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ABSTRACT

Deep neural networks (DNNs) have revolutionized the way
remotely sensed hyperspectral image (HSI) data are managed
and processed. For instance, residual networks (ResNets)
have achieved high classification accuracy by applying se-
quential transformations (layer by layer) on the input HSI
data, obtaining highly discriminative data representations.
However, these models are quite complex, with significant
requirements in terms of memory resulting from the large
number of parameters that they need to learn, which also
leads to potential overfitting issues. In this work, we specifi-
cally address the aforementioned problem by re-interpreting
a DNN (the ResNet) as a continuous transformation, instead
of the traditional (discrete) step-by-step approach. To achieve
this, we combine ordinary differential equations (ODEs)
with DNN architectures for the first time in the HSI data
classification literature. This allows us to perform remotely
sensed HSI data classification in an efficient way in terms
of number of parameters. Our experimental results, con-
ducted using two well-known HSI data sets, indicate that the
inclusion of ODE:s in the architecture of DNNs offers signif-
icant advantages when processing and classifying this kind
of high-dimensional data, achieving better performance even
with less training data.

Index Terms— Deep neural networks (DDNs), hyper-
spectral images (HSIs), residual networks (ResNets), ordi-
nary differential equations (ODEs).
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1. INTRODUCTION

The application of imaging spectroscopy to Earth Observa-
tion and remote sensing problems allows for the acquisition
of high-dimensional HSI data cubes composed by hundreds
of observations at narrow spectral wavelengths. As a result,
each pixel in the HSI contains a detailed spectral signature
that represents the observed image object(s). This informa-
tion uniquely characterizes each element of the HSI, which is
very useful for classification purposes. Specifically, classifi-
cation consists of assigning to each pixel x; € R™bands of the
HSI dataset X = {X1, -+ ,Xn, 00, ) € RMeompicsXNoands
a unique label y; = {1,---, K}, extracted from a set of K
possible categories, creating pairs of {x;, y;};~4"""*". In this
sense, the classification process aims to approximate the func-
tion f(-, ) which, depending on parameters 6, maps the data
of X C Rm"samries (for instance, a HSI data set X) to those
categories/labels contained in ), i.e., f : X — V.

Among several techniques developed for the efficient
classification of HSI data, artificial neural networks (ANNSs)
have been a very useful tool for the analysis of these high-
dimensional images because of their great flexibility in terms
of available architectures and learning modes, in addition
to their capacity to extract representative features and their
ability to discover non-linear relationships in the data [1].

Advances in deep learning have allowed the implemen-
tation of deeper and complex ANNSs, called deep neural net-
works (DNNs), which are composed by a hierarchy of multi-
ple layers in which the [-th layer applies a transformation to
the input data x(, its weights W (1) and biases b("), to finally
pass the result through a non-linear activation function H(-):

al+) — W 5O 4 0

<+ — ’H(a(l“)) 0
In a classification context, function f (-, #) can be replaced by
the concatenation of those affine linear transformations and
point-wise nonlinearities defined by Eq. (1) at each hidden
layer, which can be considered as nonlinear functions, while
0 comprises all network’s parameters.

Eq. (1) can be applied directly (as in traditional fully-
connected architectures such as multilayer perceptrons [2]),
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in the form of a time series (as in recurrent neural networks
[3]), or included in a kernel operation of a convolutional
neural network (CNN) [4]. In addition, the introduction of
skip- and residual-connections allows for the development of
more complex architectures, in which grouped layers con-
form entire blocks of mapping data [5]. In particular, residual
neural networks (ResNets) [5] group several operation layers
and non-linear activation functions into blocks, called resid-
ual units, whose inputs and outputs are connected through a
residual connection that helps to propagate the information
from previous layers to the rest of the network. In this sense,
for the [-th residual unit, Eq. (1) can be reformulated as
follows:

alth) — x4 F (W(l), x® B(”)
X(l+1) — H(a(l+1))

@)

where F(-) represents all the operations applied over the in-
put data x(¥), i.e., the additive residual mapping function, and
WO and BY are the weights and biases, respectively, of the
layers involved in each residual block. The ResNet can be
interpreted as a discrete sequence of L hidden blocks, where
the data flow propagates through the residual units until an
abstract representation of the original input data is obtained.
In this sense, the number of trainable parameters depends di-
rectly on L. This fact leads memory consumption to grow
linearly in O(L) order, which also implies the need to use
more data to properly train the model (overfitting problem).

