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ABSTRACT

In some remote sensing applications such as change detection, satel-
lite images with both high spatial and high temporal resolution are
required. However, no single satellite sensor can currently provide
such images due to technical specifications. To solve this problem,
spatio-temporal fusion provides a cost-effective solution. In this pa-
per, we propose a new spatio-temporal fusion approach, based on
convolutional neural networks (CNNs), for Landsat and MODIS im-
age fusion. Specifically, the proposed approach utilizes CNNs to
model the heterogeneity of fine pixels from the coarse MODIS im-
ages. Here, the heterogeneity of fine pixels is defined as the differ-
ence between the reflectance changes obtained from the two types of
images. After that, two transition-predicted images can be obtained
using the trained CNNs, which are then fused in order to obtain a fi-
nal prediction. In our newly proposed approach, CNNs are only used
to learn the heterogeneity of fine pixels rather than the whole im-
ages, thus providing a more stable and less time-consuming strategy
as compared to other available approaches. We evaluated the pro-
posed approach on a public spatio-temporal fusion dataset and the
obtained results suggest that our newly developed method achieves
state-of-the-art performance.

Index Terms— Spatio-temporal fusion, convolutional neural
networks (CNNs), heterogeneity.

1. INTRODUCTION

Temporally dense remote sensing images are necessary and im-
portant for change detection applications, such as the characteriza-
tion of crop yields [1], vegetation monitoring [2] and the detailed
investigation of human-nature interactions [3], where the changes
need to be accounted for at a very fine scale in heterogeneous region-
s. In this context, such temporally dense images should also exhibit
high spatial resolution. However, no available satellite instrument
can currently provide such images due to technical and budget lim-
itations. In other words, the images with high temporal resolution
usually exhibit low spatial resolution, while the ones with high spa-
tial resolution are often sparse in frequency. Hereinafter, we refer to
such images as coarse and fine, respectively, in terms of their spatial
resolution. Accordingly, we also refer to their pixels as coarse and
fine. To tackle the aforementioned problems, spatio-temporal fusion
provides a feasible and effective strategy that can generate images
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with high spatial and high temporal resolution by combining the two
types of images above.

A key requirement of spatio-temporal fusion is to be able to
model the reflectance changes of land surface, including two aspects,
i.e., the phenology changes (e.g., seasonal changes of crops) and land
cover type changes during a certain temporal period [4]. Up to now,
many spatio-temporal fusion methods have been adopted, which can
be categorized into three main groups [5]: weighted function-based
ones [6, 7] , unmixing-based ones [5, 8], and learning-based ones
[4, 9, 10, 11]. The former two are generally based on the linear
mixture model, in which a pixel in the coarse image can be regard-
ed as a linear combination of some corresponding pixels in the fine
image. Specifically, weighted function-based methods model the
pixel values in the predicted fine image using the weighted sum of
spectrally similar pixels. However, such methods implicitly assume
that no land cover type change happens during the prediction period
[5], thus performing well only for phenology changes. On the other
hand, unmixing-based methods utilize the linear unmixing model to
extract the temporal reflectance changes from coarse images. Oper-
ating under a similar assumption as weighted function-based ones,
these approaches are also unable to precisely predict the land cov-
er type change. On the contrary, learning-based methods (most of
which are sparse representation-based ones) establish a relationship
between the coarse and fine image pairs on the basis of their struc-
tural similarity, leading to a good ability to deal with land cover type
changes [4, 9]. However, the image features are manually designed,
making them complex and unstable. To solve this problem, a re-
cent trend is to use CNNs rather than the sparse representation for
learning purposes, due to the fact that CNNs are capable to gener-
ate the features in a data-driven context. Song et al. [11] proposed
a spatio-temporal Satellite Image Fusion Using Deep Convolution-
al Neural Networks (STIFCNN) method which reconstructs the fine
images from the coarse ones by a nonlinear mapping-based CNN
and a super resolution-based CNN, and then fuses the reconstructed
images with the observed ones to get the final predictions. STIFCNN
is more effective than sparse representation- based approaches when
extracting features from large-scale images. However, the combina-
tion of two CNNs and a fusion model makes the method complex
and time-consuming. Furthermore, performing the reconstruction
directly from coarse images brings instability due to the large exist-
ing gap in spatial resolution between Landsat and MODIS images.

In this paper, we develop a new CNN-based spatio-temporal
fusion approach to fuse fine Landsat images with coarse MODIS
images. Our newly proposed approach utilizes CNNs to model the
heterogeneity of fine pixels from the coarse pixels. Specifically, we
define the heterogeneity of fine pixels as the reflectance change dif-
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ference on each fine pixel in comparison to the coarse one. After
that, two transition-predicted images can be obtained using well-
trained CNNs. Then, a fusion model is implemented on the two
transition images to obtain the final prediction. In our newly pro-
posed method, the CNNs only learn the heterogeneity of fine pixels
rather than the whole images, thus making it more stable in com-
parison to STIFCNN. Furthermore, the proposed method is simpler
and less time-consuming since only one type of CNN needs to be
trained. The rest of the paper is organized as follows. In section 2,
the proposed method is introduced in detail. The obtained results
are presented and discussed in section 3. Finally, our conclusions
and some future lines are given in section 4.

