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Abstract—Hyperspectral imaging is a new technique in remote
sensing in which an imaging spectrometer collects hundred of
images (at different wavelength channels) for the same area on the
surface of Earth. Over the last years, hyperspectral image data
sets have been collected from a great amount of locations over
the world using a variety of instruments for Earth observation.
Only a small amount of them are available for public use and
they are spread among different storage locations and exhibit
significant heterogeneity regarding the storage format. Therefore,
the development of a standardized hyperspectral data repository
is a highly desired goal in the remote sensing community. In this
paper, we describe the development of a shared digital repository
for remotely sensed hyperspectral data, which allows uploading
new hyperspectral data sets along with meta-data, ground-truth
and analysis results (spectral information). Such repository is
presented as a web service for providing the management of
images through a web interface, and it is available online from
http://www.hypercomp.es/repository. Most importantly, the devel-
oped system includes a spectral unmixing-based content based
image retrieval (CBIR) functionality which allows searching for
images from the database using spectrally pure components or
endmembers in the scene. A full spectral unmixing chain is
implemented for spectral information extraction, which allows
filtering images using the similarity of the spectral signature and
abundance of a given ground-truth. In order to accelerate the
process of obtaining the spectral information for new entries in
the system, we resort to an efficient implementations of spectral
unmixing algorithms of graphics processing units (GPUs).

Keywords—Hyperspectral imaging, repository, content-based
image retrieval (CBIR), spectral unmixing, high performance
computing, GPUs, distributed resources.

I. INTRODUCTION

Content-based image retrieval (CBIR) intends to retrieve,
from real data stored in a database, information that is relevant
to a query [1]. This is particularly important in large data
repositories, such as those available in remotely sensed hyper-
spectral imaging [2]. For instance, the NASA Jet Propulsion
Laboratory’s Airborne Visible Infra-Red Imaging Spectrometer
(AVIRIS) [3] is able to record the visible and near infrared
spectrum of the reflected light of an area several kilometers
long (depending on the duration of the flight) using hundreds of
spectral bands. The resulting ‘image cube’ is a stack of images
(see Fig. 1), in which each pixel (vector) has an associated
spectral signature or ‘fingerprint’ that uniquely characterizes
the underlying objects. The resulting data often comprises
several Gigabytes per flight.

Fig. 1. The concept of hyperspectral imaging.

One of the main problems involved in hyperspectral data
exploitation is spectral unmixing [4], as many of the pixels
collected by imaging spectrometers such as AVIRIS are highly
mixed in nature due to spatial resolution and other phenom-
ena. For instance, it is very likely that the pixel labeled as
‘vegetation’ in Fig. 1 is actually composed of several types of
vegetation canopies interacting at sub-pixel levels. The same
comment applies to the ‘soil’ pixel, which may comprise
different types of geological features. As a result, spectral
unmixing is a very important task for hyperspectral data
exploitation since the spectral signatures collected in natural
environments are invariably a mixture of the pure signatures
of the various materials found within the spatial extent of the
ground instantaneous field view of the imaging instrument.
Among several techniques designed to deal with the inherent
complexity of hyperspectral images in supervised fashion [4],
[5], linear spectral unmixing follows an unsupervised approach
which aims at inferring pure spectral signatures, called end-
members, and their material fractions at each pixel of the scene.

The amount of hyperspectral image data sets have increased
in the last years and a huge number of data sets have been
collected of locations over the world, using a variety of instru-
ments for Earth observation. Furthermore, the data sets which
are available for public use are spread among different storage
locations and present significant heterogeneity regarding the
storage format, associated meta-data (if any), or ground-truth
availability. At the moment there is no common repository of
hyperspectral data intended to distribute and share hyperspec-
tral data sets in the community, so that researchers who want
to address their studies related to hyperspectral imaging find
several problems for starting.
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In this paper, we describe a new digital repository for
remotely sensed hyperspectral data with CBIR system func-
tionality which takes advantage of seminal concepts from
linear spectral unmixing concepts [6] to perform effective
data retrieval. We use the information provided by spectral
unmixing (i.e. the spectral endmembers) as effective meta-
data to develop a new CBIR system that can assist in the task
of efficiently searching hyperspectral image instances in large
data repositories.

