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ABSTRACT

This work proposes a new collaborative active and semi-supervised
learning approach, named accessibility-free active learning (AFAL),
for hyperspectral imaging classification. The proposed approach
aims to tackle an existing problem in traditional active learning
methods, that is, the fact that some selected samples are not ac-
cessible by oracles for assigning them pseudo labels, i.e., confident
predictions for the classifier. The proposal specifically addresses this
problem using superpixels in a self-training context. Specifically,
AFAL first generates a set of candidates locally around the labeled
pixels and then expands them to other subregions via a density peak-
based augmentation strategy, in order to guarantee the confidence of
pseudo labels. Our experimental results, obtained on two real and
well-used hyperspectral images, reveal that the proposed scheme
can lead to state-of-the-art performance.

Index Terms— Hyperspectral image classification, active learn-
ing (AL), semi-supervised learning (SSL), superpixels.

1. INTRODUCTION

In standard supervised hyperspectral imaging (HSI) classification,
predictive models are learned from some a priori labeled samples.
Their quantity and quality are crucial to obtain satisfactory perfor-
mance. However, in many tasks it is difficult to get such information
due to the high cost and time needed in the data labeling process. A
small amount of labeled samples is generally insufficient to train a
good classifier. To address this problem, active learning (AL) is an
effective approach that iteratively selects the most informative unla-
beled samples (i.e. queries) and then asks an oracle to annotate them
[1, 2, 3, 4]. As a result, the classification performance can be greatly
improved with a minimum number of labeled samples.

In traditional AL methods, it is assumed that the labeling cost
only depends on the number of queries [5], that is, all the samples
can be annotated with the same effort, which is not always the case
in practice. There are generally two annotation strategies in remote
sensing: i) in situ field surveys and ii) visual photo-interpretation [6].
The former one is mandatory when extremely detailed land cover
maps are required, while its cost is much higher than that of the latter
one. Recent researches on cost-sensitive AL (CSAL) have taken into
consideration the physical traveling costs involved [7, 8] On the con-
trary, photo-interpretation is easier and cheaper, yet subjective and
dependent on the knowledge of the analyst [6]. In practice, a hybrid
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strategy is preferred, where photo-interpretation is complemented by
limited field surveys in order to lower the cost and guarantee the con-
fidence of labels. However, some labels are inevitably unaccessible
in the aforementioned cases. On the one hand, the large spatial ex-
tent and the complex terrain can make many sites unreachable in
field surveys. On the other hand, highly mixed samples (which often
occur around class boundaries) are difficult to interpret, especially
in hyperspectral images with a low spatial resolution. Existing AL
methods (including CSAL) generally skip or avoid these samples,
leading to a loss of highly informative training samples.

In contrast, semi-supervised learning (SSL) trains the classifier
using both labeled and unlabeled data [9]. Self-training avoids the
sample accessibility by supplementing the training set with pseudo-
labeled samples, automatically annotated by the classifier rather than
by human experts [10, 11].

Based on the above observations, in this work we develop an
accessibility-free active learning (AFAL) approach for HSI data clas-
sification, where the queries out of accessibility are labeled by the
classifier under a superpixel assumption in a self-training context,
thus making the labeling more flexible. Different from traditional
AL methods, that select samples globally, AFAL first selects sam-
ples locally around the labeled ones and then gradually expands the
candidate set using a density peak (DP)-based augmentation strate-
gy introduced by [11] in order to guarantee the confidence of pseudo
labels. Furthermore, we utilize the multinomial logistic regression
model with a Markov random field regularizer (MLR-MRF) [2, 12]
as the classifier and the breaking ties (BT) [1] function as the sam-
pling criterion. Notice that the proposed AFAL is virtually a collab-
orative active and semi-supervised learning method.

The paper is organized as follows. The proposed AFAL method
is introduced in section 2. The experimental results and their dis-
cussion are presented in section 3. Finally, section 4 concludes the
paper with a few remarks and future perspectives.

