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ABSTRACT

High-resolution precipitation data are crucial to monitor disasters in
urban areas, especially in cases with abundant precipitation. Based
on the spatiotemporal, non-stationary relationship between precipi-
tation and normalized differential vegetation index (NDVI), in this
paper we introduce a geographically and temporally weighted re-
gression (GTWR) model and further evaluate it in a case study in
Guangdong province, China, in the summer of 2015. Our results
indicate that there is a mainly negative correlation between precip-
itation and NDVI in the summer. Our GTWR downscaling model
performs better than a previously available geographically weighted
regression (GWR) model, providing more accurate downscaled pre-
cipitation estimations. This suggests that considering the spatiotem-
poral, non-stationarity relationship between NDVI and precipitation,
our GTWR downscaling model can provide high-spatial resolution
precipitation estimates, with more details in urban areas with abun-
dant precipitation.

Index Terms— Global precipitation measurement (GPM), ge-
ographically and temporally weighted regression (GTWR) model,
normalized differential vegetation index (NDVI).

1. INTRODUCTION

Due to global warming, precipitation exhibits obvious temporal and
spatial changes, and has a significant impact on the ecological en-
vironment [1]. Especially in urban areas with abundant precipita-
tion, accurate estimates of precipitation are crucial to the monitoring
of flood disasters [2]. Several satellite precipitation datasets have
been developed to provide global estimations of precipitation. Com-
pared with the precipitation data produced by interpolating the rain
gauge observations, the satellite data are more reliable and accurate
[3]. Guangdong province is located in the south coast of China, and
the precipitation in this area is mainly concentrated from May to
September [4]. As a result, this region faces a high risk of flood dis-
asters. Moreover, the Pearl River Delta region (located in the central
Guangdong province) is one of the most developed economic re-
gions in China. The flood disasters caused by precipitation pose a
huge threat to the regional economy and personal safety. Research
on regional hydrometeorology and disasters have attracted great at-
tention, and higher accuracy and finer spatial resolution precipitation
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data are highly required. Since precipitation within a region may
occur at finer scales compared with the pixel size of satellites [5],
satellite precipitation data needs to be downscaled properly to pro-
vide accurate and high-spatial resolution estimates of precipitation
over Guangdong province.

Statistical downscaling methods allow modeling the relationship
between precipitation and auxiliary high resolution data (e.g., veg-
etation index [6], elevation [7] and cloud properties) at large scale,
and applying it to the regional scale in order to obtain downscaled
results. For instance, the method in [8] constructed a tropical rain-
fall measuring mission (TRMM) precipitation downscaling model in
humid tropical regions by using the site-specific seasonal coefficient.
However, the obtained prediction accuracy was not ideal. Numerous
methods, such as probability-matching [9] or machine learning [10]
have been introduced into statistical downscaling models, and the
non-stationary relationship between precipitation and surface char-
acteristic factors has attracted more attention. The downscaled re-
sults based on a geographically weighted regression (GWR) model
performed well in different regions [11]. However, recent research
shows that, in areas with abundant precipitation, there is a lagging
response of vegetation to precipitation. Huang et al. [12] introduced
the time effect into the GWR model, and established a geographic
spatial-temporal weighted regression model to deal with both spatial
and temporal non-stationarity simultaneously in real-estate market
data. It has been shown that the GTWR model can account for spa-
tial and temporal variability in the relationship between variables
[13]. However, there has been little focus on statistical downscal-
ing in regions with heavy precipitation, in which the results have not
been satisfactory.

In this paper, we introduce a geographically and temporally
weighted regression (GTWR) model and further evaluate it in a
case study in Guangdong province, China, in the summer of 2015,
a case study with abundant precipitation. Our results indicate that
the newly proposed GTWR downscaling model performs better
than the previously available GWR model, providing more accurate
downscaled precipitation estimations.

2. STUDY AREA AND DATA

2.1. Study area

Our study area, Guangdong province (109◦45′E-117◦20′E, 20◦09′N-
25◦31′N), is located in the southern coast of China (Fig. 1). Guang-
dong is the most populated and developed province in China. The
Pearl River Delta, located in the central and southern region of
Guangdong, is one of the most developed urban agglomerations in
China. The average temperature ranges from 19◦C to 24◦C, and
the mean annual precipitation ranges from 1300mm to 2500mm.
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Fig. 1. Map of Guangdong province, indicating the location of rain
gauges.

The spatial distribution of precipitation tends to be higher in the
south and lower in the north, while the precipitation in the flood
season from April to September accounts for more than 80% of the
precipitation of the whole year.

2.2. Data

2.2.1. GPM precipitation data

The Global Precipitation Measurement (GPM) mission is an inter-
national network of satellites that provide the next-generation global
observations of rain and snow. The level 3 data of GPM (GPM
IMERG) can provide 1 day, 3 day, 7 day and monthly temporal
resolution data from year 2000 to present. In this study, the GPM
IMERG V05B 0.1◦ 1 day precipitation data are first downloaded1,
and then accumulated to 16-day data in order to match the temporal
resolution of the available normalized differential vegetation index
(NDVI) data.

2.2.2. NDVI data

The NDVI data are first obtained2. Specifically, the MOD13A2
dataset is downloaded from LAADS DAAC and provides 16-day
vegetation indices data.

2.2.3. Rain gauge data

Daily precipitation collected from 34 rain gauge stations is down-
loaded from the National Meteorological Information Center in
China3. The 16-day precipitation derived from rain gauges is gen-
erated by accumulating daily datasets. Fig. 1 shows the spatial
distribution of rain gauge stations in the study area.

1ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata
2https://lads-web.modaps.eosdis.nasa.gov
3http://data.cma.cn

3. METHODOLOGY

3.1. GTWR model

Our geographically and temporally weighted regression (GTWR)
model can capture spatiotemporal heterogeneity based on a weight-
ing matrix referencing both spatial and temporal dimensions [14].
In this study, the GTWR model has been enhanced to address the
relationship between precipitation and NDVI. Adaptive bandwidths
have been been used, where bandwidths are obtained by minimizing
the corrected Akaike information criterion values [13]. Our model
structure can be expressed as follows [12]:

Pi = β0(µi, νi, ti) + β1(µi, νi, ti)× NDVIi + εi, (1)

where Pi is the precipitation of the sample i at location (µi, νi) on
time stamp ti at 16-day scale; β0 denotes the intersection at a spe-
cific location (µi, νi) on time stamp ti; and β1 is the location time-
specific slope for lag adjusted NDVI. The location (µi, νi) repre-
sents the central coordinate of a grid cell in which sample i is lo-
cated. ti is the time stamp, and only the estimation for that time and
the previous time (ti < testimation) are used for modeling. Finally,
εi is the error term for sample i.

The GTWR model has been established based on precipitation
and lag adjusted NDVI at sparse resolution. Then, the model pa-
rameters are resampled to 1km, and the residuals are interpolated to
1km by using a spline tensor interpolator. All of these are applied to
the 1km lag-adjusted NDVI to obtain the 1km GTWR downscaled
precipitation results.

3.2. NDVI lag analysis

Correlation coefficients between precipitation and NDVI are calcu-
lated by using the Pearson correlation coefficient. The relationship
between precipitation and NDVI for the corresponding period and
the following three months are analyzed. The lag phase is deter-
mined according to the maximum correlation coefficient between the
precipitation and NDVI in different periods.

3.3. Validation

To evaluate the performance of our GTWR, the downscaling model
based on GWR at 16-day time scale has been established for com-
parison. The correlation coefficient (r), mean absolute error (MAE),
root mean square error (RMSE), and bias are calculated to assess
the accuracy of the downscaled precipitation and GPM precipitation,
while the rain gauge data is seen as the true value.

4. EXPERIMENTAL RESULTS

4.1. Relationship between precipitation and NDVI

The relationship between precipitation and NDVI has been analyzed
at the considered 16-day time scale. Fig. 2 shows the lag-phase of
the response of NDVI to precipitation and the maximum correlation
coefficients. There are mainly no lag responses in the central area,
and 1 to 2 months responses in the other areas. Meanwhile, we ob-
served mainly negative correlation between precipitation and NDVI,
and the absolute values of the correlation coefficient are relatively
large. In general, the relationship between precipitation and NDVI
at the considered 16-day time scale is sufficient to be used in GTWR
downscaling model.
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Fig. 2. (a) Lag-phase of NDVI response to precipitation and maxi-
mum correlation coefficient in Guandong province, summer of 2015.
(b) Accumulated results (from day 145 to day 240).

4.2. Accuracy of downscaled precipitation

Fig. 3. (a) Accumulated GPM precipitation. (b) Accumulated
GTWR downscaling results (from day 145 to day 240) in 2015.

The GTWR model has been applied based on the relationship
between precipitation and lag-adjusted NDVI at the considered 16-
day scale. The downscaled results are shown in Figs. 3 and 4, and
the validation of the results is presented in Table 1. Specifically, Fig.
3 presents the accumulated GPM data and the downscaled results.
The GTWR downscaled result exhibits a similar spatial distribution
with regards to the original GPM data of precipitation, providing
more spatial details. The maximum precipitation exceeded 1000mm
in the summer of 2015, and the higher values of total precipitation
are concentrated in the central and southern regions, covering the
Pearl River Delta. Fig. 4 presents the GPM data and the downscaled
results in the Pearl River Delta. Compared to the GPM data, the
GTWR downscaled results show more details and a better represen-
tation of the precipitation distribution for monitoring of floods in the
urban area. We can see that the extreme precipitation events occur
in the period from day 193 to day 208.

Table 1 shows the validation of original GPM data, GWR and
GTWR downscaled results against ground observations from 34 rain
gauges on the Guangdong province. The accuracy of GPM data in
the period from day 177, 209 and 225 decreases significantly, with r
values of 0.55, 0.45 and 0.57, overestimating the precipitation in the
period from day 177 and underestimating it in the period from day
209. This is mainly because of the heavy rainfall in the period from
day 193. The GTWR model results exhibit a higher value of r and
lower error values than those obtained by GWR results in most of the
considered days. Specifically, The overall performance of GTWR
model is better than that of the GWR model. In the period from days
177 and 209, although the error values of the original GPM data are
higher, the error values of GTWR results decreased due to the use
of data from previous periods. In the other tested times, the value

of r and the errors are close to those obtained by the original GPM.
However, in the period from day 193 and 209, the accuracy of model
results are relatively poor compared to the GPM data. This is mainly
because of the extreme precipitation event happening those days. In
general, our results show that the GTWR model performs well at the
considered 16-day time scale, with a significant improvement in the
spatial resolution of GTWR downscaled results.

5. CONCLUSIONS AND FUTURE WORK

Based on the analysis of the relationship between NDVI and precip-
itation, a GTWR downscaling model has been established to obtain
high spatial resolution precipitation data in areas with abundant pre-
cipitation. Our model has been validated by a downscaling experi-
ment in Guangdong province in the summer of 2015, demonstrating
that the newly proposed GTWR can provide a high spatial resolu-
tion precipitation estimates, with detailed information at the consid-
ered 16-day time scale. It has been found that the performance of
our GTWR model is better than that of a previously available GWR
model, and the obtained results are close to the original GPM data.
In the future, additional land surface characteristics and data from
meteorological stations will be introduced in the considered down-
scaling model.
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