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ABSTRACT

Endmember extraction (EE) is a fundamental and crucial task
in hyperspectral unmixing. Among other methods vertex
component analysis (VCA) has become a very popular and
useful tool to unmix hyperspectral data. VCA is a geomet-
rical based method that extracts endmember signatures from
large hyperspectral datasets without the use of any a priori
knowledge about the constituent spectra.

Many Hyperspectral imagery applications require a re-
sponse in real time or near-real time. Thus, to met this re-
quirement this paper proposes a parallel implementation of
VCA developed for graphics processing units. The impact
on the complexity and on the accuracy of the proposed paral-
lel implementation of VCA is examined using both simulated
and real hyperspectral datasets.

Index Terms— Hyperspectral Unmixing, Endmember
Extraction, Vertex Component Analysis, Graphics Process-
ing Unit, Parallel Methods.

1. INTRODUCTION

Among the remote sensing modalities, hyperspectral imaging
has recently emerged as a powerful passive technology [1].
This technology have been widely used in the fields of urban
and regional planning, water resource management, environ-
mental monitoring, food safety, counterfeit drugs detection,
oil spill and other types of chemical contamination detection,
biological hazards prevention, and target detection for mili-
tary and security purposes [2, 3].

Hyperspectral imaging instruments such as NASA Jet
Propulsion Laboratory’s Airborne Visible Infra-Red Imaging
Spectrometer (AVIRIS) [4] sample the reflected solar radi-
ation from the Earth surface in the portion of the spectrum
extending from the visible region through the near-infrared
and mid-infrared (wavelengths between 0.3¹m and 2.5¹m)
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in hundreds of narrow (on the order of 10 nm) contiguous
bands [5]. This high spectral resolution can be used for
object detection and for discriminating between different ob-
jects based on their spectral characteristics [6]. However,
this huge spectral resolution yields large amounts of data to
be processed. For example, AVIRIS collects a 512 (along
track) 614 (across track) 224 (bands) 12 (bits) data cube
in 5 seconds, corresponding to about 140 MBs. Similar data
collection ratios are achieved by other spectrometers [7].
This introduces significant requires from the viewpoint of
efficiently processing, transmitting and storing the sheer vol-
umes of data generated in hyperspectral imaging applications
[8, 9].

Very often, the resolution cell corresponding to a single
pixel in an image, is tens of meters, thus containing several
substances (so-called endmembers) [5]. In this situation, the
scattered energy is a mixing of the endmember spectra. Lin-
ear mixture model assume that each pixel is a linear combina-
tion of endmember signatures weighted by the correspondent
abundance fractions [10]. Over the last decade, several algo-
rithms have been developed to unmix hyperspectral data sets,
including vertex component analysis (VCA) [11], automated
morphological endmember extraction (AMEE) [12], pixel pu-
rity index (PPI) [13], N-FINDR [14], iterative error analysis
(IEA) [15], simplex growing algorithm (SGA) [16], sequen-
tial maximum angle convex cone (SMACC) [17], alternative
volume maximization (AVMAX, SVMAX) [18], among sev-
eral others [19]. These methods exploit geometric perspective
of the linear mixture model and assume that the dataset con-
tains at least one pure pixel of each endmember, e.g., a pixel
containing just a single endmember.

VCA has been successfully used to determine endmem-
bers and unmix large hyperspectral data sets without the use
of any a priori knowledge of the constituent spectra. Com-
pared with other geometric-based approaches, VCA is an ef-
ficient method from the computational point of view. How-
ever, most of the above mentioned applications require anal-



ysis methods able to provide a response in (near) real time.
In recent years, high-performance computing systems

have become more widespread in remote sensing applica-
tions, namely the emergence of programmable graphics pro-
cessing units (GPUs). Driven by the increasing demands
of the videogame industry, GPUs have evolved from ex-
pensive application specific units into highly parallel and
programmable systems. Specifically several state-of-the-art
hyperspectral imaging algorithms can fully benefit from this
hardware and take advantage of the extremely high floating-
point processing performance, compact size, huge memory
bandwidth, and relatively low cost of these units, which make
them appealing for onboard data processing [20, 21].