The current system supports different spectral unmixing
algorithms for estimation of number of endmembers such
as Hyperspectral Signal Subspace Identification by Minimum
Error (HySime) [7] or Virtual dimensionality (VD) [8], for
endmember extraction such as Orthogonal subspace projection
with Gram-Schmidt orthogonalization (OPS-GS) [9] or N-
FINDR [10], and for abundances estimation such as Uncon-
strained least-squares (UCLS) algorithm for abundance esti-
mation. Although our experiment includes only the algorithms
more efficient in computational terms such as VD for esti-
mation of number of endmembers, N-FINDR for endmember
extraction and UCLS for abundances estimation.

In order to deal with the computational cost of extracting
the information needed to catalog new hyperspectral images
in our system, we resort to graphics processing units (GPUs)
which have been successfully used to accelerate hyperspectral-
related computations. There are a few works in the literature
[11]–[15] dealing explicitly with the spectral information to
guide the search and none of them are performed with GPUs.
Furthermore, in order to relieve the load of the computational
server, our system provides distributed computing management
using tow clusters (with CPU and GPU architectures).

The proposed system is experimentally validated using
both synthetic scenes constructed using fractals and a real
hyperspectral data sets collected by NASA’s Airborne Visible
Infrared Imaging Spectrometer (AVIRIS) over the Cuprite
Mining District in Nevada and over the World Trade Center
(WTC) area in New York City on September 16. Our results
indicate that the proposed system can efficiently retrieve hyper-
spectral images from a complex image database. The proposed
system is expected to increase the value of the data acquired
by airborne/satellite hyperspectral imaging instruments, and to
improve the end-user services available in hyperspectral image
databases.

The remainder of the paper is structured as follows. Section
2 describes the considered spectral unmixing methodology
used to implement the core of our CBIR system. Section
3 describes the proposed CBIR system design. Section 4
describes the searching methodology. Section 5 assesses the
performance of the system by comparing its retrieval accuracy
using synthetic and real hyperspectral images with different
noise levels and comparing the execution time of both serial
and GPU algorithms. Section 6 concludes with some remarks
and future research lines.

II. SPECTRAL UNMIXING METHODOLOGY

Let y be a pixel vector given by a collection of values
at different wavelengths. In the context of linear spectral

unmixing, such vector can be modeled as:

y ≈ Mα+ n =

p∑
i=1

eiαi + n, (1)

where M = {ei}pi=1 is a matrix containing p endmember
signatures, α = [α1, α2, · · · , αp] is a p-dimensional vector
containing the abundance fractions for each of the p endmem-
bers in M, and n is a noise term. The spectral unmixing chain
considered in this work comprises three steps: 1) estimation of
the number of pure spectral signatures (endmembers), p, in the
hyperspectral scene; 2) identifying a collection of M = {ei}pi=1
endmembers, and 3) estimating the abundances, in which the
fractional coverage of each endmember is estimated for each
pixel. The estimation error can be computed by reconstructing
the original image (using the extracted endmembers and the
derived abundances) and comparing the reconstructed image
with the original one.

In recent years, several techniques have been proposed
to resolve the mixed pixel problem ( [7]–[10] and others),
in addition most of this techniques have been optimized in
GPU implementations ( [16]–[19]). In order to provide a
CBIR system with high availability and quality of service,
the system includes GPU implementation of the algorithms
described above.

A. Unmixing Chain Algorithms

1) Virtual Dimensionality (VD) algorithm for estimation
of the number of endmembers: Let us denote by Y ≡
[y1, y2, · · · , yN ] a hyperspectral image with N pixel vectors,
each with L spectral bands. The VD first calculates the eigen-
values of the covariance matrix KL×L = 1/N(Y−Y)T (Y−Y)

and the correlation matrix RL×L = KL×L + YYT
, respec-

tively referred to as covariance-eigenvalues and correlation-
eigenvalues, for each of the spectral bands in the original
hyperspectral image Y. If a distinct spectral signature makes a
contribution to the eigenvalue-represented signal energy in one
spectral band, then its associated correlation eigenvalue will
be greater than its corresponding covariance-eigenvalue in this
particular band. Otherwise, the correlation eigenvalue would
be very close to the covariance-eigenvalue, in which case only
noise would be present in this particular band. By applying
this concept, a Neyman-Pearson detector [8] is introduced to
formulate the issue of whether a distinct signature is present or
not in each of the spectral bands of Y as a binary hypothesis
testing problem, where a so-called Neyman-Pearson detector
is generated to serve as a decision maker based on a prescribed
PF (i.e., false alarm probability). In light of this interpretation,
the issue of determining an appropriate estimation p̂ for the
number of endmembers is further simplified and reduced to
a specific value of PF that is preset by the Neyman-Pearson
detector.

