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ABSTRACT

The probabilistic Latent Semantic Analysis (pLSA) model
has recently shown a great potential to uncover highly de-
scriptive semantic features from limited amounts of remote
sensing data. Nonetheless, the high computational cost of
this algorithm often constraints its operational application for
land cover categorization tasks. In this scenario, this paper
presents an Open Multi-Processing (OpenMP) implementa-
tion of the pLSA algorithm for unsupervised Synthetic Aper-
ture Radar (SAR) and Multi-Spectral Imaging (MSI) image
categorization. The experimental results suggest that multi-
core systems are an important architecture for the efficient
processing of both SAR and MSI datasets. Specifically, the
proposed approach is able to cover a real scenario exhibiting
good results in both accuracy and performance terms.

Index Terms— Open Multi-Processing (OpenMP), multi-
core processors, probabilistic Latent Semantic Analysis
(pLSA), land cover categorization.

1. INTRODUCTION

Over the past years, unsupervised land cover categorization
[1] has shown to play an important role within the remote
sensing community to cope with different Earth monitoring
challenges and needs [2]. Whereas traditional clustering-
based categorization approaches are often unable to deal with
the complex nature of airborne and space optical imagery [3],
the generative framework provided by the probabilistic Latent
Semantic Analysis (pLSA) model [4] has recently shown a
great potential to uncover high-level feature patterns to ef-
fectively categorize remote sensing Synthetic Aperture Radar
(SAR) and Multi-Spectral Imaging (MSI) data [5, 6, 7].

Nonetheless, the high computational cost of the pLSA al-
gorithm [8] often constraints its practical use in operational
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remote sensing scenarios, especially under challenging data
volume processing requirements [9]. As a result, more re-
search work is required to improve pLSA efficiency within
the remote sensing domain.

In the literature, it is possible to find few works that ex-
ploit some parallelism mechanisms for text analysis using the
pLSA model [10, 11]. However, processing operational re-
motely sensed data using parallel architectures faces some
technical challenges that motivate this research [12]. Accord-
ingly, this paper proposes a multi-core pLSA implementation
specially designed for unsupervised land cover categorization
tasks using the OpenMP API. More specifically, our imple-
mentation is based on guided-vectorization and OpenMP di-
rectives to accelerate the land cover categorization process.
This experimental study reveals that Xeon multi-core proces-
sors can provide significant speedup factors maintaining sim-
ilar accuracy with respect to the baseline version, using real
SAR and MSI datasets.

2. METHODOLOGY

2.1. Probabilistic Latent Semantic Analysis

The pLSA model [13] defines a probabilistic generative data
process which is performed as follows: (1) selecting a docu-
ment d with probability p(d); (2) picking a hidden class z ac-
cording to the conditional probability p(z|d); (3) generating a
word w with probability p(w|z). Accordingly, given the ob-
served data distribution p(w|d), which describes a corpus of
documents D = {d1, d2, ..., dM} in a particular word-space
W = {w1, w2, ..., wN}, the pLSA model estimates two prob-
ability distributions, the description of topics in words p(w|z)
and the description of documents in topics p(z|d).

In this work, the p(w|z) and p(z|d) model parameters
are estimated by maximizing the complete log-likelihood pre-
sented in Eq. (2), where n(w, d) represents the observable
document-word counts and K is the total number of topics.
Specifically, we use the Expectation-Maximization (EM) al-
gorithm [14] which work in two stages: (i) E-step, where
the likelihood expected values are estimated and (ii) M-step,
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Fig. 1. The pLSA model graphical representation.

where the new optimal values for the model parameters are
calculated. The E-step can be computed using the Bayes’ rule
and the chain rule as Eq. (2) shows. In the case of the M-step,
we compute the pLSA likelihood partial derivatives, set them
as equal to zero and solve the equations to obtain Eqs. (3)-(4).
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The pLSA process is performed as Algorithm 1 shows.
First, p(w|z) and p(z|d) are randomly initialized. Then, the
E-step [Eq. (2)] and the M-step [Eqs. (3)-(4)] are alternated
until p(w|z) and p(z|d) parameters converge. As default con-
vergence conditions, we use a 10−6 stability threshold in the
log-likelihood and a maximum number of 2000 EM itera-
tions.

