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ABSTRACT

In this paper, we propose a deep auto-encoder network
for the unmixing for hyperspectral data with outliers and low
signal to noise ratio. The proposed deep auto-encoder net-
work composes of two parts. The first part of the network
adopts stacked non-negative sparse auto-encoder to learn the
spectral signatures such that to generate a good initialization
for the network. In the second part of the network, a varia-
tional auto-encoder is employed to perform unmixing, aiming
at the endmember signatures and abundance fractions. The
effectiveness of the proposed method is verified by using a
synthetic data set. In our comparison with other state-of-the-
art unmixing methods, the proposed approach demonstrates
highly competitive performance.

Index Terms— Hyperspectral unmixing, Non-negative s-
parse auto-encoder, Variational auto-encoder, Deep learning

1. INTRODUCTION

Due to the relatively low-spatial resolution of hyper-
spectral images, many pixels would be mixed by several
materials, which brings difficulty for the characterization of
hyperspectral data and might lead to dramatic inaccuracy in
the understanding and quantification the considered scenes.
In order to deal with mixed pixels, many blind unmixing
algorithms have been developed using different criteria, such
as N-FINDR [1], vertex component analysis (VCA) [2],
minimum volume constrained nonnegative matrix factoriza-
tion (MVC-NMF)[3], minimum volume simplex analysis
(MVSA)[4], robust collaborative nonnegative matrix factor-
ization (R-CoNMF)[5], Bayesian approaches [6], piece-wise
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convex multiple-model (PCOMMEND)[7] and many others
[8, 9]. Although these methods exhibit outstanding perfor-
mance in unmixing, they are with limitations when the data
is with outliers and high corruption of noise.

Artificial neural networks (ANNs) have been adopted
for hyperspectral remote sensing processing [10]. Recently,
as one of the very important technologies of ANNs, auto-
encoder has attracted great attention in the hyperspectral
community [11, 12]. Non-negative sparse auto-encoder
(NNSAE) and denoising auto-encoder (DAE), as two spe-
cial cases of auto-encoders, were employed to hyperspectral
unmixing [11, 12, 13], with advanced denoising and intrin-
sic self-adaptation capabilities. However, as its strength is
in the aspect of anti-noise, in case of outliers, it results in
strong limitations. The presence of outliers can bring strong
interference to its unmixing results, as outliers likely lead to
initialization failure, which is essential for ANNs.

In this work, we develop a new approach based on the
deep auto-encoder network (DAEN) aiming at tackling the
outliers and low noise-signal-ration in hyperspectral unmix-
ing. The proposed method establishes a deep neural network
based on auto-encoders, includes two main parts. First, we
train a spectral model via stacked NNSAE, aiming at learning
the spectral signatures such that to obtain a good initializa-
tion for the network. On the other hand, we adopt variational
auto-encoder (VAE)[14] to perform blind unmixing for hy-
perspectral data.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the proposed DAEN method. In section 3,
the proposed approach is evaluated by using synthetic dataset-
s, which allows us to conduct a quantitative comparison with
other methods. Finally, section 4 concludes the paper with
some remarks.
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Fig. 1. The flowchart of the proposed DAEN.

2. PROPOSED APPROACH

In this section, we present the proposed DAEN for hyper-
spectral unmixing. As shown in Fig.1, which demonstrates
the flowchart of the proposed approach, the proposed DAEN
has two auto-encoders, i.e., the stacked NNSAEs for the
learning of the spectral signatures, and a VAE for unmixing.

Following the linear spectral mixing model, this work as-
sumes that the reflected spectra are linearly mixed by several
endmembers. Hence, for a given observation yi ∈ Rl with l
being the number of bands, we have

yi = Ahi + εi =
m∑
j=1

hijaj + εi, (1)

s.t.: hi ≥ 0,

m∑
j=1

hij = 1,

where A = [a1, . . . ,am] ∈ Rl×m is the endmember
matrix with m being the number of endmembers, hi =
[hi1, . . . , hij , . . . , him]T ∈ Rm denotes the abundance frac-
tions with hij corresponding to the jth endmember, and
εi is the noise vector. The two constraints hi ≥ 0 and∑m

j=1 hij = 1 are the abundance non-negativity constraint
(ANC) and abundance sum-to-one constraint (ASC), respec-
tively.

