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ABSTRACT

Sparse representation-based approaches have been suc-
cessfully applied to remotely sensed hyperspectral image un-
mixing. In recent years, sparse unmixing techniques have in-
corporated spatial information into the sparse unmixing mod-
el, achieving improved fractional abundance results. Most
spatial-based sparse unmixing methods utilize regular-shaped
neighborhoods (e.g., a cross or a square window) to charac-
terize the spatial-contextual information around each pixel.
However, the spatial characteristics of natural scenes are not
always uniform, but vary according to the observed objects.
Therefore, assuming uniform spatial neighborhoods may not
be consistent with real spatial structures in the scene. Super-
pixels offer a good solution to this problem since they can
better characterize such spatial structures. Based on this ob-
servation, in this paper we develop a new superpixel-guided
sparse unmixing (SPGSU) method for hyperspectral scenes.
The proposed SPGSU includes the spatial correlation through
a superpixel-based technique rather than assuming predefined
pixel grids. Each superpixel can be regarded as a small spa-
tial region, whose shape and size can be adaptively changed
to accommodate different spatial structures. Our experimen-
tal results, conducted using simulated data sets, quantitatively
indicate that our newly proposed method produces better re-
sults than other advanced spectral unmixing methods.

Index Terms— Hyperspectral imaging, spatial-based s-
parse unmixing, superpixels, spatially-weighted unmixing.
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1. INTRODUCTION

Due to the (often limited) spatial resolution of imaging
spectrometers, mixed pixels often dominate remotely sensed
hyperspectral images [1]. To deal with this problem, spec-
tral unmixing has been widely used to identify the spectrally
pure components in a scene (endmembers) and to estimate
the fractional abundances of such pure spectral signatures in
each mixed pixel [2]. Conventional (linear) spectral unmixing
algorithms may face difficulties when extracting the endmem-
bers directly from the scene, since both the estimation of the
number of endmembers and the actual presence of spectrally
pure components in the scene may not be feasible in prac-
tice [1]. Sparse unmixing [3], as a semi-supervised approach
in which mixed pixels are expressed in the form of combina-
tions of a number of pure spectral signatures available a pri-
ori in a large spectral library, can alleviate the aforementioned
drawbacks. For instance, the sparse unmixing algorithm via
variable splitting and augmented Lagrangian (SUnSAL) [3],
the collaborative SUnSAL (CLSUnSAL) [4], and the dou-
ble reweighted sparse unmixing (DRSU) [5] algorithms have
been successfully applied for spectral unmixing purposes. Al-
though these methods obtained promising results, they con-
sider pixels in the hyperspectral scene as independent entities,
disregarding the spatial-contextual information in the hyper-
spectral image [6].

To address the aforementioned limitation, some spatial-
based sparse unmixing algorithms have been proposed that
include the spatial information on the final solution. Ex-
amples include the sparse unmixing via variable splitting
augmented Lagrangian and total variation (SUnSAL-TV) [6],
the nonlocal sparse unmixing (NLSU) [7] or the centralized
collaborative sparse unmixing (CCSU) [8]. They generally
adopt regular-shaped neighborhoods (e.g., a cross or a square
window) to characterize the spatial-contextual information
around each pixel. However, the spatial characteristics of nat-
ural scenes are not always uniform, but vary according to the
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observed objects. Therefore, assuming uniform spatial neigh-
borhoods may not be consistent with real spatial structures in
the scene.

Superpixels offer a good solution to this problem since
they can better characterize such spatial structures. For in-
stance, the simple linear iterative clustering (SLIC) algorithm
[9] has been widely used to construct superpixels in remotely
sensed hyperspectral images. In this paper, we develop a new
superpixel-guided sparse unmixing (SPGSU) method for hy-
perspectral scenes. The proposed SPGSU includes the spatial
correlation using SLIC to construct superpixels that are later
used to guide the sparse unmixing process. Each superpix-
el can be regarded as a small spatial region, whose shape and
size can be adaptively changed to accommodate different spa-
tial structures. The proposed SPGSU aims at obtaining a more
accurate and reliable characterization of spatial-contextual in-
formation that is constrained simultaneously from the spectral
and spatial domains under the ℓ1 framework. The spectral
weight, following previous developments [5,10], enforces the
sparsity of non-zero rows corresponding to the true endmem-
bers in the estimated abundances. The superpixel-related spa-
tial weight aims at promoting spatially homogenous regions
in the image.

The remainder of the paper is organized as follows. Sec-
tion 2 describes some related works. Section 3 describes the
proposed SPGSU method in detail. Section 4 presents our
experimental results with simulated hyperspectral scenes. Fi-
nally, section 5 concludes the paper with some remarks and
hints at plausible future research lines.

