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Abstract—Denoising is a common pre-processing step prior to
analysis and interpretation tasks such as classification, unmixing
and target detection, typically carried out for hyperspectral
images (HSIs). In this paper we develop which performs spectral-
spatial HSI denoising through a convolutional neural network
(CNN). Our newly developed method, called single denoising
CNN (HSI-SDeCNN), considers HSIs as 3D data cubes, per-
forming the denoising process with only one single model.
Experimental results on both synthetic and real data demonstrate
that our newly developed HSI-SDeCNN outperforms other state-
of-the-art HSI denoising methods.

Index Terms—Hyperspectral images (HSIs), denoising, convo-
lutional neural networks (CNNs), spatial-spectral information.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are characterized by
hundreds of spectral bands, acquired across the electro-

magnetic spectrum in several continuous narrow bands [1], [2].
This kind of high-dimensional data, collected by hyperspectral
sensors (spectrometers) can be seen as 3D data cubes, which
are characterized by their rich spectral information.

Recent Earth observation missions have acquired huge
amounts of HSI data [3], fostering their use in a wide range of
application domains [4], including classification [5], spectral
unmixing [6] and target detection [7], among many others.

Since the acquisition process is noisy, leading to intra-
class variability and inter-class similarity [8], a pre-processing
denoising step prior to HSI data interpretation is typically
carried out, in order to remove the significant amount of
introduced noise.

In this paper, an improved CNN [9] architecture is de-
veloped to efficiently perform HSI denoising, called HSI
single-denoising CNN (HSI-SDeCNN). The proposed model,
rather than focusing only on spatial correlation as in 1D and
2D models, takes advantage of the high spectral correlation
between adjacent bands present in HSIs. The newly developed
HSI-SDeCNN performs denoising one band at time, taking
as input data cubes rather than single bands. In this way
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it exploits the high correlation between adjacent bands, in
order to recover the missing information corrupted during the
acquisition process. Roughly speaking, the proposed network
takes as input K +1 bands, (being K the number of adjacent
bands) and returns the central noise-free band.

The main advantages of the newly proposed HSI-SDeCNN
with respect to existing HSI denoising methods, can be enu-
merated as follows:

1) It provides a fast solution to the HSI denoising prob-
lem, exploiting a down-sampling kernel that allows the
network to perform very fast without losing in term of
denoising performance.

2) It takes as input a noise-level map, i.e., an estimation of
the noise-level present in the HSI to be denoised, which
allows us to control the trade-off between denoising
performance and detail preservation. This makes our
network flexible and adaptive to multi-level noise, as
well as to spatially-variant noise, without the need to
train different models for different noise levels.

3) It outperforms other state-of-the-art HSI denoising meth-
ods, on both synthetic and real HSI images, demon-
strating its full potential for practical HSI denoising
applications.

II. METHODOLOGY

In this section we present the HSI-SDeCNN model and how
it is applied to HSIs. Hyperspectral data can be processed
as 1D (spectral), 2D (spatial) or 3D (spectral-spatial) models
[10]. Since both spatial and spectral information are useful in
the noise removal process, we consider the HSI as a 3D data
structure, i.e., a spectral-spatial model. In particular each HSI
can be seen as a volume of size h × w × B, being h and w
the spatial dimensions of the image and B the spectral one.

The adopted strategy scans the spectral dimension in a raster
way and performs denoising one band at a time. For this
purpose, we use a network that receives as input a volume
of size h × w × K + 1, where K is the number of adjacent
bands with respect to the central one (i.e. the target band). The
overall structure of the proposed network can be divided into
four main operations: i) downsampling, ii) noise-level map
concatenation, iii) non-linear mapping, and iv) upsampling.

The first operation (i) is performed by a downsampling
kernel that reshapes the input HSI volume of size h×w×K+1
into downsampled sub-cubes. The scale-factor is set to 2.
Roughly speaking, this operation downscales each band in 4
sub-cubes, each with size w/2× h/2, This process is applied
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to all the spectral channels, and the obtained sub-cubes are
concatenated along the spectral dimension. This operation
allows the network to be faster, without losing denoising
performance.

The second layer of the network (ii) concatenates a noise-
level map M to the generated sub-cubes, obtaining a volume
of size h/2×w/2× 4(K +1)+1. The noise-level map gives
an estimation of the noise level σ present in the image. It is
inserted as a uniform map (all elements equal to σ) with the
same spatial dimension than the sub-cubes, in order to avoid
any mismatch in terms of dimensionality [11]. The noise-level
map is given in input to a CNN as prior information, allow-
ing the network to control the trade-off between denoising
performance and detail preservation. This is because, opposed
to common residual learning methods, adding a noise-level
map makes the model parameters (i.e. weights and biases)
invariant to the noise level of the input image. This is one
of the main feature of the proposed method, that allows the
network to handle different noise levels, as well as spatially-
variant noise, with only one single model, only changing the
input-noise level map M .

