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ABSTRACT

Hyperspectral imaging (HSI) gathers hundreds of images
along the electromagnetic spectrum for the same area on
the surface of the Earth, collecting a rich amount of spa-
tial and spectral information. Deep learning classifiers have
achieved significantly high precision results when analyzing
HSI data. In particular, capsule networks (CapsNets) can
provide robust classification results, overcoming the limita-
tions of traditional convolutional neural networks (CNNs)
by enriching the feature presentation capability and applying
dynamic routing mechanisms. As a result, CapsNets are now
widely regarded as the state-of-the-art within deep learning
field. However, as it is the case for CNNs, the performance
of CapsNets strongly depends on the quantity and quality
of the available training samples, which in HSI tends to be
scarce and noisy. Moreover, obtaining labeled data is ex-
pensive and time-consuming, and the high dimensionality of
HSI data makes it difficult to accurately design classifiers
based on limited training samples. This is mainly due to the
strong intra-class variability present in the HSI data. Active
learning (AL) can alleviate the aforementioned problems by
selecting a small set of highly-representative labeled samples
from a pool of unlabeled data, in iterative fashion. This paper
presents a new AL-based approach for HSI data classifica-
tion that integrates the spectral and the spatial information
contained in the HSI data and enhances the performance of
CapsNets when very limited training samples are available.
Code: https://github.com/mhaut/AL-CapsNet-HSI.

1. INTRODUCTION

Remotely sensed hyperspectral imaging (HSI) –also called
imaging spectroscopy– is an active topic in Earth observa-
tion field. It collects a large amount of spectral-spatial infor-
mation from an observed surface by gathering hundreds of
images (at different wavelength channels) along the electro-
magnetic spectrum [1]. As a result, 3-dimensional data cubes
are obtained, where each pixel reflects the behaviour of terres-
trial materials in the presence of electromagnetic radiation by
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measuring their degree of reflection, emission and absorption
into a unique spectral signature for each material optically de-
tected by the spectrometer. This rich spectral information is
very useful in pattern recognition tasks, such as modeling and
mapping of natural resources, allowing for a very accurate
characterization of the materials located on the imaged area.
In particular, HSI data have been widely used for land-cover
classification tasks, exploiting a wide variety of classifiers –
ranging from unsupervised to supervised methods (through
semi-supervised techniques)– considering different types of
information. i.e. spectral, spatial and spectral-spatial.

In fact, classification can be seen as an optimization prob-
lem, where a mapping function f(·, θ) with parameters θ re-
ceives as input each pixel xi ∈ RB of the HSI scene X ≡
{x1, · · · ,xN} ∈ RN×B (where B is the number of spec-
tral bands and N the number of pixels), and obtains a land-
cover classification label yi = {1, · · · ,K} as output by ad-
justing θ in order to minimize the loss between the predicted
and the desired outputs. Focusing on supervised classifiers,
they are designed with a two-stage procedure consisting of
training and test/inference stages. The first stage carries out
the adjustment of model parameters, by feeding the classifier
with labeled samples that compose the training set Dtrain =
{xi, yi}Nl

i=1. Thus, Dtrain should contain enough representa-
tive information about the HSI scene in order to perform an
accurate inference for the remaining unlabeled data contained
within the test set Dtest = {xi}Nt

i

In recent years, many supervised classification algorithms
have been developed by the HSI community, with artificial
neural networks (ANNs) being quite popular because of their
ability to discover hidden patterns and non-linear relation-
ships, without prior information about the data distribution.
Particularly, deep learning (DL)-based models exhibit great
generalization power [2], extracting abstract features through
a hierarchical stack of operational layers. On this wise, the
full classifier f(·, θ) is divided into several concatenated sub-
mapping functions that usually apply affine linear transforma-
tions and point-wise nonlinear functions over the data in order
to obtain a final representation that is finally processed by a
classification function (usually, a softmax). In particular, con-
volutional neural networks (CNNs) stand out due to their fea-
ture extraction ability, which is enhanced by their architecture
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Fig. 1. Topology of CapsNet with final vector z.

