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ABSTRACT

Nonlinear unmixing of hyperspectral images has been a
very challenging research problem, as it needs to consider the
physical interactions between the sunlight scattered by mul-
tiple materials. In this paper, we propose a new approach
for nonlinear unmixing which is based on multi-task learning
(MTL) with low-rank matrix factorization (LRMF). The pro-
posed approach establishes two tasks to conduct the unmix-
ing problem under a nonlinear mixing model. In the first task,
we employ LRMF to obtain endmember signatures and their
corresponding abundance fractions simultaneously. Then, the
second task uses LRMF to solve interactions from multiple
scattering. The effectiveness of the proposed method is ver-
ified by using real hyperspectral data. Compared with other
state-of-the-art nonlinear unmixing algorithms, the proposed
approach demonstrates very competitive performance.

Index Terms— Hyperspectral data, Nonlinear unmixing,
Multi-Task Learning, Low-Rank Matrix Factorization

1. INTRODUCTION

Hyperspectral imaging has been extensively adopted in
many fields [1, 2]. However, due to the relatively low spatial
resolution of these images, several materials may be mixed
in a pixel, which may lead to inaccuracies in the quantifica-
tion of the considered scenes, thus limiting the application of
hyperspectral data in a variety of applications [3, 4, 5]. The
interpretation of mixed pixels mainly relies on spectral un-
mixing (SU) techniques [6, 7].
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SU approaches are mainly based on two mixing models,
including the linear spectral mixing model (LSMM) and the
nonlinear spectral mixing model (NSMM) [8, 9]. LSMM is
a simplified model which assumes that the photons reaching
the sensor have interacted with just one material. Over the
last few decades, most SU methods were developed under the
LSMM considering its simplicity and efficiency. Nonethe-
less, it is known that the LSMM may not lead to a good ap-
proximation in many practical scenes. In contrast, NSMMs
assume that the mixing should be nonlinear in real scenarios,
due to physical interactions between the sunlight scattered by
multiple materials [10]. To address the problem of multiple
scattering, several works note that handling the second-order
scattering is sufficient, while higher order terms can be ne-
glected [11]. These mixing models are referred to as bilinear
mixture models [11, 12]. Our proposed approach adopts the
bilinear model to develop a new NSMM algorithm for hyper-
spectral images.

Multi-task learning (MTL) can perform multiple tasks in
one step, which may improve the performance by exploiting
shared representation across tasks [13, 14, 15]. Furthermore,
MTL may help the final results avoid local minima through
shared representation, because the local minima of differen-
t tasks are often in different positions [16]. Since SU may
be regarded as the solution to an optimization problem, MTL
may help to reduce the possibility that the results are trapped
in local minima. Actually, MTL has been used to characterize
multilinear models, which learn a bilinear mapping for mod-
eling the interactions between tasks [13]. With respect to the
bilinear model, the collinearity problem for endmembers and
second-order scattering is a common phenomenon that may
lead to a degradation of the performance of bilinear unmix-
ing [17, 18]. Nonetheless, MTL may alleviate the effect of
collinearity by adopting a shared representation of different
tasks during the implementation of the unmixing process.
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Low-rank matrix factorization (LRMF) is a widely used
approach for extracting foreground and subtracting back-
ground from videos or images. Its main idea is to extract the
low-rank approximation of the data matrix from the product
of two smaller matrices, corresponding to the basis matrix
and the coefficient matrix [19, 20]. With respect to the bi-
linear model, the SU formulation can be decomposed as two
parts, including the linear part and the bilinear part. For the
abundance estimation, considering the spatial information
contained in the hyperspectral image, the linear part can be
regarded as the objects of the foreground, while the interac-
tions of the bilinear part resemble the camera jitters on the
background.

In this work, we develop a new approach (named MLRM-
F) that combines MTL with LRMF for nonlinear unmixing of
hyperspectral images. The proposed approach takes advan-
tage of the aforementioned characteristics of MTL and LRM-
F to provide a completely new perspective on the nonlinear
SU problem. The remainder of this paper is organized as fol-
lows. Section 2 introduces the proposed MLRMF approach.
In section 3, we use the AVIRIS Moffett Field data to evaluate
the proposed approach, conducting a quantitative comparison
with other unmixing algorithms. Finally, section 4 concludes
this work with some remarks.

