, the number of endmembers is overestimated and
this is particularly critical for endmember identification algo-
rithms designed without assuming that the true endmembers
are present in the input hyperspectral data [6–11].

To address this relevant issue, in this paper we develop
a new algorithm for hyperspectral unmixing which can pro-
vide the number of endmembers along with their signatures
and their corresponding abundances at once. The proposed
algorithm does not require a previous subspace identification
step to estimate the number of endmembers, and is specif-
ically designed to perform effectively in analysis scenarios
dominated by noise. The proposed algorithm starts with an
overestimated number of endmember and then iteratively re-
moves the less relevant endmember detected by means of a
collaborative regularization prior. Our experimental results
demonstrate that the proposed method exhibits very good per-
formance in noisy scenarios and without the need to know the
number of endmember in advance.

Tbe remainder of the paper is organized as follows. Sec-
tion 2 describes the proposed approach, which is based on
the concept of collaborative nonnegative matrix factorization
(CoNMF). Section 3 describes the obtained experimental re-
sults. Section 4 concludes the paper with some remarks and
hints at plausible future research.



2. PROPOSED APPROACH

2.1. Collaborative Nonnegative Matrix Factorization
(CoNMF)

Let Y ≡ [y1, . . . ,yn] ∈ R
d×n be a hyperspectral image with

n spectral vectors and d spectral bands. The hyperspectral
image is represented as a matrix, holding in its columns the
spectral vectors yi ∈ R

d, for i = 1, . . . , n. Under the linear
mixing model [12], we have:

Y = MS+ n
s.t. : S ≥ 0, 1T

p S = 1T
n ,

(1)

where M ≡ [m1, . . . ,mp] ∈ R
d×p is a so-called mixing ma-

trix containing p endmembers, mi denotes the i-th endmem-
ber signature, and S = [s1, . . . , sp]

T ∈ R
p×n is the abun-

dance matrix containing the endmember fractions for every
pixel in the hyperspectral scene. Finally, n collects the errors
that affect the measurement process (e.g., noise). For each
pixel, the abundance fractions should be no less than zero and
sum to one, which are known as the non-negativity and sum-
to-one constraints. These are represented in Eq. (1), where
1p is a column vector containing p ones. In this work, we
solve the optimization problem in Eq. (1) using non-negative
matrix factorization (NMF) as follows:

(M̂, Ŝ) = argmin
M,S

1

2
‖Y −MS‖22

+α
∑p̂

i=1 ‖si‖q2 + β
2

∑p̂
i=1 ‖mi − y‖22

s.t. : S ≥ 0, 1T
p S = 1T

n ,
(2)

where α and β are regularization parameters and y is the
mean value of the data. The regularization term on the abun-
dance matrix is a collaborative prior which promotes com-
plete lines of zeros, where 0 < q ≤ 1 is a parameter con-
trolling the degree of collaborativity. The other term on the
mixing matrix constrains the distance between all the vertices
of the simplex and the data [13,14]. This term promotes min-
imum volume even if p is overestimated.

2.2. Proposed Approach

In this work we proposed a follow-up method to the CoNMF
algorithm described in the previous subsection in order to de-
termine the number of endmembers, the corresponding end-
member signatures and their abundances, thus addressing the
three steps in the standard hyperspectral unmixing chain by
the same method. Let ζ(i) = ‖si‖2, for i = 1, . . . , p̂, denote
the degree of collaborativity. With this notation in mind, the
proposed approach can be described as follows:

• First, we run the CoNMF algorithn in an overestimated
scenario, i.e., p̂ > p.

• Then, we compute ζ(i). The smaller ζ(i), the less rel-
evant the mi. Therefore, it is likely that the minimum
ζ(i) corresponds to a “fake” endmember.

• We remove mi from the just obtained endmembers and
use the remaining p̂− 1 endmembers as the initial con-
dition in order to run CoNMF again.

• The aforementioned steps are repeated until the recon-
struction error diverges. If the reconstruction error is
very large, meaning that we arrive at an underestimated
scenario, the endmembers and abundances obtained in
the previous step are the final output of the algorithm.

An important observation at this point is that the proposed
method takes advantage from the results obtained in previous
iterations and therefore, it adjusts itself. In this way, we do
not need to optimize the related parameters for every number
of endmembers. This is an important competitive advantage
with regards to other techniques for spectral unmixing, which
depend heavily on the number of endmembers used as an in-
put to the chain. Furthermore, we have empirically observed
that the proposed method is very stable regardless of the ini-
tial parameter settings. In other words, the algorithm automat-
ically adapts to the analyzed data set and provides stable re-
sults by automatically identifying how many endmembers are
present in the data, the spectral signatures of these endmem-
bers, and the corresponding endmember abundances. Again,
these are very important considerations in the unmixing liter-
ature, in which most available algorithms are parameter de-
pendent and sensitive to noise. In the following section we
will also show how the proposed approach can perform well
under high noise conditions.