With the aim of developing a DNN with constant and
lower memory cost, and a significantly reduced number of
trainable parameters (thus effectively dealing with overfitting
issues), this work re-interprets the traditional ResNet as a con-
tinuous transformation [6], considering an architecture with
L — oo and very small step-size. In this context, Eq. (2) is
interpreted as the Euler discretization of a continuous trans-
formation in any time-step, from ¢ to ¢ + 1 [7], where the first
value x(©) = x is the input to the original network. Follow-
ing the aforementioned principles, ResNet can be considered
as an ordinary differential equation (ODE), whose successive
evaluations obtain hidden states from the input data, until a
desired level of precision is reached by the classifier.

In summary, this work proposes (for the first time in the
literature) the implementation of a continuous-depth neural
network with a parameterized ODE [6] which is specifically
designed for the classification of HSI data. Section 2 intro-
duces our newly developed methodology, while section 3 pro-
vides a detailed discussion of the results obtained using two
widely-used HSI data sets. Section 4 concludes the paper with
some remarks and hints at plausible future research lines.

2. METHODOLOGY

A first-order ODE can be expressed as the initial value prob-
lem (IVP) of the form % = f(t,h(¢t)) with initial condi-
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Fig. 1. Architecture of the proposed ODE-net for HSI data
classification. It is composed by three well-differentiated
parts: i) a pre-processing step that extracts low-level feature
representations from the original HSI patches, which feed
the ii) ODE solver, and whose output state is employed to
perform iii) the final classification, implemented by fully-
connected layers.

tion h(tg) = hg, being ¢t € {0,---,T} an observation in-
terval and f(¢,h(¢)) a known function. The solution of this
ODE is the value of the unknown function h(t) = h; at each
point ¢. Geometrically, h;y; at point ¢;; can be approxi-
mated through the tangent line based on the previous point as
h; 1 =h; + f(t;,h;) - (t;+1 — ;). In this context, the Euler
method gives a solution for h(¢), assuming that the i-th obser-
vation point is related with the first one as ¢; = to+« 4, being
o a step-size. This assumption leads to the fact that each point
is related to the immediately preceding one through the step-
size: t;41 = t; + «, which can be included in the previous
equation to obtain a final expression h; 1 = h;+a- f(¢;, h;).
Comparing this expression with Eq. (2), it can be observed
that the residual mapping unit is a special case of the Euler
discretization method, where the step-size is set to o = 1
and the known function f(-) is parameterized by the weights
and biases of the {-th block, with [ € {0,---, L}, being ly
the input layer. The aforementioned observations can be ex-
trapolated in order to re-define the ResNet under a continuous
interpretation as follows:

h;11 =h; + f(t;, h;, 0;)

3
where %gt) = f(t,h(t),0) with h(to) = ©

where the traditional residual units have been replaced by a
parameterized ODE [6], being the weights and biases defined
by 6 and the neural topology by f(-), while the output is the
hidden state h(¢;) at time ¢;. Under these assumptions, the
traditional block-by-block performance (which depends on
L) is eventually replaced by L evaluations of Eq. (3), which
can be easily carried out by any off-the-shelf ODE solver:

hi+1 = ODEsolver(h(ti), f, ti, ti+1, 9) (4)
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a) ResNet (75.18%) b) ODE-net (79.98%) c) ResNet (98.29%) d) ODE-net (98.45%)

Fig. 2. Classification maps for Indian Pines (IP) dataset, with
3% [a) and b)] and 15% [c) and d)] of training data. Note
that the overall classification accuracies are shown in brack-
ets, and the best result is highlighted in bold typeface.

During the forward-pass, a state is obtained by Eq. (4),
which is employed to calculate the loss function of the net-
work loss(ODEsolver(h(t;), f,t;,tix1,0)). This loss, im-
plemented as the cross-entropy function, is back-propagated
through the entire network, being the network parameters up-
dated by the stochastic gradient descent.

An important detail to keep in mind is the memory cost of
the proposed network, which depends exclusively on the pa-
rameters managed by f(-) and is kept constant in each evalu-
ation, leading to O(1) cost. In this sense, our newly proposed
network for HSI data classification controls more efficiently
the number of trainable parameters, which has a remarkable
impact on the memory usage and on the overfitting of the
model. As opposed to the classic ResNet, whose performance
highly depends on the number of parameters to train and also
on the amount of available training data to properly fine-tune
these parameters, our proposal is able to obtain more robust
results with any percentage of training data (even with a very
low number of training samples), while the original model is
hampered by its very high number of parameters. For illus-
trative purposes, Fig. 1 provides a graphical representation
of the proposed architecture (called hereinafter ODE-net) for
HSI data classification purposes.