2. PROPOSED APPROACH

The proposed MLRMF includes two main tasks. In the
first task, which deals mainly with the linear part of the model,
LRMF is employed to obtain a basis matrix and a coefficient
matrix, corresponding to endmember signatures E ∈ Rd×m

and abundance fractions A ∈ Rm×n, respectively. In the
second task, which deals with the bilinear part of the model,
we also adopt LRMF to obtain two low-rank matrices, corre-
sponding to a bilinear endmember matrix D ∈ Rd×l and an
interacted abundance matrix B ∈ Rl×n, respectively, where
m denotes the number of endmembers, l = m(m − 1)/2
denotes the number of bilinear components, n is the number
of pixels, and d represents the number of bands [17]. Final-
ly, the observed image Y ∈ Rd×n would be decomposed as
the endmembers, abundances and the interactions of bilinear
part. Following the assumptions in [12], the matrix form of
the bilinear model is written as:

Y = EA+DB+N (1)

s.t.: A ≥ 0,B ≥ 0,1T
mA = 1T

n ,

where N denotes the error matrix, e.g., Gaussian noise.

2.1. Objective function of MLRMF

By regularizing the error cost, the objective function is
defined as follows:

(E,A,D,B) = argmin
1

2
∥Y −EA−DB∥2F

+f1(E,A) + f2(D,B),
(2)

where f1(E,A) and f2(D,B) are the regularization terms for
constraining the linear and bilinear parts, respectively.

In this work, we employ MTL to optimize the unmix-
ing objective function. Following the SU basic formulation,
the optimization problem is transformed to a regularized sub-
problem. In this paper, E and A are initialized by using vertex
component analysis (VCA) [21] and fully constrained least
squares (FCLS) [22], respectively. The bilinear matrix D and
the corresponding coefficients B can then be initialized by
E and A. Following the bilinear model in [12, 17, 18], let
∀ i ∈ {1, . . . ,m − 1}, j ∈ {i + 1, . . . ,m}, for the bilinear
endmember d(i,j), we have

d(i,j) = ei ⊙ ej , (3)

where ⊙ is the Hadamard product operation. With respect to
B, let ai,q and aj,q be the i-th element and the j-th element
of the q-th column of A, respectively, b(i,j),q be the element
of the q-th column of B, we have

b(i,j),q = ai,qaj,q. (4)

Finally, the reconstruction Ŷ can be obtained as

Ŷ = EA+DB. (5)

where the root-mean-square-error (RMSE) is given by

RMSE(Y, Ŷ) =
1

2
∥Y − Ŷ∥2F . (6)

We emphasize that the training process stops when RMSE
reaches a convergence threshold.

2.2. MLRMF for Task 1 (linear part of the SU model)

LRMF approximates the input matrix as the product of
two small matrices [19]. For the first task, we assume that
A and the transposition of E possess rational low-rank struc-
tures. Then, the objective function of the sub-problem is
rewritten as:

(E,A)Task 1 = min
E,A
∥Y −EA−DB∥2F +µ1ℜE(E)

+υ1∥A∥∗,
(7)

where µ1 and υ1 are the coefficients of the sub-problem. The
regularizations ℜE(E) and ∥A∥∗ are defined as:

ℜE(E) =
∑m

i=1(r
T
i hi)

T rTi hi,

∥A∥∗ = Tr(
√
ATA),

(8)
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where Tr(·) denotes the trace norm to impose low-rank, T
represents matrix transposition,

ri = eti − et−1
i ,

hi ← ϑ ri exp(− 1

2σ2
∥ri∥22), (9)

where t denotes the number of iterations, we empirically set
σ = 4.5 and ϑ = 0.9, respectively.

With respect to E and A, we employ the gradient descent
for the solution,

E← E− ηE∇E,

A← A− ηA∇A.
(10)

where ∇E and ∇A are gradients about E and A, respective-
ly. The corresponding learning rates ηE and ηA are estimated
by Armijo rule [23].