3. EXPERIMENTAL RESULTS

In our experiments we have considered linearly mixed simu-
lated mixtures synthesized using the linear mixture model and
a set of mineral spectral signatures from the United States
Geological Survey (USGS) library available online1. Table
1 shows an evaluation of the performance of the proposed
method in the unmixing of simulated hyperspectral data with
signal to noise ratio (SNR) of {10,20,30,40} dB, with a true
number of endmembers of p = 4, and in which the initial
estimated number of endmember is p̂ = 7. In the table, sev-
eral performance discriminators are reported, namely the root
mean reconstruction error (RMSE), the spectral angle dis-
tance (SAD) [12] and two error metrics focused on the qual-
ity of the estimated endmembers, ‖M̂ − M‖F , and on the
quality of the estimated abundances, 1

n×p‖Ŝ − S‖F , where
F denotes the Frobenius norm of a given matrix X, such that

‖X‖F ≡
√

trace{XXT }.

1http://speclab.cr.usgs.gov/spectral-lib.html



Table 1. Evaluation of the performance of the proposed method in the unmixing of simulated hyperspectral data with signal-to-
noise ratio of {10, 20, 30, 40} dB. The true number of endmembers in this experiment is p = 4 and the initial estimated number
of endmember is p̂ = 7.

SNR=10dB SNR=20dB

p̂ RMSE SAD ‖̂M− M‖F
1

n×p‖̂S − S‖F ζ(i): min(max) RMSE SAD ‖̂M − M‖F
1

n×p‖̂S − S‖F ζ(i): min(max)

7 0.0356 7.4389 2.0702 0.0478 5.4286(15.3470) 0.0043 3.3771 1.0669 0.0304 5.9593(16.4189)

6 0.0294 6.9041 1.8564 0.0386 5.8079(16.2086) 0.0034 1.7022 0.3843 0.0095 8.2185(17.3037)

5 0.0236 6.2244 1.5838 0.0292 6.6419(17.4830) 0.0024 1.5571 0.3638 0.0028 7.7122(18.5486)

4 0.0136 2.6051 0.5375 0.0048 16.6886(19.0613) 0.0015 1.4523 0.3428 0.0007 17.5498(19.2318)

3 0.0485 - - - - 0.0214 - - - -

SNR=30dB SNR=40dB

(p̂) RMSE SAD ‖̂M− M‖F
1

n×p‖̂S − S‖F ζ(i): min(max) RMSE SAD ‖̂M − M‖F
1

n×p‖̂S − S‖F ζ(i): min(max)

7 0.0010 5.0920 1.1459 0.0467 4.2555(19.6217) 0.0006 3.8063 0.8540 0.0537 4.6899(18.3336)

6 0.0007 4.1628 1.2258 0.0476 7.1381(19.0932) 0.0003 2.8626 0.6083 0.0449 6.2983(17.7297)

5 0.0005 3.7760 1.1500 0.0391 12.2319(19.0773) 0.0002 2.3805 0.4969 0.0329 7.6539(17.6405)

4 0.0002 0.9819 0.2027 0.0003 18.0497(19.3300) 0.0001 0.7120 0.1352 0.0001 18.1826(19.0239)

3 0.0397 - - - - 0.0260 - - - -

From the results reported on Table 1 we can conclude
that the proposed approach can successfully estimate the true
number of endmembers in high noise conditions. For illustra-
tive purpose, Fig. 1 demonstrates graphically the performance
of the proposed method by projecting the simulated data on
a two-dimensional subspace. In Fig. 1, we show the true
endmembers in black color, the initial condition in cyan color
(this corresponds to the endmembers provided by VCA which
are used for initialization), and the iterative process: red color
for p̂ = 7, green color p̂ = 6, blue color p̂ = 5 and yellow
color p̂ = 4 from the initial to the final condition. We can
observe that the proposed approach always converges to the
true endmembers regardless of the initialization condition.

4. CONCLUSIONS

In this paper, we have developed a new algorithm which can
provide the three steps of the spectral unmixing chain: 1) esti-
mation of the number of endmembers in a scene; 2) automatic
identification of the spectral signatures of these endmembers;
and 3) estimation of the endmember abundances in each pixel
of the scene at once. The proposed approach is shown to be
particularly effective in noisy analysis scenarios. In partic-
ular, the obtained experimental results demonstrate that the
proposed method exhibits very good performance when the
number of endmember is not available a priori. Although
the obtained results are very encouraging, further experiments
with real hyperspectral scenes are needed in order to fully
substantiate the proposed approach.
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Fig. 1. Graphical assessment of the performance of the proposed method in the unmixing of simulated hyperspectral data
with signal-to-noise ration (SNR) of {10, 20, 30, 40} dB. The p = 4 true endmembers are displayed in black color, the initial
condition (endmembers produced by the VCA algorithm) is displayed in cyan color, and the iterative process: red color for
p̂ = 7, green color p̂ = 6, blue color p̂ = 5 and yellow color p̂ = 4 from the initial to the final condition, is also represented in
graphical form.