2. METHODOLOGIES

Let X ≡ {x1, · · · ,xn} ∈ Rd×n be a hyperspectral image with
n samples and d bands; also, let y ≡ {y1, · · · , yn} ∈ Rn be the
corresponding image of labels where each yi falls into one of the
possible K categories, yi ∈ K ≡ {1, . . . ,K}. The class densities
can be modeled as

p(yi = k|xi,ω) =
exp(ω(k)T h(xi))∑K
c=1 exp(ω

(c)T h(xi))
, (1)

where ω ≡ [ω(1), · · · ,ω(K−1)] is the logistic regressor set with
ω(K) = 0, since the density in Eq. (1) does not depend on trans-
lations on the regressors ω(k); h(xi) ≡ [h1(xi), · · · , hl(xi)]
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Fig. 1. Graphical illustration for the proposed AFAL approach.

is a feature vector composed of l fixed functions of the input,
which is constructed by the nonlinear Gaussian radial basis func-
tion (RBF) in the form of K(xi,xj) = exp(−‖xi − xj‖2/2σ2)
using σ as the scale parameter [13]. In this context, suppose
DT ≡ {(y1,x1), . . . , (yt,xt)} is a training set with t samples
and p(ω) is a priori distribution of ω, then the learning of ω is
formulated as

ω̂ = argmax
ω

`(ω|DT )p(ω). (2)

In this work, a new AFAL method has been proposed to tackle
the difficulty of limited training samples and unaccessible manual
labels. As illustrated in Fig. 1, the proposed AFAL consists of three
main steps which are described below in details.

2.1. Candidate Generation

At each iteration in AFAL, the candidate set is generated under the
superpixel assumption with DP augmentation [11] in order to guar-
antee the confidence of pseudo labels once the selected samples are
not accessible.

Then, the neighborhood of a sample can be defined as the su-
perpixel it belongs to, based on the fact that superpixels are homo-
geneous regions in the image X. Thus, it is reasonable to assume
that the pixels within such neighborhood share the same label. In
this work, the regional clustering based spatial preprocessing (RC-
SPP) method [14] has been employed for HSI data segmentation due
to its capacity to generate high-quality, compact, and nearly unifor-
m superpixels. Furthermore, from a spectral point of view, similar
features generally belong to the same class. Based on the two afore-
mentioned observations, the candidate set is confined within those
pixels that are both located in the same superpixel and predicted with
the same labels. As a result, though out of accessibility, they can
be assigned to a relatively confident pseudo label by the classifier.
However, the unlabeled samples will be constrained into very few
superpixels. In order to expand the candidate set, DP augmentation
[11] has been considered, which is defined by a clustering technique
and a distance criterion to select modes from unlabeled superpixels,
i.e., those without initial labeled ones, in which case the modes are
the most representative ones within the superpixels. After that, the
same superpixel-based candidate generation strategy is implemented
in terms of the selected modes.

2.2. Querying and Labeling

After the candidate generation, the most informative samples are s-
elected from the candidate set and then labeled by the oracle or the

classifier. In the querying step, the queries are first identified in ac-
cordance with some sampling criterion, i.e., the BT function formu-
lated as follows:

x′i = arg min
xi∈DC

[
max
k∈K

p(yi = k|xi, ω̂)

− max
k∈K\{k+}

p(yi = k|xi, ω̂)
]
,

(3)

where DC is the candidate set. Obviously, the queries minimize the
distance between the first two most probable classes indicating that
they are close to boundaries.

Then, in the labeling step, the queries are labeled by the oracle
or by the classifier if out of accessibility, that is,

y′i =

{
yi yi is accessible
ŷi yi is inaccessible , (4)

where yi is the manual label of x′i, while ŷi = max
k

p(yi = k|xi, ω̂)

is the prediction. As a consequence, the labeling process is free of
the sample accessibility problem.

2.3. MLR-MRF Classification

Finally, and following [2], we use the MLR via variable splitting
and augmented Lagrangian (LORSAL) algorithm [15] followed by
an MRF regularizer [11], called MLR-MRF, to solve Eq. (2). The
LORSAL algorithm has been shown to be effective for dealing with
large quantities of training samples, while the MRF scheme incorpo-
rates piecewise smoothness into the final classification results, taking
into account that spatially adjacent pixels generally exhibit the same
class label in a real scene.