2.3. MLRMF for Task 2 (bilinear part of the SU model)

In this work, the background possesses a low-rank struc-
ture, i.e., B is assumed to be a low-rank matrix. In the second
task, the objective function is defined as follows:

(D,B)Task 2 = min
D,B
∥Y −EA−DB∥2F + υ2∥B∥∗,

(11)
where ∥B∥∗ = Tr(

√
BTB), υ2 is the regularization coeffi-

cient of the sub-problem. Since B is defined as a low-rank
and non-negative structure, the solution can be obtained as
follows

B← sgn(B̃).∗max(B̃−ΛB̃ , 0), (12)

where sgn(·) is the sign function and .∗ is the dot product, the
threshold is given as ΛB̃ = λ./(|̃B|+λ) with λ = 0.001 and

B̃ = U diag(S̃) VT ,

where U,S,V are obtained by the singular value decom-
position (SVD) of B, i.e., [U,S,V] = SVD(B) and S̃ =
max(|diag(S)| −ΛS , 0), with ΛS = λ./(|diag(S)|+ λ).

Finally, we update the bilinear endmember matrix D as
follows:

D← D. ∗ (Y −EA)BT ./DBBT . (13)

3. EXPERIMENTAL RESULTS

The effectiveness of the proposed MLRMF is evaluated
by using a real hyperspectral image, which was acquired over
Moffett Field, CA, USA in 1997 by the Airborne Visible
Infra-Red Imaging Spectrometer (AVIRIS) [24]. In this pa-
per, we use a sub-image of 50 × 50 pixels. It includes 189

Table 1. Reconstruction errors (×10−2) obtained by different
unmixing methods for the AVIRIS Moffett Field image.

Method VCA+FCLS VCA+GBM VCA+Semi-NMF
RE 2.0843 2.0131 1.9905

Method rNMF MLRMF
RE 1.9610 1.9463

bands covering the wavelengths from 0.4µm to 2.5µm and is
comprised of vegetation, soil, and water. Noted that the low
signal-to-noise ratio (SNR) and the water-absorption bands
were removed from the sub-image.

Here, we evaluate the proposed MLRMF by compar-
ing with several classical unmixing algorithms, such as F-
CLS [22], generalized bilinear model (GBM) [11], Semi-
Nonnegative Matrix Factorization (Semi-NMF) [17], and
robust nonnegative matrix factorization (rNMF) [25]. It
should be noted that FCLS is a linear unmixing method,
while the rest are nonlinear unmixing approaches. Moreover,
FCLS, GBM, and Semi-NMF only obtain abundance frac-
tions, while rNMF and the proposed MLRMF can estimate
both endmembers and abundances. In this paper, we use V-
CA to extract endmembers signatures before running FCLS,
GBM, and Semi-NMF. Due to lack of library signatures, we
just use reconstruction error (RE) to assess the accuracy of
the unmixing results, which is given as follows:

RE({yq}nq=1, {yq}nq=1) =
1
n

∑n
q=1

√
∥yq − yq∥22, . (14)

where Y = EA ∈ Rd×n is the data reconstructed by E and
A [26, 27, 28]. The quantitative results are shown in Table
1. It can be observed that the proposed MLRMF obtained the
best result.

For illustrative purposes, Fig.1 shows the abundance map-
s, estimated endmembers, and bilinear interactions on abun-
dances. These visual maps further demonstrate the effective-
ness of the proposed MLRMF for hyperspectral unmixing
purposes.

4. CONCLUSIONS

This paper introduced a new approach for nonlinear un-
mixing, which includes two main parts: 1) linear unmixing of
the foreground and 2) bilinear unmixing of the background.
The approach is based on the assumption that, in order to
address the multiple scattering problem, handling the second-
order scattering is sufficient, while higher order terms can
be neglected. The proposed method combines multi-task
learning (MTL) with low-rank matrix factorization (LRM-
F) to perform accurate nonlinear unmixing of hyperspectral
scenes. Our newly developed MLRMF method is able to
obtain endmember signatures, abundance fractions, and the
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Fig. 1. The results obtained by the proposed MLRMF on the
Moffett dataset. Top: abundance maps (matrix A). Middle:
estimated endmember signatures (matrix E). Bottom: bilinear
interactions on abundances (matrix B).

bilinear interactions on endmembers and abundances, in one
step. By taking advantage of MTL, the collinearity and lo-
cal convergence problems are alleviated. Our experimental
results showed that the proposed approach provides compet-
itive performance when compared to other nonlinear unmix-
ing approaches. Future work will be focused on conducting
a more exhaustive evaluation of the proposed approach us-
ing additional hyperspectral scenes and both linear/nonlinear
unmixing methods.
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