2. RELATED WORKS

Let Y = [y1, . . . ,yn] ∈ Rd×n denote a hyperspectral
image, where n is the number of pixel vectors and d is the
number of bands. Let A ∈ Rd×m be a large spectral li-
brary, where m is the number of spectral signatures in A, and
X = [x1, . . . ,xn] denotes the abundance maps correspond-
ing to library A for the observed data Y. With the afore-
mentioned definitions in mind, sparse unmixing finds a linear
combination of endmembers for Y from the spectral library
A:

Y = AX+N s.t.: X ≥ 0, (1)

where N ∈ Rd×n is the error, and X ≥ 0 is the so-called
non-negativity constraint (ANC). It should be noted that we
explicitly enforce the ANC constraint without the sum-to-one
constraint (ASC), due to some criticisms about the ASC in the
literature [3].

As the number of endmembers involved in a mixed pixel
is usually very small when compared with the size of the spec-
tral library, the abundance matrix X is sparse. Then the un-
mixing problem can be formulated as an ℓ2−ℓ0 or ℓ2−ℓ1 op-
timization (as in the SUnSAL algorithm). However, SUnSAL
focuses on analyzing the spectral information without con-
sidering the spatial-contextual information. Currently, several

spatial-based sparse unmixing algorithms have been shown to
obtain better results by including spatial-contextual informa-
tion. However, most of these methods rely on regular-shaped
neighborhoods (e.g., a cross or a square window) to model the
spatial-contextual information around each pixel, which lim-
its the characterization of real spatial structures in the scene.

3. PROPOSED METHOD

With the goal of exploiting the spatial-contextual infor-
mation more efficiently in the sparse unmixing process, we
develop a new SPGSU method that exploits the spatial cor-
relation present in remotely sensed hyperspectral images by
using superpixels. Among several available superpixel algo-
rithms, we have selected the SLIC due to its capacity to gen-
erate high quality, compact, and nearly uniform superpixels.
It has been successfully applied to hyperspectral images in
recent works [11]. As a result, the SLIC method was used to
generate superpixels in this work.

Fig. 1 illustrates the difference between fixed spatial
neighborhoods and superpixels, where the pixels that belong
to the same set of endmembers are depicted in the same color.
In the figure, we consider a toy example made up of a scene
with 8 × 8 pixels, and each pixel is represented by a circle.
Fig. 1(a) shows the spatial regions that are defined by a fixed-
size window, while Fig. 1(b) shows the ideal superpixels. As
shown in Fig. 1(a), regular grids cannot perfectly characterize
the spatial-contextual information. In contrast, superpixels
can explicitly and naturally represent spatial neighborhood-
s, where the shape and size of the resulting superpixels are
fully adaptive. Furthermore, each superpixel is considered
to be a spatially homogeneous region, which preserves the
consistency and uniformity of abundance maps.

(a) (b)

Fig. 1. Toy example illustrating the difference between fixed
spatial neighborhoods (a) and superpixels (b).

Inspired by the success of weighted ℓ1 minimization in
sparse signal recovery [10, 12], and also by the success of
the double reweighted sparse unmixing with total variation
(DRSU-TV) [13] algorithm, which uses weighting factors to
improve the unmixing performance, our SPGSU simultane-
ously exploits the spectral dual sparsity as well as the spatial
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(a) Endmember 1 (b) Endmember 2 (c) Endmember 3 (d) Endmember 4 (e) Endmember 5

(f) Endmember 6 (g) Endmember 7 (h) Endmember 8 (i) Endmember 9 (j) Superpixel map (spectral band #80)

Fig. 2. True fractional abundances of the endmembers in our simulated dataset, and obtained superpixel map (the number of
superpixels is set to 400).

smoothness of fractional abundance maps as follows:

min
X

1

2
||AX−Y||2F+λ||(W1Wspg)⊙X||1,1, s.t.: X ≥ 0,

(2)
where ∥ · ∥F is the Frobenius norm, ||X||1,1 =

∑n
j=1 ||xj ||1,

with xj being the jth column of X. The operator ⊙ de-
notes the element-wise multiplication of two variables, and
λ is a regularization parameter. Last but not least, W1 =
diag(w1,11, . . . , w1,ii, . . . , w1,mm) ∈ Rm×m,(i = 1, . . . ,m)
is the spectral weight, aimed at promoting nonzero row vec-
tors and defined as follows:

wt+1
1,ii =

1

||Xt(i, :)||2 + ε
, (3)

where Xt(i, :) is the i-th row in the estimated abundance map
at the t-th iteration, and ε > 0 is a small positive value. No-
tice that, as shown in Eq. (3), large weights can be used to
discourage non-zero entries in the recovered signal, while s-
mall weights encourage non-zero entries [13].