At this point, the obtained volume is fed to a standard CNN
(iii) in order to learn a non-linear mapping function, able to
recover the noise-free image from the input noisy data cube.

The final layer (iv) of our HSI-SDeCNN method is an
upsampling kernel that takes as input the four downsampled,
noise-free images (from the CNN) and outputs a clean single
band. It performs an inverse operation with regards to the
downsampling layer.

In summary, our HSI-SDeCNN method is inspired by a
network typically used for grayscale and RGB images (named
FFDNet), which has been adapted to perform denoising of
hyperspectral images. The main reasons why the proposed
method exhibits better performance that the standard network
are twofold. First and foremost, our method takes as input a
significantly larger number of bands, which allows the network
to exploit the high spectral correlation between adjacent chan-
nels applying 3D convolutions instead of 2D (spatial) ones.
Second, since our network considers overlapping bands, it
can learn from a larger amount of data, resulting in much
stronger denoising performance. In fact, the proposed HSI-
SDeCNN exhibits more powerful performance (both in terms
of denoising and computational time) when compared to
other learning-based methods. This is mainly due to the
downsampling layer, which allows the network to be faster
without degrading performance, and also to the input noise-
level map, which allows the CNN to achieve better denoising
performance without the need to train different models for
different noise levels.

III. EXPERIMENTS AND DISCUSSION

We have evaluated our newly proposed method using both
synthetic and real HSIs. First, the effectiveness of the method
has been verified through simulated experiments. Then, the
method has been applied to real noisy images. In particular,
the newly developed HSI-SDeCNN has been compared to the
current mainstream approaches typically adopted in HSI de-
noising: hybrid spatial-spectral noise reduction (HSSNR) [12],

low-rank tensor approximation (LRTA) [13], block matching
and 4-D algorithm (BM4D) [14], low-rank matrix recovery
(LRMR) [15], MH-prediction [16] and HSI denoising exploit-
ing a spatial-spectral deep residual CNN (HSID-CNN) [17].

In order to train the proposed model, we have selected
a part of the noise-free Washington DC Mall image (Fig.
1), obtained by the Hyperspectral Digital Imagery Collection
Experiment (HYDICE) airborne sensor. The total Washington
DC Mall image has been divided in two parts: one for training
the proposed network and the other for testing purposes. In
particular, experiments have been conducted on the following
datasets:

• Washington DC Mall. A cropped part of the entire image
has been employed for simulated experiments in which
additive white gaussian noise (AWGN) is added to the
original image.

• Indian Pines. This dataset, acquired by the Airborne
Visible Infra-Red Imaging Spectrometer (AVIRIS), has
been employed to test the effectiveness of the method in
a real scenario.

A. Simulated Data Experiments

In this section we present how the simulated experiments
has been carried out and the results obtained on the Wash-
ington DC Mall dataset (test image). In order to perform
the experiments, AWGN noise has been added to the noise-
free HSI using the following strategy: we consider the same
maximum level of noise for each band, where σn = [5, 100].
Here, n ∈ [1, B] indicates a generic band. In order to evaluate
the performances from a quantitative point of view three
commonly employed metrics have been adopted: MPSNR
(mean peak signal-to-noise-ratio), MSSIM (mean structural
similarity index), and MSA (mean spectral angle).

.
In all our simulated experiments, we have set the input

noise-level map M to the same level of the noise added to
the image (we refer to this as ground-truth noise). Lower
performances are obtained when the noise level map given in
input to the network differs from the actual noise level present
in the image. Roughly speaking, when we set the input noise
level to be higher than the groundtruth noise. This means that
we perform too much denoising, smoothing out some image
details. On the other hand, if the input noise-level is lower
than the ground-truth one, less denoising is performed, leaving
some residual noise in the output image. Thus, a correct
setting of the noise-level map (i.e., the input noise-level) is
fundamental to obtain good performance. However, using a
noise-level map that is slightly different from the ground-truth
noise does not introduce significant performance degradation.
This means that the network is flexible in the choice of this
parameter. All the results obtained with HSI-SDeCNN are
extracted with only one model, trained with different level of
noise from 0 to 100. Table I shows the results of the simulated
experiments obtained for noise levels 25 and 100, conducted
with our method and also with other mainstream methods. In
particular, our method outperforms all the other methods, but
using only a single model.



WHISPERS: WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING 3

TABLE I
QUANTITATIVE EVALUATION OF THE PROPOSED METHOD AGAINST THE MAINSTREAM METHODS FOR HSI DENOISING (SIMULATED EXPERIMENTS).