2) N-FINDR algorithm for endmembers extraction: The N-
FINDR algorithm [10] is one of the most widely used an
successfully applied methods for automatically determining
endmembers in hyperspectral image data without using a priori
information. This algorithm looks for the set of pixels with
the largest possible volume by inflating a simplex inside the
data. The procedure begins with a random initial selection of
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pixels (see Fig. 2). Every pixel in the image must be evaluated
to refine the estimate of endmembers, looking for the set of
pixels that maximizes the volume of the simplex defined by
the selected endmembers. The mathematical definition of the
volume of a simplex formed by a set of endmember candidates
is proportional to the determinant of the set augmented by
a row of ones. The determinant is only defined in the case
where the number of features is p − 1 ,p being the number of
desired endmembers [20]. Since in hyperspectral data typically
n � p, a transformation that reduces the dimensionality of
the input data is required. In this work, we use the PCA
[21] for this propose. The corresponding volume is calculated
for every pixel in each endmember position by replacing
that endmember and finding the resulting volume. If the
replacement results in an increase of volume, the pixel replaces
the endmember. This procedure is repeated in iterative fashion
until there are no more endmember replacements. The method
can be summarized by a step-by-step algorithmic description
which is given bellow:

• Feature reduction. Apply the PCA [21] to reduce
the dimensionality of the data from n to d = p − 1 ,
where p is the number of endmembers to be extracted.
Basically PCA is a statistical method for dimensional-
ity reduction [18] which calculates the projection for
representing the data, it is computed by performing
the eigen-decomponsition of the covariance matrix of
the image.

• Initialization. Let {e(0)1 , e
(0)
2 , . . . , e

(0)
p } be a set of

endmembers randomly extracted from the input data.

• Volume calculation. At iteration k ≥ 0 , the volume
defined by the current set of endmembers is calculated
in volume calculation as follows.

V (e(k)p , e(k)p , . . . , e(k)p ) =

∣∣∣∣det
[

1 1 . . . 1

e
(k)
1 e

(k)
2 . . . e

(k)
p

]∣∣∣∣
(p− 1)!

(2)

• Replacement. For each pixel vector xj int he in-
put hyperspectral data, we recalculate the volume
by testing the pixel in all p endmember posi-

tions, i.e., first calculate V (xj , e
(k),...,e(k)

p

2 ), then

calculate V (e
(k)
1 , xj , . . . , e

(k)
p ), and so on until

V (e
(k)
1 , e

(k)
2 , . . . , xj). If none of the p recalculated

volumes is greater than V (e
(k)
1 , e

(k)
2 , . . . , e

(k)
p ), then

no endmember is replaced. Otherwise, the combina-
tion with maximum volume is retained. Let us assume
that the endmember absent in the combination result-
ing in the maximum volume is denoted by e

(k+1)
i . In

this case, a new set of endmembers is produced by

letting e
(k+1)
i = xj and e

(k+1)
j = e

(k)
j for i �= j. The

replacement step is repeated for all the pixel vector in
the input data until all the pixels have been exhausted.

As a final comment, it has been observed that different
random initializations of N-FINDR may produce different final
solutions. Thus, our N-FINDR algorithm was implemented in
iterative fashion, so that each sequential run was initialized

a) N-FINDR initialed randomly (p=4) b) Final volume estimation by N-FINDR

Fig. 2. Graphical interpretation of the N-FINDR algorithm in a three-
dimensional space.

with the previous algorithm solution, until the algorithm con-
verges to a simplex volume that cannot be further maximized.
Our experiments show that, in practice, this approach allows
the algorithm to converge in a few iterations only.

3) Unconstrained least-squares (UCLS) algorithm for
abundance estimation: Once the set of endmembers M =
{ei}pi=1 has been identified, their correspondent abundance
fractions α = [α1, α2, · · · , αp] in a specific, L-dimensional
pixel vector y of the scene can be simply estimated (in least
squares sense) by the following unconstrained expression:

α = (MT M)−1MT y. (3)

Two additional constrains can be imposed into the model
described in (3), these are the abundance non-negativity con-
straint (ANC), i.e., αi ≥ 0, and the abundance sum-to-one
constraint (ASC), i.e.,

∑p
i=1 αi = 1. However, in this work

we focus on the unconstrained estimation only as it is much
faster and it has been shown in practice to provide satisfactory
results if the model endmembers are properly selected.