Algorithm 1: EM algorithm for pLSA.
input: n(w, d), K
I = 0; T =∞; L = 0;
p(w|z), p(z|d) random initialization;
while (I < 2000) and (T > 10−6) do

E-step: p(z|w, d)⇐ Eq. (2);
M-step: p(w|z), p(z|d)⇐ Eqs. (3)-(4);
`c ⇐ Eq. (1); T = `c − L; L = `c; I = I + 1;

end

2.2. Unsupervised Land Cover Categorization Frame-
work

The considered pLSA-based land cover categorization frame-
work consists of the following three steps (Fig. 2):

(i) Image characterization: first, we use the visual-bag-of-
words (vBoW) approach [15] to apply pLSA over re-
motely sensed optical data. The input images are ini-
tially tiled into 32 × 32 image patches to define topic
model documents (d). Then, the k-means clustering al-
gorithm [16] is used to build the visual vocabulary con-
sidering vectorized 3 × 3 image patches as local prim-
itive features and 50 clusters. Finally, the local primi-
tive features of each topic model document are encoded
in a single histogram of visual words by accumulating
the number of local features into their closest clusters.
From this characterization step, we obtain a collection
of M documents D = {d1, d2, ..., dM} described in a
50-word visual vocabulary, i.e. di = {n(wj , di)}∀j ∈
{1, 2, ..., 50}.

(ii) pLSA modeling: second, we use the pLSA algorithm
(Algorithm 1) to estimate both p(w|z) and p(z|d)
model parameters by considering K topics, which
is set to the number of ground-truth image categories.

(iii) Unsupervised land cover categorization: third, each
document is categorized according to its dominant
topic, that is, the highest probability value in p(z|d)
(argmaxk p(zk|d)) provides the Earth surface catego-
rization we use as land cover prediction.

3. PARALLEL IMPLEMENTATION

In this section, a parallel implementation of the aforemen-
tioned methodology is described. Our implementation is
based on two levels of parallelism: multi-threading using the
OpenMP paradigm and SIMD (single-instruction, multiple-
data) by means of guided-vectorization. OpenMP paralleliza-
tion has been carried out on the external loops while, for
SIMD exploitation, the internal loops were chosen.

Guided vectorization allows the Intel compiler to identify
and optimizes code fragments exploiting SIMD parallelism.
In order to enable compiler guided vectorization, memory
pointer disambiguation is enabled with the use of the restrict
tag. Due to the fact that reduction operations usually inhibit
auto-vectorization by potential data dependencies, reduction
fragments have been rewritten using temporal local variables,
and the pragma omp parallel for simd is also added to force
vectorization when the compiler is not able to detect potential
SIMD parallelism.

In this work, an efficient serial C (baseline version) was
developed from a Python implementation. The layouts of the
arrays have been selected according to their pattern access in
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Fig. 2. The land cover categorization framework is feeded by an image, and after apply an image characterization implemented
by a vBoW, the land cover categorization is performed with pLSA.

order to exploit the memory hierarchy efficiently. In addition,
data structures were aligned in memory.

We briefly summarize the main optimization techniques
used for the pLSA algorithm in the following items:

1. For the E-step, #pragma omp parallel for directives are
used to achieve the multi-threading version. It is im-
portant to note that the most costly part corresponds to
the computation of

∑
z p(w|z)p(z|d) [Eq.( 2)]. As we

need to check the denominator in order to avoid zero
division, the last loop iteration was isolated. This loop-
split strategy not only favors multi-threading exploita-
tion by avoiding non-zero checking, but also improves
the SIMD extraction. At this point, it is important to
note that it is also possible to configure the work-load
distribution among the threads by using the schedule
clause. As each for loop iteration is nearly constant,
static scheduling has been adopted in our implementa-
tion.

2. For the M-step, all the optimization techniques de-
scribed above have been performed: multi-threading
expression by means of #pragma omp parallel for di-
rectives, use of local variables in reductions, explicit
use of the omp parallel for simd pragmas, loop-split to
avoid zero division in the denominator of Eqs. (3)-(4)
and static scheduling policy selection.

4. EXPERIMENTAL RESULTS

4.1. Dataset

The Munich [5] dataset has been considered in this work.
Specifically, this remote sensing collection includes a Sentinel-
1B (SAR) and a Sentinel-2A (MSI) operational product of
Munich (Germany), acquired on September 29 and 30, 2016.
The data used in this work is available from the German Earth
Observation Center website (http://goo.gl/ma9dUt)
where ground-truth land-cover information (’Agriculture’,
’Building’, ’Forest’ and ’Water’) is also accessible for assess-
ment purposes. Accordingly, the number of topics (K) has
been fixed to 4 for the unsupervised land cover categorization
experiments.