based on locally-connected kernels, allowing a natural and de-
tailed analysis of both the spectral information (contained in
each HSI pixel) and the spatial-contextual information (pro-
vided by its neighbors) [3]. Inspired by the CNN, the capsule
network (CapsNet) [4] was developed to overcome some limi-
tations observed in CNNs, such as the massive drop in perfor-
mance when spatial transformations are applied over the data,
the loss of the representativeness of spatial information during
pooling operations, or the susceptibility to adversarial sam-
ples. Besides, the CapsNet enriches the feature presentation
ability by implementing capsules (which provide a vectorized
output or pose), while improving the back-propagation stage
of CNNs through a second training algorithm (called dynamic
routing). This model has been shown to be highly reliable in
HSI classification tasks [5].

However, the performance of these classifiers strongly de-
pends on both the quality and quantity of the available training
samples. On the one hand, HSI data are often too complex to
be processed because of their great spectral dimensionality,
which can introduce a significant amount of class-variability
due to perturbations and noise during the acquisition process.
This forces classifiers to consume more training data to learn
a large amount of spectral features, and to be more robust to
subtle variations in the test data. On the other hand, labeled
HSI data are actually quite scarce and difficult to obtain, so
very limited labeled data are often available for HSI classifi-
cation tasks. These restrictions generally lead to overfitting
of DL-based models, which converge too early on the avail-
able training data without improving their inference results.
In this context, active learning (AL)-based approaches have
been employed to enhance the classification of HSI data by
selecting wisely the most descriptive unlabeled samples from
the original dataset, providing more information to the neural
model with fewer samples and reducing the cost of labeled
data acquisition [6].

In this paper, we present a new AL-inspired model for HSI
data classification that combines spectral and spatial informa-
tion, with the aim of enhancing the performance of CapsNets
performance when very limited labeled data are available. To
this end, two different acquisition functions have been im-
plemented and applied over the network: the breaking ties

(BT) criterion [7] and simple random acquisition. Our ex-
perimental results with real HSI data indicate that the pro-
posed AL-based approach can enhance the performance of
CapsNets even with very limited training data.

2. METHODOLOGY

The CapsNet is composed by three operational blocks [5]: i)
feature extractor (FE) layer, ii) primary capsule (PC) layer,
and iii) dense capsule (DC) layer. As we can observe in Fig.
1, the FE-layer receives as input patches x ∈ R11×11×B ex-
tracted from the original HSI X and centered over each pixel
from Dtrain, applying a spectral-spatial convolutional layer
to extract a feature representation of the input data. This vol-
ume is processed by the PC layer, where capsule i obtains the
pose vector ui. Each ui is routed to capsules j in the DC
layer by using the routing-by-agreement algorithm, obtaining
a vote ûj|i = Wijui describing how much the capsule i af-
fects the capsule j, and applying a coupling coefficient ci,j ,
which indicates the strength of the connection between both
capsules as follows:

vj =
||sj ||2

1 + ||sj ||2
sj
||sj ||

, with sj =
∑
i

cijûj|i (1)

In the end, one activity vector vj per class is obtained, encod-
ing additional details about the features –such as orientation,
pose or size– and obtaining the probability of belonging to
that class (through its length). Finally, these vectors are re-
shaped to be the input of a multi-layer perceptron (MLP) that
obtains the final classification.

Layer Size Stride BatchNorm Act. Funct.
FE 64× 3× 3×B 1 Yes ReLU
PC 8× 64× 3× 3× 64 1 No Squashing
DC K × 16 - No Squashing
FC1 328 - No Sigmoid
FC2 129 - No Sigmoid
FC3 B ×D ×D - No Linear

Table 1. Summary of the parameters in each layer of the con-
sidered network. The dynamic routing is set to 3. Three fully-
connected (FC) layers perform the final classification.