2.1. Non-negative Sparse Auto-Encoder (NNSAE)

In this work, we first run VCA k times, obtaining k ×m
endmember candidates, which are then grouped into m sets
based on the spectral angle distances (SADs). Let Sj ∈ Rl×k

be the training set of the j-th endmember, NNSAE uses Sj to
learn the reconstructed signature âj as follows,

âj = Woutput
j f(Winput

j Sj), (2)

where f(·) is an activation function, Winput
j ∈ Rl×l is a

matrix of weights from the input layer to the hidden layer
and Woutput

j ∈ Rl×l is a matrix of connection weights be-
tween the hidden layer and the output layer. In practice, we
share the weights between the input and hidden neurons with

those from hidden to output neurons, which means Wj =

Woutput
j = (Winput

j )T , with T being matrix transposition.
Therefore, problem (2) turns to,

âj = Wjf(W
T
j Sj). (3)

For the activation function f(·), herein we adopt the logis-
tic function as follows,

f(gj) =
1

1 + exp(−cj · gj − dj)
, (4)

where gj = WT
j Sj , cj and dj are parameters aiming at con-

trolling the information transmission between neurons. Then,
let τ be the learning rate, and φ be a global parameter in the
learning process controlling the mean activity level of the de-
sired output distribution, we can use a gradient rule to update
cj and dj as follows,

∆dj = τ(1− (2 + 1
φ )fj +

1
φ f

2
j ),

∆cj = τ 1
cj

+ gj∆dj ,

(5)

where τ and φ were empirically set as τ = 0.0001 and φ =
0.2, respectively [15].

With the aforementioned definition in hand, the learning
reduces to the following update rule,

∆Wj ⇐ η∆âjf
T
j + |Wj |, (6)

where ∆ŵj is the gradient of endmember j for update, |Wj |
enforces the weight matrix to be non-negative, η is an adap-
tive learning rate[15]. In this work, following [15], we set
η = η̂(∥fj∥2 + ϵ)−1 with η̂ = 0.002, where ϵ > 0 is a small
parameter to ensure the positivity of η.

2.2. Varitional Auto-Encoder (VAE)

Following[14], let n be the number of pixel in the hy-
perspectral data, ui = [ui,1, ui,2, ..., ui,m−1]

T ∈ Rm−1 and
νi = [νi,1, νi,2, ..., νi,m−1]

T ∈ Rm−1 be the reparameters
of latent variables, for j = 1, . . . ,m − 1, we define hi,j =
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Cons(ui,j , νi,j), where Cons(·) represents a decay function
as follows,

Cons(ui,j , νi,j) =


ui,j + σνi,j , 0 < (ui,j + σνi,j) < 1

0, otherwise
(7)

where σ a parameter, following [6], which can obtained via
Monte Carlo (MC) sample. In order to meet the ASC, for
j = m, we have hi,m = 1−

∑m−1
j=1 hi,m−1.

Finally, with the aforementioned definition in mind, and
let Y = {y1, . . . ,yn} ∈ Rl×n, H = {h1, . . . ,hn} ∈
Rm×n, we define the following combinational objective func-
tion of VAE for unmixing,

(A,H) = argmin
A,H

1

2
∥Y−AH∥2F +µ f1(A)+λf2(H),

(8)
where ∥ · ∥2F denotes the Frobenius norm, µ and λ are

the parameters on two regularizers f1(A) and f2(H) on the
mixing matrix and abundance fractions, respectively. In this
work, we set f1(·) = MinVol(A), aiming at enclosing all the
pixels into the simplex constructed by the endmembers via
minimum volume constraint [3]. On the other hand, employ-
ing the VAE, we define f2(H) as,

f2(H) =
1

2

n∑
i=1

m−1∑
j=1

(1 + lnu2
i,j − u2

i,j − ν2i,j). (9)

Problem (9) is combinational and non-convex, which is
difficult to optimize. In this work, we propose an iterative
scheme to optimize A and H respectively, both of which are
solved by a gradient descent method [16].