B. GPU implementation

In this subsection, we describe the GPU implementation of
VD, N-FINDR and UCLS which are utilized in this work. They
are carried out using the compute unified device architecture
(CUDA) developed by NVidiaTM . As Fig. 3 shows, the archi-
tecture of a GPU can be seen as a set of multiprocessors (MPs).
Each multiprocessor is characterized by a single instruction
multiple data (SIMD) architecture, i.e., in each clock cycle,
each processor executes the same instruction but operating
on multiple data streams. Each processor access to a local
shared memory and also to local cache memories in the multi-
processor, while the multiprocessors have access to the global
GPU (device) memory. GPUs can be abstracted in terms of a
stream model, under which all data sets are represented as
streams (i.e. ordered data sets). Algorithms are constructed
by chaining so-called kernels which operate on entire streams
and which are executed by a multiprocessor, taking one or
more streams as inputs and producing one or more streams
as outputs. Thereby, data-level parallelism is exposed to hard-
ware, and kernels can be concurrently applied without any
sort synchronization. The kernels can perform a kind of batch
processing arranged in the form of a grid of blocks, where
each block is composed by a group of threads that share data
efficiently through the shared local memory and synchronize
their execution for coordinating accesses to memory. With
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Fig. 3. Schematic overview of a GPU architecture, which can be seen as a
set of multiprocessors (MPs).

the above ideas in mind, our GPU implementation of the
hyperspectral unmixing chain comprises two stages: a) GPU
implementation of VD; b) GPU implementation of N-FINDR;
c) GPU implementation of UCLS.

1) GPU Implementation of VD: Once we load the full
hyperspectral image Y pixel by pixel from disk to the main
memory of the GPU, the first step is to calculate the covariance
matrix Kl×l. For this purpose, we need to calculate the mean
value Y of each band of the image and subtract this mean
value to all the pixels in the same band. To perform this
calculation in the GPU, we use a kernel called mean pixel
configured with as many blocks as the number of bands
L in the hyperspectral image. In each block, all available
threads perform a reduction process using shared memory and
coalesced memory accesses to add the values of all the pixels
in the same band. Once this process is completed, another
thread divides the computed value by the number of pixels
in the original image, N, and the mean value is obtained.
The resulting mean values of each band Y are stored in a
structure as they will be needed for the calculation of the
covariance matrix Kl×l in the GPU by means of a matrix

multiplication operation (Y −Y)
T
(Y −Y). This operation

is performed using the cuBLAS library. Specifically, we use
the cublasSgemm function of cuBLAS. The next step is
to calculate the correlation matrix Kl×l in the GPU. To
achieve this, we use a kernel correlation which launches
as many threads as elements in Rl×l, where each thread
computes an element of the resulting matrix as follows: Rij =
Kij + YiYj . Finally, we have observed that the remaining
steps in the VD calculation (i.e., extraction of correlation-
eigenvalues, covariance-eigenvalues and Neyman-Pearson test
for estimation of the number of endmembers) can be computed
very fast in the CPU.

2) GPU Implementation of N-FINDR: Prior to the im-
plementation of the GPU, a set of optimizations was per-
formed. The most time-consuming computation in the N-
FINDR algorithm is the calculation of the determinants. The
determinant of a non-singular matrix V is usually obtained
from the factorization PV = LU (where P is a permutation
matrix, L is a unit lower triangular matrix, and U is an upper
triangular matrix) as the product of the diagonal elements of U.

This decomposition is known as Gaussian elimination or LU
factorization (with partial row pivoting). The repeated volume
calculations of the N-FINDR algorithm can be reduced by
exploiting some basic properties of the LU factorization and
matrix determinants. Consider, i.e., the p × p and p × p − 1
matrices:

V
(1)
M =

[
1 . . . 1 1

e
(0)
2 . . . e

(0)
p xj

]
, and

V̄
(1)
M =

[
1 . . . 1

e
(0)
2 . . . e

(0)
p

] (4)

where M is the reduced version of the hyperspectral image with
p components, obtained resulting from PCA transform which
is also performed on GPU [18]. Assume that we have com-

puted the LU factorization (with partial pivoting) PMV̄
(1)
M =

LMUM. Then, the LU factorization (with partial pivoting)

of V
(1)
M is simply given by PMV

(1)
M =

[
UM(L−1

M PT
Mxj)

]
.