3. EXPERIMENTAL RESULTS

In this section, the proposed AFAL approach is evaluated on two re-
al and well-used HSI scenes. For comparison, another three cases
have been considered in experiments. The first one is the super-
pixel based semi-supervised active learning method with DP aug-
mentation (SSAL-SDP) in [11], which can be regarded as the semi-
supervised version of AFAL. In the second one, the classifier has
been retrained only using the manually labeled samples in AFAL
(hereinafter referred as AFAL-True). The last one is random sam-
pling (RS) where manually labeled training samples have been ran-
domly selected with the same size. In the following, the overall accu-
racy (OA), average accuracy (AA), class individual accuracy (CA),
and kappa statistic (κ) obtained from five Monte Carlo runs have
been considered for quantitative evaluation. To generate the initial
training set DT , 5 samples per class have been randomly selected
from the ground truth for each scene.

3.1. AVIRIS Indian Pines scene

The first HSI scene is the public AVIRIS Indian Pines scene1 com-
posed of 145×145 samples and 200 bands after removing the noise
and water absorption ones. The available ground truth contains
10366 labels categorized in 16 classes (the class sizes are listed in
Table 1). For SSAL-SDP and AFAL, we added 25 samples into the
training set and 5 modes for candidate generation at each iteration.

Fig. 2 and Table 1 list the OAs and the numbers of training
samples obtained by the considered methods. It can be seen that

1http://dynamo.ecn.purdue.edu/biehl/MultiSpec
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Fig. 3. Classification maps (along with the corresponding OAs) obtained after 100 iterations for the AVIRIS Indian Pines scene, where a false
color map (a) and the ground truth (b) are also provided for reference.

0 20 40 60 80 100

Iterations

55

60

65

70

75

80

85

90

95

O
ve

ra
ll 

A
cc

u
ra

cy
 (

%
)

RS
SSAL-SDP
AFAL
AFAL-True

0 20 40 60 80 100

Iteration

0

500

1000

1500

2000

2500

N
u

m
b

er
 o

f 
T

ra
in

in
g

 S
am

p
le

s

Total
True
Pseudo

(a) OAs (b) Numbers of training samples

Fig. 2. OAs and the number of training samples expressed as a func-
tion of the number of iterations for the AVIRIS Indian Pines scene.
Here, true and pseudo represents the manually labeled and pseudo-
labeled samples, respectively.

the proposed AFAL obtained very competitive and more robust re-
sults when compared to the others. On the one hand, AFAL-True
obtained higher OAs than RS meaning that AFAL has the ability
to select more informative samples. On the other hand, AFAL out-
performed AFAL-True indicating that the pseudo labels benefit the
training. The improvement is more significant with increased itera-
tions. It is expected since the sampling covered more zones and the
predictions became more accurate. However, focusing on Fig. 2,
AFAL could not perform better than RS at the beginning due to the
fact that AFAL first generated the candidate set locally. This limita-
tion was relaxed as the number of candidates expanded.

For illustrative purposes, Fig. 3 shows the classification map-
s along with their OAs obtained by the considered methods. It is
worth noting that AFAL generated the most accurate and smooth
classification maps in comparison to the other tested methods. The
map produced by SSAL-SDP, though smooth enough, contains many
misclassified subregions corresponding to some low CAs listed in
Table 1, while those by RS and AFAL-True are affected by some
pepper-and-salt noises. Thus, we can conclude that the proposed
AFAL approach is practically valuable to generate high-quality land
cover maps.

3.2. OMIS Zaoyuan scene

The second image used in experiments is the OMIS Zaoyuan scene,
with a size of 137×202 samples and 80 spectral bands. The ground
truth contains 23821 labels in 8 classes covering more than 85% of
this scene. On this scene, 10 training samples and 5 modes have been
added per iteration for SSAL-SDP and AFAL. First, accuracy results
and numbers of training samples of all the considered cases are pro-
vided in Fig. 4 and Table 2. It can be observed that the proposed
AFAL also obtained competitive results on this scene, particularly
when the number of pseudo labels increased. It is noticeable that
the pseudo labels still contributed to improving the performance of

Table 1. CAs[%] (total number of available labeled samples in
brackets), OAs[%], AAs[%] and κs[%] along with standard devi-
ations[%] after 100 iterations for the AVIRIS Indian Pines scene,
where we also list the number of training samples including the total
ones (Total), those of true labels (True) and those of pseudo labels
(Pseudo).