With the aim of applying AL, the original HSI dataset X is
divided into four subsets: Dtrain, initially composed by two
samples per class. From the remaining samples, 10% are in-
cluded inDval. Dpool andDtest are respectively composed by
50% of the remaining samples per class. The AL procedure
is iterated 80 times, conducting three stages: i) model train-
ing over Dtrain with 100 epochs, validating in each epoch
with Dval and employing Adam optimizer with learning rate
1e − 3, ii) evaluation of Dpool, and iii) ranking and selec-
tion of 10 unlabeled samples from Dpool to be included in
Dtrain. For this purpose, the proposed method obtains (for
each sample in Dpool) the corresponding activity vectors, and
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Color Land cover type Samples
Background 10659

Alfalfa 54
Corn-notill 1434
Corn-min 834

Corn 234
Grass/Pasture 497
Grass/Trees 747

Grass/pasture-mowed 26
Hay-windrowed 489

Oats 20
Soybeans-notill 968
Soybeans-min 2468
Soybean-clean 614

Wheat 212
Woods 1294

Bldg-Grass-Tree-Drives 380
Stone-steel towers 95

Total samples 21025

Fig. 2. Available labeled samples in the IP scene.

constructs z ∈ RK with their lengths, which can be easily
understood as the probability vector of the CapsNet for each
input sample. Then, the BT criterion is applied over z in order
to decide which unlabeled samples x ∈ Dpool will be queried
by an external oracle and included into the Dtrain set in the
next iteration. This acquisition function intends to select those
samples that provide the most discriminative information to
the classifier, being focused on the boundary region between
two classes with the aim of obtaining more diversity in the
composition of Dtrain. The ten best ranked samples are then
selected, labeled, and included into the training set. The final
inference stage is conducted over the Dtest set.

3. EXPERIMENTAL RESULTS

In order to discuss the performance of the proposed method,
an experimental comparison has been conducted between an
AL-based CapsNet model trained with the BT criterion, and
simple random selection as acquisition function. Two widely
used HSI scenes gathered by the Airborne Visible Infra-Red
Imaging Spectrometer (AVIRIS) have been considered: In-
dian Pines (IP) and Kenedy Space Center (KSC) images. The
first one (see Fig. 2) contains 145×145 samples of crops and
forest, with 16 land-cover classes and 200 spectral bands in
the range 0.2-2.4 microns, with spatial resolution of 20 me-
ters per pixel. The second one (see Fig. 3) is comprised by
512× 614 pixels with 176 bands and 13 ground-truth classes.
To assess the classification performance, the overall (OA) and
average (AA) accuracy, as well as the kappa coefficient, have
been measured considering 5 Monte Carlo runs.

Fig. 4 shows the OA evolution as the training set grows
with the new samples selected from the pool of unlabeled
samples Dpool. In both scenes, the BT criterion (AL-
CapsNet) is able to reach very good performance. For in-
stance, in the KSC experiment, only 30 iterations of the AL
algorithm (i.e., 30 · 10 + (2 ·K) = 326 labeled samples) are

Color Land cover type Samples
Background 309157

Scrub 761
Willow-swamp 243
CP-hammock 256

Slash-pine 252
Oak/Broadleaf 161

Hardwood 229
Swap 105

Graminoid-marsh 431
Spartina-marsh 520
Cattail-marsh 404

Salt-marsh 419
Mud-flats 503

Water 927

Total samples 314368

Fig. 3. Available labeled samples in the KSC scene.

(a) IP scene (b) KSC scene

Fig. 4. OA evolution with the number of labeled samples.

neede to obtain the maximum (100%) OA. This represents
only 15.98% of the total number of samples labeled for the
KSC dataset. The proposed method also obtains excellent
results with the IP scene, reaching close-to-optimal perfor-
mance after 80 AL iterations (832 samples, only 12.45% of
the available ground-truth). This means that the proposed
AL-based sampling criterion can accurately identify the most
discriminative samples from the available labeled ones.

CapsNet (94.43%) AL-CapsNet (98.85%)

Fig. 5. Classification maps for IP scene (80 AL iterations).