Therefore, the LU factorizations required in the volume calcu-
lations of the N-FINDR algorithm can be all computed by

simple forming the p × m matrix M̂ =

[
1 1 . . . 1

MT

]
,

where M is the reduced hyperspectral image. Then, we need to
compute L−1

M PT
MM̂. This is one of the parts that we accom-

plished in the GPU by means of a Volume-Calculation
kernel which obtains the volume of each pixel for one iteration.
The m volumes required in the first iteration of teh N-FINDR
algorithm are obtained from the product of the determinant
of UM times each one of the entries in the last row of
LM

−1PM
TM̂. By means of a ReductionVol kernel, we

get the value of the maximum volume and coordinates of the
pixel that produces such volume. Given that m � p, this
implies a significant reduction of the computational complexity
of the original algorithm.

III. PROPOSED CBIR SYSTEM

The proposed CBIR system for retrieval of hyperspectral
imagery is based on the spectral unmixing methodology de-
scribed in the previous section. Images are cataloged using
the proposed unmixing chain and in order to accelerate the
content-based searching process the extracted endmembers
and their abundances are stored in the system database as
binary content, so that, image retrieval is performed comparing
endmembers and ground-truths restricted by a minimum abun-
dance. In this section, we describe the system design including
aspects such as description of the system architecture and the
database design.

A. System Architecture

As shown by the architecture model described in Fig. 4,
the proposed system can be described in different layers, which
are defined and separated by roles.

1) Client layer: This layer defines the interactions between
the user (through an Internet browser) and our system, and it
is responsible for providing user remote access to the system.

2) Server layer: The system is considered a web service
therefore the services provided by the system are managed
and executed on the server layer, which is composed of
several elements with different roles. As Fig. 4 shows, the
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Fig. 4. Architecture

web server attends web interface requests and manages the
system resources such as meta-data and file data management,
in addition of handling algorithm executions. It could be
considered the engine of the system since it manages and
connects the components of our system. In the case of meta-
data storage, database server stores image meta-data following
the database schema describing in next subsection. File storage
server is included for providing remote file access from any
system layer, it is charged for uploading and downloading
file data. Remote file storage allows to include distributed
computing resources for processing high cost algorithms.

3) Processing layer: Although algorithms with low com-
puting needs, such as query algorithms, are executed on the
web server, the processing layer has been designed for execut-
ing algorithms with high computational cost, this layer relieves
the web server load and provides high system availability.
So that, the processing layer includes distributed computing
resources (clusters), and the web server is charged for re-
questing algorithm executions and monitoring them using SSH
communication. All the spectral unmixing chain algorithms are
implemented in distributed resources. The current system is
configured in order to support algorithm executing over two
clusters with different architectures (CPU and GPU).

B. Database schema

The system consists of storing hyperspectral images and
executing algorithms on these images, thus the database has
been designed in order to allow storing relevant information
for the hyperspectral data available through the community, in
addition of information about the unmixing chain algorithms
which are implemented for this work. So that, Image, Type,
Source and Publication tables are charged for storing image
features which are relevant for its analysis; Algorithms, Type
Algorithms, and Result Algorithms tables contain information,
respectively, about the supported algorithms, their place in the
unmixing chain and the results of their different executions;
and Resource table keeps the credential information of the
supported clusters.

IV. QUERIES

The CBIR system allows an end-user to perform queries
that compare the spectral endmembers associated to a given
hyperspectral image with input ground truth signatures. Image
endmembers are obtained through cataloguing each image with
the desired extraction algorithm (OSP [9] or N-FINDR [10]),
the number of endmembers to be extracted from the image is
calculated using a specific estimation algorithm (HySime [7]
or VD [8]), and the abundance of those extracted endmembers
in the image is performed using the UCLS algorithm. The
system allows to catalog images several times and every
results are stored in the file storage server and their locations
are referenced in the database, but in order to provide a
fast content-based search system, the result with the most
representative endmembers, user selected, is kept in the data
base as binary content.

The Spectral Angle Distance (SAD) [22] is used to contrast
the spectral signatures and it is a widely used metric in
hyperspectral analysis. Our choice of SAD is mainly based on
the fact that this distance is invariant to multiplicative scaling
that may arise due to different illumination conditions and
sensor observation angle. This algorithm calculates the spectral
angle distance between two spectral signature vectors. So that,
the angle provides a measure to compare two spectral signature
vectors, useful for content-base search.