Noise Level Index HSSNR LRTA BM4D LRMR HSID-CNN Proposed

σn = 25

MPSNR 28.02± 0.002 30.67± 0.003 31.14± 0.003 33.03± 0.002 33.05± 0.003 33.44± 0.008
MSSIM 0.9461± 0.0001 0.9629± 0.0002 0.9685± 0.0002 0.9809± 0.0001 0.9813± 0.0001 0.9822± 0.0000

MSA 8.13± 0.003 5.80± 0.006 5.05± 0.005 4.61± 0.003 4.26± 0.003 3.91± 0.008

σn = 100

MPSNR 16.314± 0.0065 23.175± 0.0048 22.577± 0.0054 24.310± 0.0047 25.296± 0.0043 25.753± 0.0121
MSSIM 0.6049± 0.0001 0.8494± 0.0003 0.8119± 0.0002 0.8799± 0.0002 0.9014± 0.0001 0.9121± 0.0002

MSA 24.732± 0.0065 9.1219± 0.0072 9.7611± 0.0068 10.468± 0.0074 8.4061± 0.0063 7.3951± 0.0182

Fig. 1. Washington DC Mall, a color composite representation of the hyperspectral data employed for training and simulated experiments.

For visual comparison purposes, we have selected bands
(57, 27, 17) to generate pseudo-color images. In Fig. 2 we
display the visual results of one zoomed region (cropped from
the Washington DC Mall test image) obtained with σn = 100.

a) GT b) HSSNR c) LRTA

d) BM4D e) LRMR f ) HSID-CNN

g) Proposed

Fig. 2. Zoomed denoising results for the Washington DC Mall image
(simulated experiments, with σn = 100). Bands (57, 27, 17) are selected
to generate false-color images.

We can see that HSID-CNN and our proposed method
obtain much better visual results than those obtained with the
other methods. In particular, the denoised images provided
by HSSNR and LRMR present residual noise, while the
images produced by BM4D and LRTA contain visual artifacts.
Instead, HSID-CNN and the proposed HSI-SDeCNN generate

denoised images that are very similar to the ground-truth one.
However with an accurate analysis and especially in presence
of details our method exhibit much powerfull performances.

Thus, both a visual and quantitative standpoint, we can
conclude that our method outperforms all the other mainstream
methods in our simulated experiments.

B. Real Data Experiments

In this section we discuss the experiments performed on the
Indian Pines real HSI. In order to verify the effectiveness of
the proposed method classification experiments are conducted.
This because a ground-truth, noise-free image is not available
for real data. As a result, the performance of the method
is measured by analyzing the classification accuracy before
and after the denoising process, on 16 ground-truth classes.
The metrics adopted are the overall accuracy (OA) and the
kappa coefficient. A support vector machines (SVM) with
linear kernel has been employed as a simple classifier in our
experiments.

For the training of the classifier, we randomly select 10%
of the available labeled samples from each class, and use the
remaining labeled samples for testing purposes.

Since the noise level is unknown in real HSIs, the pro-
posed denoising algorithm has been applied by empirically
setting the input noise level-map to the one that shows the
best performance among the following noise levels: σ =
5, 25, 50, 75, 100. In particular, we have found that the best
results are achieved setting a noise-level map with σ = 50.

The obtained results are shown in Table II, where is possible
to see the high improvement achieved with the proposed
method, going from an OA of 75.96%, obtained without any
denoising process, to an OA of 95.58%.

C. Running Time

In order to evaluate the computational efficiency of the
proposed denoising algorithm, we compare the running times
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TABLE II
CLASSIFICATION RESULTS OBTAINED AFTER DENOISING THE INDIAN

PINES IMAGE USING DIFFERENT METHODS

Original Proposed
OA 75.96 95.58

Kappa (x100) 72.20 94.97

of the proposed HSI-SDeCNN with regards to HSID-CNN.
This because the HSID-CNN has achieved the best results in
terms of computational time among the other methods (see
results in [17]). The running time has been calculated on the
Washington DC Mall dataset (i.e., simulated experiments), and
the obtained results are provided in Table III. Specifically, we
can observe that our method is more than two times faster
than the HSID-CNN.

TABLE III
AVERAGE RUNTIME (IN SECONDS) MEASURED FOR THE HSID-CNN AND

THE PROPOSED HSI-SDECNN METHOD.

Dataset Size HSID-CNN Proposed
Wash. DC Mall 200× 200× 191 7.23± 0.016 3.08± 0.024

IV. CONCLUSION AND FUTURE LINES

In this paper, we have presented a new learning-based
method for HSI denoising, called single denoising convolu-
tional neural network (HSI-SDeCNN). This method takes as
input a data cube instead of a single band forcing the network
to consider both spatial and spectral correlation present in
HSIs. The two main features of the proposed network are:
a downsampling layer that allows the network to be faster
without losing in terms of denoising performance, and a noise-
level map that is used to give as input to the network an
estimation of the noise. Our newly developed method outper-
forms other mainstream methods commonly adopted in HSI
denoising, with only one single model. However, as with any
new approach, there are still some future research avenues that
can be further explored. Specifically, our proposed network
makes the denoising at only one level for all the bands (i.e.
same input noise level for all the bands). However, in HSIs
normally the noise differs from one band to another. For this
reason, a further improvement of the method can focus on
adapting the input noise-level to each specific band.
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