3. EXPERIMENTAL RESULTS

3.1. Environment and Data Sets

All our experiments have been conducted on a 6th Genera-
tion Intel® Core™i7-6700K processor with 8 MB of cache
and up to 4.20 GHz frequency (4 cores/8 way multitask pro-
cessing), 40 GB of DDR4 RAM memory with serial speed
of 2400MHz, a GPU NVIDIA GeForce GTX 1080 with 8
GB GDDRS5X of video memory and 10 Gbps of memory fre-
quency, a Toshiba DTO1ACA HDD with 7200RPM and 2
TB of disk capacity, and an ASUS Z170 pro-gaming moth-
erboard. Ubuntu 18.04 x64 and python have also been em-
ployed in our implementation.

Two widely used HSI data sets have been considered
to conduct the experimental assessments: the Indian Pines
(IP) and the Salinas Valley (SV) scenes, collected by the
Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS)
over Northwestern Indiana and the Salinas Valley in Califor-
nia, respectively. The first scene contains 145 x 145 samples

578

: v
a) ResNet (91.20%) b) ODE-net (93.87%) c) ResNet (99.68%) d) ODE-net (99.75%)

Fig. 3. Classification maps for the Salinas Valley (SV) dataset
with 1% [a) and b)] and 10% [c) and d)] of training data.
Note that the overall classification accuracies are shown in
brackets, and the best result is highlighted in bold typeface.

with 200 spectral bands (after the removal of noisy bands),
spatial resolution of 20 meters per pixel, and spectral range
from 0.2 to 2.4 microns. The second scene is composed by
512 x 217 pixels, with 204 spectral bands (after the removal
of noisy bands) and spatial resolution of 3.7 meters per pixel.
Both images comprise 16 land-cover classes. To assess the
classification accuracies obtained over these two scenes, we
use the overall (OA) and average (AA) accuracy, and the
kappa coefficient. We also compute the number of required
model parameters.

3.2. Discussion of Results

To test the performance of our newly proposed ODE-net for
HSI data, a comparison has been conducted with the popu-
lar ResNet using the two aforementioned scenes. It should
be noted that the ResNet has been implemented by replacing
the ODEsolver in Fig. 1 by six residual units. Two different
training percentages have been employed for each scene: 3%
and 15% (for IP) and 1% and 10% for SV. These percentages
define the number of labeled samples that are randomly se-
lected to create the training set, while the test set comprises
all the remaining labeled samples.

Table 1 reports the classification results achieved by
ResNet and our newly proposed ODE-net, obtained as the av-
erage of 5 experiments. It can be observed that, with enough
training, our newly proposed ODE-net is able to reach very
similar (and even slightly better) results in terms of OA than
the traditional ResNet. However and most importantly, in
the case that very limited training samples are available, our
proposal is able to reach the best results employing only one
third of the trainable parameters required by the ResNet. This
demonstrates that, in addition to providing more robust re-
sults with fewer samples, our model also achieves a better
use of memory resources, with an impressive reduction in the
number of required trainable parameters.

For illustrative purposes, Figs. 2 and 3 show some of the



Table 1. Classification results obtained for the IP and SV data sets using different percentages of training samples.