As mentioned earlier, our method characterizes the spatial-
contextual information in hyperspectral images by using su-
perpixels. For this purpose, we introduce a superpixel-based
spatial weighting factor Wspg . Let wt+1

spg,ij be the element of
the i-th line and j-th row in Wspg at iteration t+1, expressed
as follows:

wt+1
spg,ij =

1

f(xt
ij) + ε

, (4)

where f(·) is a function that explicitly exploits the spatial cor-
relation through the superpixel system as follows:

f(xij) =

∑
ij∈S(h) xS(h)

k
, (5)

where S(h) denotes the superpixel set, h ∈ {1, 2, . . . , c} de-
notes the number of superpixel sets obtained by the SLIC al-
gorithm, and k denotes the total number of elements in the
superpixel set S(h). xS(h) denotes the abundance of all the

elements in the superpixel set S(h). For each superpixel, the
average value of element vectors in the superpixel serves as
the new value for each element. In other words, all elements
in the same superpixel set S(h) are assigned the same val-
ue. The optimization problem associated to our method can
be easily solved by using the alternating direction method of
multipliers (ADMM) [14].

4. EXPERIMENTAL RESULTS

The spectral library that we use in our synthetic image
experiments is a dictionary of minerals extracted from the U-
nited States Geological Survey (USGS) library1. Such library,
denoted by A, contains m = 222 materials (different mineral
types), with spectral signatures with reflectance values con-
sisting of L = 221 spectral bands and distributed uniform-
ly in the interval 0.4-2.5µm. Following the work in [15], a
database of 100×100-pixel synthetic hyperspectral scenes has
been created using fractals to generate distinct spatial pattern-
s often found in nature. Nine spectral signatures are chosen
from A to generate the synthetic hyperspectral images. For
illustrative purposes, Fig. 2(a)-(i) shows the true abundance
maps of the considered endmembers.

After generating the simulated data cubes, they were con-
taminated with i.i.d. Gaussian noise, using three levels of
signal-to-noise ratio (SNR): 30, 40 and 50 dB. We compare
our SPGSU algorithm with other advanced algorithms for s-
parse unmixing, i.e. SUnSAL [3], SUnSAL-TV [6], DR-
SU [5] and DRSU-TV [13].

For quantitative assessment, the signal-to-reconstruction
error (SRE), measured in dB, and the probability of suc-
cess (ps) are used to evaluate the unmixing accuracy. Let
x̂ be the estimated abundance, and x be the true abun-
dance. The SRE(dB) can be computed as SRE(dB) =
10 · log10(E(||x||22)/E(||x − x̂||22)), and ps is given by

1Available online: https://speclab.cr.usgs.gov/spectral-lib.html
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Table 1. SRE(dB) and ps scores achieved after applying different unmixing methods to our simulated data (the optimal param-
eters for which the reported values were achieved are indicated in the parentheses).

Algorithm SNR=30dB SNR=40dB SNR=50dB
SRE(dB) ps SRE(dB) ps SRE(dB) ps

SUnSAL 10.0847 0.9038 17.7578 0.9961 26.3684 1
(λ = 1e-2) (λ = 3e-3) (λ = 1e-3)

SUnSAL-TV 14.7077 0.9945 23.1831 0.9999 31.4355 1
(λ = 3e-3; λTV = 4e-3) (λ = 1e-3; λTV = 1e-3) (λ = 9e-4; λTV = 3e-4)

DRSU 20.4370 0.9983 33.6210 1 43.4449 1
(λ = 3e-3) (λ = 3e-3) (λ = 5e-4)

DRSU-TV 24.6846 0.9998 35.2502 1 43.4449 1
(λ = 2e-3; λTV = 4e-3) (λ = 3e-3; λTV = 6e-4) (λ = 5e-4; λTV = 0)

SPGSU 24.9950 1 35.9939 1 44.1235 1
(λ = 5e-3) (λ = 3e-3) (λ = 6e-4)

ps ≡ P (∥x̂− x∥2/∥x∥2 ≤ 3.16) [3], where E(·) denotes the
expectation function. The larger the SRE(dB) or the ps, the
more accurate the unmixing results.

Table 1 shows the SRE(dB) and ps results achieved by the
different tested algorithms under different SNR levels. For all
the tested algorithms, the input parameters have been careful-
ly tuned for optimal performance. As shown in Fig. 2(j), the
number of superpixels is set to 400 for oversegmenting the
hyperspectral scene. From Table 1, we can observe that the
proposed SPGSU algorithm obtains better SRE(dB) results
than all other tested algorithms, in all cases. The ps obtained
by the proposed approach are also better than those obtained
by other algorithms in the case of low SNR, which reveals
that the inclusion of spatial information leads to high robust-
ness. Based on the aforementioned results, we can conclude
that our superpixel-based spatial weighted strategy offers the
potential to improve sparse unmixing performance.

5. CONCLUSIONS AND FUTURE WORK

In this work, we have introduced a new superpixel-guided
sparse unmixing algorithm (SPGSU) for remotely sensed
hyperspectral images. Our SPGSU exploits the spatial-
contextual information contained in hyperspectral images
by using superpixel-guided spatial weights. Our experiments
with simulated hyperspectral data reveal that the SPGSU
algorithm consistently achieves robust spectral unmixing per-
formance in comparison with other advanced algorithms.
Future work will be focused on conducting additional experi-
ments with real hyperspectral images.
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