Table 2 explains in detail the classification results ob-
tained after 80 AL iterations (IP scene) and 30 AL iterations
(KSC scene). The table shows that the application of an
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Class IP scene KSC scene
CapsNet AL-CapsNet CapsNet AL-CapsNet

0 86.25±12.44 97.50±2.50 99.88±0.23 100.0±0.00
1 94.00±3.65 97.82±1.40 69.73±4.22 98.72±0.73
2 93.95±2.93 98.05±1.19 81.93±6.04 100.0±0.00
3 86.79±1.76 99.06±1.63 56.25±2.65 98.39±1.04
4 94.82±1.23 99.66±0.38 74.93±3.61 98.59±2.82
5 98.78±0.00 99.85±0.26 85.29±5.23 99.22±1.14
6 95.83±7.22 100.0±0.00 99.57±0.85 100.0±0.00
7 100.0±0.00 99.53±0.57 96.37±2.64 100.0±0.00
8 87.50±0.00 100.0±0.00 99.91±0.17 100.0±0.00
9 92.14±1.79 99.54±0.36 99.34±0.64 100.0±0.00

10 95.24±2.05 98.26±1.80 99.89±0.21 100.0±0.00
11 81.30±10.0 98.59±0.86 96.11±0.33 99.91±0.18
12 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00
13 99.34±0.34 99.74±0.36 - -
14 87.72±1.43 99.71±0.29 - -
15 100.0±0.00 98.17±2.02 - -
OA 94.43±0.94 98.85±0.38 93.43±0.41 99.78±0.14
AA 93.35±1.60 99.09±0.21 89.17±0.50 99.60±0.28

K(x100) 93.65±1.07 98.69±0.43 92.68±0.46 99.75±0.16

Table 2. Accuracy results for the IP (80 AL iterations, 832
samples) and KSC (30 AL iterations, 326 samples) scenes.

CapsNet (93.43%) AL-CapsNet (99.78%)

Fig. 6. Classification maps for KSC scene (30 AL iterations).

AL-based criterion significantly increases the OA results by
the CapsNet. In addition, the AL-based criterion exhibits a
more robust behaviour in terms of standard deviation. Figs.
5 and 6 respectively provide the classification maps obtained
in the aforementioned cases. As we can observe, the classi-
fication maps are more homogeneous spatially. Moreover, if
we compare the two classification maps in Fig. 5 (IP scene),
we can see that our proposed AL-based method provides a
better delineation of the borders of the classes. Although the
limited labeled data available for the KSC scene makes more
difficult the interpretation of the classification maps in Fig.
6, it can be also observed that the location and distribution
of the considered land-cover classes is more balanced. For
instance, the classification map obtained by the proposed
AL-CapsNet contains large areas of scrubs and slash-pine at
the leftmost part of the scene, which is more realistic than the
other displayed map according to ground knowledge.

Finally, Table 3 provides a comparison of the proposed
AL-CapsNet with other AL-based classifiers using the KSC
(30 iterations). The table shows that the proposed model is
able to reach the best OA with the fewest amount of labeled
samples, when compared with the probabilistic AL-based
CNN and multinomial logistic regresion (MLR) in [6].

Algorithm Overall Accuracy
70% 75% 80% 85% 90% 95% 99%

AL-MLR [6] 26 36 66 116 216 616 −
AL-CNN [6] 56 86 96 126 166 206 276
AL-CapsNet 36 46 66 76 126 156 236

Table 3. Number of samples that different AL-based models
need to reach a given % of accuracy (KSC scene). Best model
in bold and second-best model in blue.

4. CONCLUSIONS

This paper presents a new AL-based CapsNet model for HSI
classification using spectral and spatial features. The pro-
posed approach successfully captures the uncertainty of the
data, offering robustness to overfitting with small training sets
and improving the generalization ability by including intelli-
gently selected unlabeled training samples (avoiding the curse
of dimensionality). As future work, we will model further the
epistemic uncertainty of the network.
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