In order to evaluate the endmember abundance as percent
of a given endmember in the image, we use a experimental
approach which works as follows: at first the procedure we
get the total sum adding all pixel values of all the abundance
maps, as second step we get the partial sums adding separately
all pixel values of each abundance maps, so that, we calculate
the abundance percent with dividing between partial sums and
the total sum.

V. EXPERIMENTAL RESULTS

The performance of the proposed unmixing-based CBIR
system has been evaluated following two approaches, GPUs
performance on catalog and matching accuracy. This section is
organized as follows: First, we describe the hyperspectral data
sets used in the experiments, then, we illustrate image retrieval
accuracy, and finally, we analyze of GPU performance.

A. Hyperspectral data

1) Synthetic data: Since the unmixing algorithm accuracy
is performance with ground truth, in order to validate the
system a collection of synthetic hyperspectral images is in-
cluded in the study. This collection are 35 images which are
composed of known pure spectral signatures with different
noise levels, spectral signatures source is the mineral spectral
library from USGS Spectral Lab, version convolved to various
remote sensing spectrometers such as the NASA/JPL Airborne
Visual and Infra-Red Imaging Spectrometer (AVIRIS). The
image collection consists in 5 types with different spectral
signatures and for each type there are 7 noise levels (SNR-10,
SNR-30, SNR-50, SNR-70, SNR-90, SNR-110 and no-noise),
35 images in total. In all case, the spectral resolution is of
221 narrow spectral bands between 0.4 and 2.5 micrometers,
with 100×100 pixels. Fig. 5 shows those 5 types of synthetic
images.
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Fig. 5. Five types of synthetic hyperspectral images.

2) Real data: At the moment the repository has stored
42 images, which are 2 GigaBytes, and 7 of them are real
image data sets but few of them have ground truth, thus
two of the most well-known images have been included in
our experiment. The first data set used in our experiments
was collected by the AVIRIS sensor over the Cuprite Mining
District in Nevada has 188 spectral bands in the range from
400 to 2500 nm and a total size of around 50 MB, the portion
used in experiments corresponds to a 350× 350-pixels subset.
The second data set was collected by the AVIRIS sensor over
the World Trade Center (WTC) area in New York City on
September 16, which has 224 spectral bands in the range from
400 to 2500 nm and a total size of around 140 MB, the portion
used in experiments corresponds to a 614× 512 pixels subset.

B. Matching accuracy

Our CBIR system retrieves the images based on the match-
ing results obtained from the ground truth and endmembers of
those images. So that, in order to illustrate the performance
of our CBIR, we specifically address a case study of accuracy
of the matching results with images of different noise levels,
using a collection synthetic and the Cuprite scene. We consider
two metrics spectral angle using the spectral angle distance
(SAD) for both real and synthetic images, in addition we use
RMSE for evaluating the abundance maps of the synthetic im-
ages and the reconstructed image (combination of endmembers
and abundances) of the real scene.

The metrics scores of the synthetic collection prove the
matching accuracy of the system, and the Cuprite scene scores
are relevant to illustrate the matching accuracy of the system
on real images. Synthetic images are made up known pure
spectral signatures which are present in the Cuprite scene,
in order to simply the analysis, our experiment results are
based on the first synthetic type of images, Fractal 1, which is
quite representative and contains most of the Cuprite spectral
signatures. Fig. 5 shows those 5 types of synthetic images, we
can see at first position the no-noise Fractal 1 image, which
is composed of 9 spectral signatures: KaolineiteKGA-l(wxyl),
Dumortierite HS190.3B, Nontronite GDS41, Alunite GDS83
Na, Sphene HS189.3B, Pyrophyllite PYS1A fine, Halloysite
NMNH10623, Muscovite GDS108 and Kaolinite CM9.

The two accuracy metrics used in this study are spectral
signature distance (SAD) and the root mean square error
(RMSE) which is used to evaluate the quality of spectral
unmixing results. Table I shows the spectral similarity scores
and the error obtained from the abundance maps. In the case of
AVIRIS Cuprite the table includes just the spectral similarity
scores because we calculate the value of error map obtained
after reconstructing the scene with the extracted endmembers
and the abundance maps.