4.2. Accuracy Evaluation

Table 1 provides a quantitative evaluation of the unsupervised
land cover categorization results for Munich dataset in terms
of accuracy, precision, recall and f-score metrics. In partic-
ular, ground truth image categories are shown in rows and
Sentinel-1 (SAR) and Sentinel-2 (MSI) results are presented
in columns. It should be noted that Table 1 reports the average
percentage and the corresponding standard deviation obtained
after five runs of the indicated algorithms, pLSA or OpenMP-
pLSA.

CATEGORY

MUNICH

SENTINEL-1 (SAR) SENTINEL-2 (MSI)

pLSA OpenMP-pLSA pLSA OpenMP-pLSA

A
C

C
U

R
A

C
Y Agriculture 81.51±0.03 81.51±0.03 78.13±0.03 78.56±0.54

Forest 74.58±0.14 74.4±0.12 92.3±0.07 92.38±0.15

Building 85.79±0.14 85.62±0.13 79.92±0.06 81.98±2.54

Water 99.33±0.0 99.33±0.0 99.59±0.01 97.24±2.88

AVG 85.3±0.06 85.22±0.05 87.48±0.02 87.54±1.2

PR
E

C
IS

IO
N

Agriculture 80.81±0.03 80.79±0.05 84.54±0.16 84.57±0.14

Forest 58.14±0.17 57.93±0.14 87.37±0.22 87.45±0.24

Building 94.48±0.4 94.85±0.26 48.66±0.09 52.93±5.26

Water 94.55±0.03 94.55±0.03 96.19±0.31 72.86±28.81

AVG 81.99±0.15 82.03±0.09 79.19±0.08 74.45±11.84

R
E

C
A

L
L

Agriculture 75.02±0.07 75.08±0.05 60.45±0.17 61.63±1.41

Forest 87.43±0.07 87.46±0.05 90.15±0.15 90.31±0.24

Building 27.83±0.9 26.77±0.76 77.39±0.25 75.01±2.72

Water 87.78±0.11 87.78±0.11 93.07±0.49 93.13±0.66

AVG 69.52±0.36 69.27±0.3 80.26±0.13 80.02±0.94

F-
SC

O
R

E

Agriculture 77.81±0.04 77.83±0.04 70.49±0.07 71.29±0.98

Forest 69.83±0.1 69.7±0.1 88.74±0.08 88.86±0.22

Building 42.99±1.03 41.75±0.9 59.75±0.13 61.79±2.58

Water 91.04±0.06 91.04±0.06 94.6±0.11 78.18±20.05

AVG 70.42±0.42 70.08±0.36 78.4±0.02 75.03±8.18

Table 1. Quantitative assessment of the unsupervised land
cover categorization results.

4.3. Performance Evaluation

In order to evaluate the performance, it is important to empha-
size that our parallel and baseline versions provide very simi-
lar results in terms of accuracy, using the Intel C++ Compiler
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18.0.1 and OpenMP 4.5 with −O3, −restrict, −xAV X and
−qopenmp flags. The considered versions have been tested
on a multi-core system equipped with an Intel Xeon E5-1620
v3 (4 physical cores) at 3.50 GHz, with 32 GBytes of RAM
memory and Debian GNU/Linux 9 as the operating system
installed.

For illustrative purposes, Table 2 shows the timing re-
sults and speedups for the Munich dataset, considering both
Sentinel-1 and Sentinel-2 sensors. The vectorization version
is performed through the -xAVX (Intel Advanced Vector
Extensions) and −O3 flags, where specific SIMD instruc-
tions are generated, data locality is exploited, and redundant
computations are avoided. Accordingly, a slight improve-
ment is achieved regarding to the baseline version but it is not
enough to significantly accelerate the process. For this pur-
pose, OpenMP directives are added to the previous version in
order to obtain a better parallelization, achieving a relevant
speedup of around 4x using 4 threads.

Table 2. Processing times (in seconds) and speedups achieved
for the proposed multi-core implementation considering the
best thread configuration (in the parentheses).

Approaches
Munich

Sentinel-1 (SAR) Sentinel-2 (MSI)
Baseline 113.178 135.419
SIMD 84.606 87.331

SIMD + OpenMP 31.969 (4) 32.726 (4)
Speedup 3.54x 4.14x

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have discussed the possibility of exploit-
ing parallel architectures for unsupervised land cover catego-
rization of remotely sensed data. As a case study, we have
presented an OpenMP+SIMD implementation of the pLSA
algorithm. Probabilistic semantic analysis has the advantage
that it can be performed in unsupervised fashion. Our experi-
mental results show the effectiveness of the proposed parallel
implementation, not only in terms of clustering accuracy but
also in terms of computational performance. As future work,
we will use this implementation for spectral unmixing of hy-
perspectral images.
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