This paper proposes a parallel GPU-based version of
VCA that alleviates considerably the computational burden,
allowing a significant increase in processing speed. The
remainder of the paper is organized as follows. Section 2
presents the fundamentals of the VCA method. Section 3
describes the GPU-based implementation of VCA. Section 4
evaluates the proposed acceleration implementation from the
viewpoint of both endmember extraction accuracy and paral-
lel performance. Section 5 concludes with some remarks.

2. VERTEX COMPONENT ANALYSIS

Linear mixing model considers that a mixed pixel is a linear
combination of endmember signatures weighted by the corre-
spondent abundance fractions. Thus, each observed spectral
vectors (pixel) y ∈ ℝL of an hyperspectral image (L is the
number of bands) is given by

y = Ms+ n, (1)

where M ≡ [m1,m2, . . . , mp] is a full-rank L × p mix-
ing matrix (mj denotes the jth endmember signature), p is
the number of endmembers present in the covered area (with
p < L), s = [s1, s2, . . . , sp]

T is the abundance vector con-
taining the fractions of each endmember, and n is additive
noise vector (notation (⋅)T stands for vector transposed).

To be physically meaningful [6], abundance fractions are
subject to nonnegativity and full additivity constraints, i.e.,
abundance fractions are in the p−1 probability simplex: {s ∈
ℝp : sj ≥ 0,

∑p
j=1 sj = 1}. Thus, under the linear mixing

model the observed spectral vectors in a given scene are in a
simplex whose vertices correspond to the endmembers. As-
suming that each endmember has at least one pure pixel on
the dataset, endmember extraction amounts to find those pure
pixels.

VCA is an unsupervised method to unmix linear mixtures
of hyperspectral sources and is based on the geometry of con-
vex sets. It exploits two facts: 1) the endmembers are the ver-
tices of a simplex and 2) the affine transformation of a sim-
plex is also a simplex. VCA is a fully automatic algorithm
and it works with and without dimensionality reduction pre-
processing step. The algorithm iteratively projects data onto
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Fig. 1. Hyperspectral mixture of three endmembers illustrat-
ing the VCA algorithm.

a direction orthogonal to the subspace spanned by the end-
members already determined. The new endmember signature
corresponds to the extreme of the projection. The algorithm
iterates until all endmembers are exhausted. Fig. 1 illustrates
the VCA method working on a simplex defined by a mixture
of three endmembers. In the first iteration, data is projected
onto the first direction d1. The extreme of the projection cor-
responds to endmember ma. In the next iteration, endmem-
ber mb is found by projecting data onto direction d2, which
is orthogonal to ma. Finally, a new direction d3, orthogonal
to the subspace spanned by ma and mb is generated and the
endmember mc is found by seeking the extreme of the pro-
jection of the dataset onto d3. Full VCA algorithm can be
found in [11].

3. GPU-BASED VCA

As mentioned in the previous section VCA iteratively project
all pixels to a direction orthogonal to the subspace spanned
by the endmembers found so far. At each iteration the pixels
projection are independent from each other, thus it is highly
desirable that this procedure be parallel implemented in order
to increase in processing speed. Figure 2 present the flow
chart of VCA. The dataset is read to the memory, where is
shared by the GPU cores, the direction determination, which
is composed by small matrix operations, is made on the CPU,
whereas the pixel projections are made in the GPU in parallel
fashion.

4. EXPERIMENTAL RESULTS

The impact on the complexity and the accuracy of the pro-
posed parallel implementation of VCA is evaluated using sim-
ulated data based on laboratory spectra available from the
United States Geological Survey (USGS)1 and real hyper-
spectral data collected by the AVIRIS sensor over the Cuprite

1http://speclab.cr.usgs.gov/spectral-lib.html
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Fig. 2. Parallel VCA flowchart.