In the case of synthetic images the table results shows
with the increase of noise, the spectral angles increase, further
the smaller angles have angles close to zero. SAD [22]
indicates values range between 0 and 90 grades, where 0 is the
desired value, therefore the system accuracy is demonstrated.
In addition, the error (RMSE) is bigger in images with highest
noise level, although, we got some problems with the no-
noise image results, due to the ground-truth spectral signatures
are very similar and the N-FINDR method is confused with
some endmembers. On the other hand, the real image (Cuprite)
results have corresponding angle values between SRN-10 and
SNR-30 of synthetic images and the error of the reconstructed
image was 0.192, meaning real image results are quite good
because the real image contains noise.

C. Analysis of GPUs performance

The proposed unmixing chain has been tested on two
different platforms (GPU and core-processor):

• The GPU platform is the NVidiaTM TESLA C20501,
which features 448 streaming processor cores, with
single precision floating point performance of 1.03
Tflops, double precision floating point performance of
515 Gflops, total memory dedicated 3 GB and memory
bandwidth of 144 GB/sec. This GPU is connected to
multi-core Quad Core Intel Xeon at 2.26 GHz with 4
physical cores, of which only one is used, and 24 GB
of DDR3 SRAM memory. It is mounted on a Bullx
R4222.

• The second platform is a multi-core system which is
used also in our experiment. It is made up of a Intel
Xeon CPU X7550 at 2.00Ghz with 8 cores, of which
only one is used, and 1 TeraByte of DDR3 RAM. It
is mounted on a Bullx s6030 3.

Before describing our results, it is important to emphasize
that our GPU versions provides exactly the same results
as the serial versions of the implemented, using the gcc
(gnu compiler default) with optimization flag -O3. The serial
algorithms were executed in one of the available cores of the
multi-core system, and the GPU algorithms were executed in
the used GPU architecture. For each experiment, ten runs were
performed and the mean values were reported.

Usually, the delay for initialization and ignition of CUDA
for the GPU device is not mentioned in the literature because
CUDA is considered already ignition. But our experiment

1http://www.nvidia.co.uk/object/product tesla C2050 C2070 uk.html
2http://www.bull.com/catalogue/details.asp?tmp=bxs-rack-fr&opt=ns-

r422e02&dt=ft&cat=bullx
3http://www.bull.com/catalogue/details.asp?tmp=bxs-node&opt=bullx-

s6030e00&cat=bullx&dt=ft
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TABLE I. MATCHING RESULTS: SPECTRAL ANGLE (IN DEGREES) AND RECONSTRUCTION ERROR (RMSE) OBTAINED BETWEEN THE GIVEN 9 USGS
MINERAL SPECTRA AND THE EXTRACTED ENDMEMBERS FROM 5 SYNTHETIC IMAGES OF THE FIRST TYPE AND AVIRIS CUPRITE SCENE. ALGORITHMS

USED WERE VD, N-FINDR AND UCLS ON GPU.

Spectral signatures Noise levels of synthetic image Real image

10 30 50 90 No-Noise Cuprite

Kaolinite CM9
Angle 12.345 3.421 2.844 1.365 1.765 5.251

RMSE 0.195 0.214 0.206 0.222 1.409 -

Muscovite GDS108 Angle 18.847 1.682 0.236 0.169 0.169 3.618

RMSE 0.207 0.047 0.117 0.004 0.003 -

Halloysite NMNH106236 Angle 24.206 2.556 0.365 0.276 0.277 16.677

RMSE 0.237 0.065 0.013 0.053 0.002 -

Pyrophyllite PYS1A fine g Angle 15.567 1.426 0.318 0.048 0.048 8.194

RMSE 0.231 0.051 0.133 0.001 0.121 -

Sphene HS189.3B Angle 26.077 3.537 0.766 0.482 0.348 4.480

RMSE 0.279 0.151 0.042 0.004 0.319 -

Alunite GDS83 Na Angle 14.746 1.529 0.157 0.066 0.065 8.299

RMSE 0.174 0.126 0.029 0.119 0.449 -

Nontronite GDS41 Angle 38.714 1.605 0.223 0.135 0.135 13.710

RMSE 0.168 0.045 0.006 0.053 0.401 -

Dumortierite HS190.3B Angle 15.734 1.818 0.518 0.508 0.507 3.273

RMSE 0.175 0.966 0.021 0.009 0.127 -

KaolineiteKGa-l (wxyl) Angle 17.435 1.631 0.182 0.050 0.050 10.410

RMSE 0.187 0.137 0.124 0.009 0.010 -

TABLE II. PROCESSING TIMES (IN SECONDS) AND SPEEDUPS ACHIEVED FOR GPU IMPLEMENTATION OF VD, N-FINDR AND UCLS ALGORITHMS,
TESTED WITH CUPRITE AND WTC SCENES.