2. METHODOLOGY

In the following, we denote the dates of the obtained images
as ti, and the corresponding Landsat and MODIS images as Li and
Mi, respectively, for i = 1, 2, 3. A general flowchart of our method
is given in Fig. 1. Specifically, we utilize the image pairs at t1 and
t3 to train the CNN and predict L2 from L1, L3, M1, M2, and M3

with the trained CNN and a fusion model.
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Fig. 1. General flowchart of the proposed method, in which rectan-
gles and diamonds represent images and operations, respectively.

Let x, y and b be the coordinates along x-, y- and the spec-
tral domain, respectively; let ∆M and ∆L be the coarse and fine
reflectance changes, i.e., those between the coarse and the fine im-
ages, respectively. Given a fine pixel (x, y, b), the reflectance change
between dates ti and tj can be formulated as:

∆Lij(x, y, b) = Li(x, y, b)− Lj(x, y, b). (1)

The corresponding coarse reflectance change is given by:

∆Mij(x, y, b) = R(Mi(x, y, b)−Mj(x, y, b)), (2)

where R(·) is the resampling operation of ∆M in accordance to
∆L. Then, we define the heterogeneity of the fine pixel as:

Hij(x, y, b) = ∆Lij(x, y, b)−∆Mij(x, y, b). (3)

2.1. Training stage

In the training stage, we feed the CNN with the coarse re-
flectance change between the dates t1 and t3 to obtain the corre-
sponding heterogeneity of fine pixels for each band, that is:

Ĥ13(x, y, b) = G(∆M13(x, y, b); Θ), (4)

whereG(·) is a nonlinear mapping function, Θ is a set of parameters,
and Ĥ13 is the predicted heterogeneity of fine pixels.

As shown in Fig. 1, the used CNN for each band is composed of
three convolutional layers in total, where the first two layers are fol-
lowed by a batch normalization layer and a rectified linear unit (Re-
LU). The loss function is chosen as the mean squared error (MSE)
function:

`(Θ) =
1

N

∑
x,y

‖Ĥ13 −H13‖2, (5)

where N is the number of training samples.

2.2. Prediction stage

As illustrated in Fig. 1, the prediction stage mainly contains
three parts. First, we use the CNN to model Ĥ21 and Ĥ23, i.e., the
heterogeneities of fine pixels on t2 in comparison to M1 and M3,
from ∆M21 and ∆M23, i.e., the corresponding coarse reflectance
changes, respectively. After that, we can obtain two transitional pre-
dictions as follows:

L′
21(x, y, b) = ∆M21(x, y, b) + Ĥ21(x, y, b) + L1(x, y, b), (6)

L′
23(x, y, b) = ∆M23(x, y, b) + Ĥ23(x, y, b) + L3(x, y, b). (7)

As shown in Eqs. (4) and (5), the CNN is trained only using M1,
M3, H1 and H3, but still misses the information contained in M2.
Therefore, L′

21 and L′
31 are likely not precise enough, mainly due to

the deviation existing in Ĥ21 and Ĥ21. To optimize the prediction, a
fusion model F is finally implemented as:

L̂2 = F
{
L′

23, L
′
21

}
. (8)

Specifically, F is a weighted model, where the weights of t-
wo transitional predicted images in each band are determined by the
overall spectral similarity of M2 to M1 and M3, respectively, using
the MSE function, that is:

wb
23 =

MSEb
21

MSEb
21 +MSEb

23

, (9)

and
wb

21 = 1− wb
23, (10)

where

MSEb
2j =

∑
x,y(M2(x, y, b)−Mj(x, y, b))

2

N
, (11)

for j = {1, 3}. Using (9) and (10), the final prediction is formulated
as:

L̂2(x, y, b) = wb
21L

′
21(x, y, b) + wb

23L
′
23(x, y, b). (12)
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January 12, 2002 February 13, 2002 February 22, 2002

Fig. 2. Satellite image pairs used in our experiments, where the up-
per row displays the Landsat images and the bottom row displays the
corresponding MODIS images.

(a) Original image (b) STIFCNN (c) Proposed

Fig. 3. Original (a) and predicted Landsat images obtained by S-
TIFCNN (b) and the proposed method (c).

(a) Original image (b) STIFCNN (c) Proposed

Fig. 4. Zoomed details from the results in Fig. 3, where the first and
the second row show the results obtained for the subscenes marked
by the black and yellow rectangles in Fig. 3(a), respectively.