3. EXPERIMENTAL RESULTS

The effectiveness of the proposed DAEN is evaluated by
using synthetic data. The data are generated according to a
linear mixing model with 676 pixels with maximum abun-
dance purity of 0.8. The data set has 4 endmembers (the
pure spectral signatures), with 224 spectral bands covering the
spectral range from 0.4 µm to 2.5 µm, are randomly selected
from the USGS library. As the main target of the proposed
approach is low SNR, the synthetic data is then corrupted by
20dB white Gaussian noise. Finally, two scenarios, i.e., no
outlier and 5 outliers, are considered for the experiments.

In this paper, three indicators, i.e., spectral angle distance
(SAD), reconstruction error (RE), and root mean square er-
ror (RMSE) are used to assess the accuracy of the unmixing
results, which are given as follows,


SAD[aj , âj ] = arccos

(
[aj ,âj ]

∥aj∥·∥âj∥

)
,

RE({yi}ni=1, {ŷi}ni=1) =
1
n

∑n
i=1

√
∥yi − ŷi∥22,

RMSE(ĥi, hi) =
1
n

∑n
i=1

√
∥ hi − ĥi∥22,

where âj and aj are the extracted endmember and the library
spectrum, ŷi and yi are the reconstruction and observation of
pixel i, ĥi and hi are the corresponding estimated and actual
abundance fractions, respectively.

Table 1 reports the obtained results. Comparisons with
several widely used unmixing algorithms, including N-
FINDR[1], VCA[2], MVC-NMF[3], Bayesian approach [6],
PCOMMEND[7], and ASNSA[11], are reported. It can be
observed that the proposed DAEN obtained the best result-
s, which are much better than those provided by the other
methods.

Table 1. The average SADs (in radians), REs and RMSEs
along with their standard deviations obtained from 10 Monte
Carlo runs by different methods for the considered simulated
data. Best results are in bold.

Method SAD RMSE RE
No outlier

N-FINDR 0.0608 0.5745 0.0482
VCA 0.0556 0.5833 0.0465

MVC-NMF 0.0090 0.5397 0.0279
Bayesian 0.0182 0.4904 0.0363

PCOMMEND 0.0379 0.5110 0.0249
ASNSA 0.0293 0.5087 0.0414
DAEN 0.0069 0.4619 0.0226

5 outliers
N-FINDR 0.2012 0.7024 0.0550

VCA 0.1758 0.5790 0.0481
MVC-NMF 0.1194 0.5705 0.0523

Bayesian 0.1905 0.5937 0.0558
PCOMMEND 0.2169 0.6613 0.0307

ASNSA 0.0372 0.5016 0.0324
DAEN 0.0105 0.4723 0.0284

For illustrative purposes, Fig.2 shows the unmixing result-
s obtained by the proposed DAEN and the other methods, for
the problem with 5 outliers. It can be further seen that the
proposed DAEN achieved very promising results.

4. CONCLUSIONS AND FUTURE LINES

In this paper, we propose a deep auto-encoder network
(DAEN) for hyperspectral unmixing, which includes a stack
and multi-hidden-layers of nonnegative sparse auto-encoders
to initialize the endmember signatures and a variational auto-
encoder to perform unmixing, achieving the mixing matrix
and the abundance fractions. By taking advantage from the
auto-encoders, the proposed DAEN can handle problems with
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Fig. 2. Graphical results from the proposed DAEN and the
other methods. Top: scattering plot for the consider synthetic
data with 5 outliers. Button: the obtained endember signa-
tures and their references from USGS library.

outliers and low signal to noise ratio. Future work will be
focused on a more exhaustive evaluation of the method with
real hyperspectral data sets.
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