mining district in Nevada, a widely used test site for evalu-
ating the accuracy of endmember extraction and spectral un-
mixing algorithms. The sequential VCA is implemented in
C programming language running on a computer platform
equipped with a Intel i7-2600 (3.4GHz), with 16 Gbyte mem-
ory and the parallel VCA is a CUDA-based implementation
(version 4.0) on a GPU card equipped with a GTX-590 from
NVidia (with 1.5GB of memory). To evaluate the perfor-
mance of the algorithm the spectral angle distance (SAD) [6]
is used. This widely known metric measures the shape sim-
ilarity between the ith endmember signature mi and its es-
timate m̂i. Based on this metric, we define a spectral mean
angle error (SMAE), given by:

SMAE ≡
√√√⎷1

p

p∑

i=1

[
arccos

(
mT

i m̂i

∥mi∥∥m̂i∥
)]2

. (2)

4.1. Evaluation with Simulated Data

In this section, we apply the sequential and the parallel VCA
to simulated scenes. To evaluate speedup of the parallel ver-
sus sequential versions of VCA several datasets are created
with different number of pixels. Each pixel is generated ac-
cording to expression (1), where 5 spectral signatures are se-
lected from the USGS digital spectral library [22]. The re-
flectances contain 224 spectral bands covering wavelengths
from 0.38 to 2.5¹m with a spectral resolution of 10nm. The
abundance fractions are generated according to a Dirichlet
distribution which enforces positivity and full additivity con-
straints (see [23] for details).

Figure 3 illustrates the processing time of sequential and
parallel implementations of VCA as a function of the number
of pixels of the image. As expected the parallel version is
more fast achieving a speedup higher than 15.
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Fig. 3. Processing time of parallel and sequential versions of
VCA as a function of the number of pixels.

Table 1. SMAE results for VCA as a function of SNR and of
p. (N = 104)

SNR SMAE p SMAE
p = 5 SNR= 30 dB

20 0.97 3 0.17
30 0.63 5 0.22
50 0.01 10 0.40
∞ 0.00 15 0.63

To evaluate the accuracy of both versions of VCA, several
scenarios where created, where the number of endmembers
is set to 3, 5, 10, and 15, and the SNR defined by SNR ≡
10 log10

(
E
[
(Ms)TMs

]
/E

[
nTn

])
, is set to 20, 30, and 50

dB. Table 1 show the performance measure, SMAE, results
as a function of the number of endmembers (right columns)
and as a function of the SNR (left columns). As expected
the performance of both methods is the same since the or-
thogonal directions are chosen in the same manner, giving
the same projections. Note that the accuracy improves with
higher SNR and with smaller number of endmembers.

4.2. Evaluation with Real Data

In this section, the proposed method is applied to real hyper-
spectral data collected by the AVIRIS sensor. A subset of
the Cuprite dataset2 containing 350 × 350 pixels with 187
spectral bands (noisy and water absorption bands were re-
moved) is considered. This site has been extensively used for
remote sensing experiments over the past years and its geol-
ogy was previously mapped in detail [24]. Fig. 4 shows band
30 (wavelength ¸ = 647.7nm) of the subimage of AVIRIS
Cuprite Nevada dataset. Table 2 shows the evaluation met-
ric SMAE, for five minerals of interest where the signatures
estimated by the different methods are compared with the
nearest laboratory spectra. This results show how accurate
is VCA method. It is noteworthy to mention that the sequen-
tial method spent 6.03 seconds whereas the parallel method
spent 0.15 seconds, i.e., a speedup higher than 40.

2Available online at http://aviris.jpl.nasa.gov/html/aviris.freedata.html



Fig. 4. Band 30 (wavelength ¸ = 647.7nm) of the subimage
of AVIRIS Cuprite Nevada dataset.

Table 2. SMAE results of VCA for the Cuprite dataset.
Mineral name VCA (SMAE)
Alunite 5.15
Buddingtonite 5.71
Calcite 7.36
Kaolinite 2.24
Muscovite 4.90

5. CONCLUSIONS

In this paper a parallel implementation of VCA developed
for graphics processing units is proposed. The significant
speedup reported in experiments will bridge the gap towards
real-time spectral unmixing of hyperspectral datasets, which
is a highly desirable goal in the remote sensing community.
Further research will also include experiments with multi-
GPU systems and clusters of GPUs.
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