3. EXPERIMENTAL RESULTS

3.1. Study area and data

The dataset used for validation purposes is obtained from [12],
which is widely used for spatio-temporal fusion purposes. The s-
tudy area, the Coleambally irrigation district located in southern
New South Wales, Australia, is typically heterogenous. There are
17 cloud-free Landsat-MODIS pairs available in 2001-2002. All
the images were atmospherically and geometrically corrected, re-
sampled to a spatial resolution of 25m, and cropped to a size of
1720×2040 pixels [12]. The bands of the MODIS images have
been rearranged to match those of the Landsat images. As shown
in Fig. 3, we selected three image pairs collected on January 12,
2002, February 13, 2002, and February 22, 2002, corresponding to
t1-t3, respectively, and cropped them to a size of 1000×1000 pixel-
s. Furthermore, we also implemented another CNN-based method,
STIFCNN, for comparison purposes. STIFCNN was trained using
the image pairs of October 8, 2001, December 4, 2001, and April 11,
2002, following [11].

3.2. Evaluation metrics

We used five evaluation metrics to quantitatively compare our
proposed method with STIFCNN. The first one is the root mean
square error (RMSE), which gauges the reflectance difference be-
tween the predicted image L̂ and the real image L:

RMSE =

√∑
x,y

∑
b(L(x, y, b)− L̂(x, y, b))2

N
. (13)

The second is the correlation coefficient (r), which shows the
linear relationship between the predicted and real reflectance:

r =
σLL̂√
σLσL̂

, (14)

where σLL̂ is the covariance of real and predicted images, while σL

and σL̂ are their variances.
The third is the structure similarity (SSIM), which evaluates

the similarity of the overall structure between the predicted and real
images:

SSIM =
(2µLµL̂ + C1)(2σLL̂ + C2)

(µ2
L + µ2

L̂
+ C1)(σL + σL̂ + C2)

, (15)

where µL and µL̂ are the average values of the real and predicted
images, respectively, and C1 and C2 are small constants included in
order to avoid SSIM being zero. In our experiments, both C1 and
C2 are set to 0.001.

The forth one is the spectral angle mapper (SAM), which mea-
sures the spectral distortion of the predicted image:

SAM =
1

N

∑
x,y

arccos

∑
b L(x, y, b)L̂(x, y, b)√∑

b L
2(x, y, b)

∑
b L̂

2(x, y, b)
. (16)

The last metric is the erreur relative global adimensionnelle de
synthese (ERGAS), which indicates the overall spectral similarity of
two images:

ERGAS = 100
f

c

√√√√ 1

B

B∑
b=1

RMSE2
b

µ2
Lb

, (17)
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where f is the resolution of the fine image, c is the resolution of
the coarse image, and µLb and RMSEb are the average value and
RMSE of the bth band of the real image, respectively.

As it can be observed from the equations above, a smaller
RMSE, SAM and ERGAS (and a bigger r and SSIM) indicate better
performance of the evaluated methods.

3.3. Results and analysis

Fig. 3 shows the original (a) and predicted images obtained
by STIFCNN (b) and the proposed method (c), respectively, for the
Landsat image collected on February 13, 2002. For further compar-
ison, we extracted two subscenes from this scene and zoomed the
obtained results for these subscenes in Fig. 4, where the first and
second row respectively correspond to the subscenes marked by a
black and yellow rectangle in Fig. 3(a). As it can be observed, the
proposed method exhibits a good ability to capture the surface fea-
ture changes. Furthermore, it can generate a smoother image than
the one generated by the STIFCNN method, in which many rough
patches can be appreciated. This was expected since, in our pro-
posed method, CNNs are designed to carry out a “carving” process
and only need to learn the heterogeneity of fine pixels, while STIFC-
NN directly predicts the whole image from the coarse one (with low
spatial resolution). The considered fusion methods are statistical-
ly evaluated in Table 1. As it can be seen, the proposed method
achieves better results in terms of all the considered quality metrics,
suggesting that it can generate higher-quality predictions from both
the spectral and structural viewpoints.

Table 1. Quantitative assessment of the considered fusion methods.
STIFCNN Proposed

RMSE r SSIM RMSE r SSIM
Band 1 0.0114 0.9077 0.9462 0.0103 0.9207 0.9541
Band 2 0.0120 0.8895 0.9374 0.0109 0.9083 0.9480
Band 3 0.0118 0.9066 0.9442 0.0107 0.9220 0.9536
Band 4 0.0153 0.8388 0.9038 0.0128 0.8838 0.9297
Band 5 0.0121 0.9061 0.9427 0.0116 0.9205 0.9495
Band 6 0.0104 0.9249 0.9557 0.0100 0.9356 0.9605
ERGAS 1.2594 1.1132

SAM 0.1358 0.1239

4. CONCLUSION

In this paper, we propose a new CNN-based spatio-temporal
fusion approach for Landsat and MODIS image fusion. Our new-
ly proposed approach utilizes CNNs to learn the heterogeneity of
fine pixels from coarse images for prediction purposes. Here, we
define the heterogeneity of fine pixels as the difference between the
reflectance changes obtained from two types of images, i.e., the fine
ones and the coarse ones. Resulting from this process, our method
obtains two transitional predicted images and then fuses them to gen-
erate the final prediction. Our experimental results, conducted on
a standardized spatio-temporal fusion dataset, demonstrate that our
newly developed approach achieves state-of-the-art performance. In
the future, we will test our proposed approach on additional datasets.
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