Indian Pines Salinas Valley
3% 15% 1% 10%

Class ResNet ODE-net ResNet ODE-net ResNet ODE-net ResNet ODE-net
1 8.41 +£8.9794  21.14 £16.4219 | 95.13 £5.8974  94.62 +4.7901 90.07 £4.5933  93.59 £4.9556 | 99.85+0.1732  99.98 +0.0253
2 73.55 £5.4803  77.36 +4.8655 97.93 £0.5693  98.04 +1.3882 88.68 £5.4176  92.68 £3.8408 | 99.96 £0.0600  99.92 +0.1118
3 61.49 £14.2059  68.34 £8.1622 | 98.23 £0.5575  97.21 +£2.1993 || 78.80 £14.1556  91.29 +8.1720 | 99.81 £0.2193  99.93 +0.1665
4 63.36 £21.8903  69.08 £9.5369 | 97.96 £1.6717  98.11 £1.3859 98.27 £2.1726  99.17 £0.7469 | 99.87 +0.0813  99.86 +0.1429
5 67.82 £11.6907  72.95 £5.2044 | 95.71 £2.6678  97.22 +2.1684 98.16 £1.3211 98.79 £0.9839 | 99.80 +0.1443  99.73 +0.1782
6 76.00 £9.7225  80.48 +£7.2722 | 98.87 £0.7967  99.39 +0.4774 98.88 £0.7218  99.40 +£0.6706 | 99.97 +0.0365  99.95 +0.0595
7 0.74 £2.2222  11.48 +£18.2537 | 89.13 £17.0898  94.35 +8.0288 94.87 £3.6414  97.48 £1.4419 | 99.82 +0.1576  99.89 +0.0847
8 94.82 £7.9803  93.84 +7.5768 | 99.93 £0.1129  99.90 £0.1970 89.98 £2.6326  90.62 +1.8414 | 99.38 £0.3279  99.46 +0.2733
9 0.53 £1.5789 5.79 £12.1053 | 69.41 £19.2956  89.41 +8.6453 96.19 £2.3344  98.46 +£0.7968 | 99.99 +0.0268  99.96 +0.1129
10 58.70 £18.5370  65.25 £4.7458 | 97.13 £1.6627  96.94 +1.2801 91.87 £4.7726  95.55 £2.3230 | 99.95 +0.0551 99.97 £0.0320
11 85.49 +£4.6536  88.61 £2.3170 | 99.36 £0.6392  99.54 +0.3739 93.53 £4.6894  94.36 +£1.9628 | 98.52 +0.9781 99.29 +0.3507
12 71.08 £9.3017  72.14 £6.4694 | 97.70 £1.2010  97.68 £1.5948 95.32 £2.1510  96.69 +£1.6449 | 99.60 +0.3991 99.84 +0.1155
13 79.14 £17.7546  90.51 £6.7375 99.20 £1.2902  99.83 +0.3680 96.92 £1.9443  97.85+£1.2978 | 99.42 +0.4998  99.34 +0.6287
14 90.91 +£3.4966  95.60 +2.6161 99.41 £0.5582  99.67 +0.2920 90.56 +5.6880  96.52 +2.5817 | 99.65 £0.5155  99.84 +0.2379
15 64.20 £11.0867 76.18 £12.1276 | 96.40 £2.6988  97.56 +1.4998 82.81 +£3.1921 86.46 £3.5356 | 99.43 £0.2990  99.61 +0.2081
16 2.56 £6.6305  34.67 +£31.0308 | 94.18 +£2.6065 89.11 £5.9156 86.07 £5.2526  93.28 +1.8057 | 99.68 +0.2761 99.63 +£0.4261
OA 75.18 £6.2376  79.98 +1.7644 | 98.29 £0.4306  98.45 +0.4583 91.20 £1.2009  93.87 £0.5633 | 99.68 +0.1240  99.75 +0.0723
AA 56.17 £7.3123  63.96 +4.2821 95.35 £1.7001 96.79 £1.0424 91.94 £1.5623  95.14 £0.4933 | 99.67 +0.1333  99.76 +0.0695
K 71.50 £7.3363  77.05 +£2.0522 | 98.05 £0.4909  98.23 +0.5232 90.19 £1.3403  93.18 +0.6271 99.64 +0.1381 99.72 +0.0805
Time(s) 48.98 £0.1925  106.25 +£0.1801 | 78.07 £0.2078  205.31 £9.7192 || 113.22 £0.1221 347.84 +0.4285 | 223.65 +0.3511  713.40 £4.2058

Parameters 601872 232080 601872 232080 601872 232080 601872 232080

best classification maps obtained by the considered methods
in our experiments. As we can observe, the classification
maps provided by ResNet and our newly proposed ODE-
net are quite similar, as already indicated by Table 1, when
enough training is employed. However, when very few train-
ing samples are available, the ResNet is hampered by dis-
tortion noise in the obtained classification results, while our
newly developed ODE-net consistently provides very good
classification results regardless of the number of available
training samples.

4. CONCLUSIONS AND FUTURE LINES

This work presents, for the first time in the literature, a con-
tinuous DNN for remotely sensed HSI data classification
based on ODE solvers. The proposal demonstrates signif-
icant improvements in terms of memory consumption and
parameter generation when compared with classical, discrete
ResNet implementations, allowing an efficient reduction of
the model’s overfitting. Most importantly, ODE-net requires
significantly less training samples to provide consistently
good classification results. As future work, a deeper study
of parameter L on the accuracy of the network should be
conducted. Also, a reduction of computation times will be
pursued through the implementation of more computationally
efficient solvers.
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