VD N-FINDR UCLS
Initialization VD Total Initialization PCA N-FINDR Total Initialization UCLS Total

AVIRIS CUPRITE

CPU time 0.367 16.110 16.477 0.108 9.073 2.209 11.391 0.173 1.500 1.167

GPU time 3.582 0.127 3.709 3.545 0.074 0.252 3.871 3.574 0.057 3.631

Speedup - 126.850 4.442 - 122.608 8.765 2.942 - 26.316 0.321

AVIRIS World Trade Center

CPU time 0.802 56.274 57.076 0.325 35.301 20.158 55.784 0.517 16.457 16.974

GPU time 3.743 0.282 4.025 3.635 0.220 2.227 6.082 3.746 0.209 3.955

Speedup - 199.553 14.180 - 160.459 9.665 9.172 - 78.741 4.292

works on a GPUs cluster and it is not likely that consecutive
executions are performed in the same GPU device, so that,
most of the times CUDA has to be initialized in each execution.
We include the initialization times (GPU ignition and local
data memory transfer times) in our experiment (see Table
II) and we have observed these times are bigger in GPUs
Cluster than in a simple GPU device [18], [19], likely because
distribute resource communications delay the process. In our
experiment the timing results in general were quite variable,
the initialization results were the most unstable times which
were in a range from 0.01 seconds to 9 seconds.

Table II summarizes the timing results and speedups mea-
sured after processing two real hyperspectral data sets by the C
implementation and by the GPU implementation. The results
are broken down in initialization and algorithm execution time,
the speedups are calculated over the processing time and the
total time (including initialization time). As shown by the
table, with the increasing of the size of the image the speedup
significantly increases, due to the time spent on CUDA ignition
which ranges between 3 and 4 seconds. The best speedups are
achieved for VD algorithm, it achieves 14.180 over the WTC
scene and 4.442 over the CUPRITE scene, on the other hand,
UCLS shows the worst results. All algorithms performance
quite good results on GPUs and significant speedups with

every scenes, even most of the speedups are high if we include
the initialization time, excluding the UCLS algorithm, which
produces good results only in big hyperspectral data sets as
WTC. So that, GPUs algorithms provides high availability and
quality of service to the CBIR system using huge images such
as AVIRIS hyperspectral data sets.

VI. CONCLUSION AND FUTURE LINES

In this paper, we have developed an innovative hyperspec-
tral image repository that allows uploading and sharing images,
in addition a CBIR system for hyperspectral image retrieval
based on spectral unmixing. The current implementation con-
sists of a web application communicating with a server, in
which the users can manage data through a web interface in
visual way, while server manages the repository data base and
algorithm executions, furthermore quality of service, time and
availability are provided by GPUs algorithms. So that, this
work has serial and GPU algorithm performances for single
CPU and single GPU. In order to relieve the server load,
distributed computing management is offered on two clusters
(with CPU and GPU architectures).

The system has been implemented using well-known algo-
rithms in the spectral unmixing community, such as VD [8]
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for estimation the number of endmembers in a given scene, N-
FINDR [10] for endmember extraction or UCLS for abundance
estimation of which have been included both serial and GPUs
implementations [18]. Our experimental results, conducted
using both synthetic scenes constructed using fractals and
a real hyperspectral data set collected by NASA’s Airborne
Visible Infrared Imaging Spectrometer (AVIRIS), indicate that
the proposed CBIR system can accurately extract hyperspectral
image instances from a complex image database with sub-
pixel precision and quickly enough for practical use. This is
accomplished by resorting to available parallel implementa-
tions of the considered spectral unmixing chain in different
types of high performance computing architectures. As result,
we believe that the proposed system can be a standardized
hyperspectral data repository data intended to distribute and
share hyperspectral data sets in the community.

As future extension of the system, we will implement
Multi-GPUs algorithms for GPUs clusters. Furthermore, we
plan develop adaptable algorithms to any GPUs platform that
may provide better performance on execution of cataloging
algorithms.
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