SSAL-SDP RS AFAL-True AFAL

CA

C1 (54) 90.94±6.38 62.24±28.13 84.63±14.27 85.12±13.85
C2 (1434) 75.05±9.46 88.68±4.23 89.96±7.53 95.99±3.80
C3 (834) 70.73±18.35 79.61±8.61 97.19±1.55 96.70±2.25
C4 (234) 85.34±15.39 85.01±12.74 71.80±21.89 79.53±22.62
C5 (497) 82.84±6.46 90.89±1.69 94.75±2.17 89.29±7.93
C6 (747) 95.93±2.09 98.33±1.22 99.24±0.60 98.60±1.27
C7 (26) 95.60±2.48 81.66±14.26 90.27±6.84 90.27±6.84

C8 (489) 92.44±9.38 99.07±0.78 96.19±7.58 99.70±0.32
C9 (20) 100.0±0.00 89.79±7.49 93.85±8.43 100.0±0.00

C10 (968) 77.41±5.79 88.31±4.09 86.52±7.03 89.76±5.60
C11 (2468) 83.76±6.88 94.09±1.26 96.98±2.16 98.73±1.71
C12 (614) 81.00±21.12 90.43±4.80 98.41±1.03 98.85±0.87
C13 (212) 98.23±1.28 99.17±0.77 99.41±0.41 99.41±0.41

C14 (1294) 85.62±10.18 98.55±0.73 90.86±4.66 92.65±3.48
C15 (380) 99.93±0.16 66.49±7.13 89.50±13.18 96.11±7.28
C16 (95) 99.19±1.22 74.58±17.49 97.93±1.98 98.41±1.51

OA 83.40±3.13 90.86±1.77 93.51±1.36 95.62±1.28
AA 88.37±2.08 86.68±2.96 92.34±1.84 94.32±2.44
κ 81.08±3.53 89.54±2.04 92.57±1.58 94.99±1.47

Num
Total 2518 880 2515 2515
True 0 880 880 880

Pseudo 2518 0 0 1635

AFAL-True with a 2.3% improvement and a 0.76% lower standard
deviation of OAs, while they were only around one fifth of all the
training samples. The same conclusions can also be drawn from Fig.
5, where the classification map obtained by AFAL is more accurate
and smooth than the rest.

4. CONCLUSIONS

In this work, a new accessibility-free active learning (AFAL) ap-
proach has been developed for HSI data classification. It aims at
tackling the problem that many labels are out of accessibility for o-
racles, and thus skipped in traditional active learning methods. This
newly proposed AFAL, which is actually a collaborative active and
semi-supervised learning approach, labels these samples with the
predictions of the classifier in a self-training context, where a su-
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Fig. 5. Classification maps (along with the corresponding OAs) obtained after 100 iterations for the OMIS Zaoyuan scene, where a false color
map (a) and the ground truth (b) are also provided for reference.
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Fig. 4. OAs and the number of training samples as a function of the
number of iterations for the OMIS Zaoyuan scene.

Table 2. Statistical results obtained after 100 iterations for the OMIS
Zaoyuan scene.

SSAL-SDP RS AFAL-True AFAL

Num
Total 1029 753 753 1032
True 0 753 753 753

Pseudo 1029 0 0 279

OA 83.47±6.39 94.77±0.61 95.68±1.17 98.01±0.41
AA 90.37±3.41 92.91±0.52 93.99±1.30 97.10±0.77
κ 79.47±7.50 93.12±0.80 94.26±1.56 97.37±0.54

perpixel assumption has been employed coupled with a DP augmen-
tation strategy to generate the candidates, in order to guarantee the
confidence of pseudo labels. The experimental results, conducted
using two real HSI scenes, indicate that the proposed approach can
lead to state-of-the-art performance (especially from a visual stand-
point), making it useful for high-quality land cover map generation.
In the future, we will explore how to make a better use of pseudo
labels and refine the manually labeled set for AFAL, applying it to
transfer learning problems.
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