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ABSTRACT

Social media data have shown great potential for disaster response.
However, the inherent limitations associated to these data (particu-
larly, the spatial bias) restrict its precise application. In this work,
we present a new spatial bias correction method based on remote
sensing knowledge and spatio-temporal fusion, named locally opti-
mal transport (LOT). Our method is first tested using a case study
(2013 Boulder, Colorado flood event). Then, we apply our method
to a 2016 Wuhan flood event to test its accuracy in a data deficient
region. Our results show that combining remote sensing features and
spatio-temporal fusion can help to address problems with a lack of
prior data and limited disaster period data. According to the random
ground verification points collected from news, pictures and videos,
our new LOT method is able to accurately relocate spatially biased
social media data to inundated areas, which are dangerous for users.

Index Terms— Social media, remote sensing, flood, cost func-
tion, relocation.

1. INTRODUCTION

With the continued warming of the climate, increasing population
and rapid urbanization, the frequency and severity of disasters af-
fecting public safety are increasing worldwide [1]. Disasters have
become a major factor restricting the sustainable development of
global society, economy and environment. Therefore, how to ef-
fectively collect real-time data, complete response and evaluation
of disastrous events, minimize the socioeconomic losses and ensure
public safety is of great significance.

Nowadays, the popularity of social media and the proliferation
of its users have led to an increasingly interconnected world. So-
cial media with global positioning (GPS) functionality have become
a new source of geo-referenced data, including applications such as
Twitter, Instagram, Flickr, Facebook, Weibo, etc. Due to the exten-
sive coverage and real-time nature of social media data, they have
become an important source for tracking and managing various types
and stages of disasters (mitigation, preparedness, response, and re-
covery). Meanwhile, social media data are of great value for improv-
ing situational awareness of ongoing emergencies [2, 3]. Therefore,
the effective application of accurate social media data is crucial for
real-time disaster response.

Social media users can spread disaster information at a large
scale within a short period when disasters occur, thus enabling any-
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one to obtain key and timely situational information of disasters. Re-
lated studies that leverage social media data for disaster response
mainly involve two aspects, which are spatiotemporal mapping and
situational awareness analysis. Social media have shown great po-
tential in information dissemination and disaster management. How-
ever, as a non-authoritative source, social media data are ambiguous
and uncertain due to the lack of metadata and the difficulty in verify-
ing the quality and credibility of massive information [4]. This leads
to challenges in the exploitation of social media data for disaster re-
sponse.

As a key and reliable data source for disaster response and as-
sessment, remote sensing is able to obtain information about disaster
conditions at a large scale [5]. However, remote sensing is vulnera-
ble to extreme weather or clouds during disaster periods, and it may
not be possible to collect suitable images of areas of interest at the
most urgent time due to the limitation of satellite orbit and revisit
time. The combination of remote sensing and social media data can
help fill the gaps in satellite images, improve the spatiotemporal res-
olution, and alleviate some of the inherent problems of social media
data [6–8]. However, an important problem with geotagged social
media is the spatial bias. For instance, the location indicated by the
geotagged message is the location of the user but not always the lo-
cation of the exact inundated place, which introduces severe spatial
bias. Most related research has basically used geotagged social me-
dia data directly, without considering the aforementioned spatial bias
problem.

The optimal transport (OT) method mainly focuses on how to
find an optimal transport scheme between the original probability
measure and the target probability measure. Wang et al. corrected
the spatial bias of geo-referenced tweets using OT based on remote
sensing images collected before and after the flood event [9]. This
study obtains a high-precision flood density map using relocated
geo-referenced tweets. However, the main purpose of OT is to cor-
rect geo-referenced social media data to a priori regions to represent
the entire flood extent, instead of relocating to the actual flood ar-
eas originally indicated by the users. Besides, a prior distribution of
the disaster may not be available and suitable remote sensing images
may also be lacking.

In this work, we introduce a new spatial bias correction method
for social media data called locally optimal transport (LOT). Our
method exploits remote sensing knowledge to accurately relocate
geo-referenced tweets. We first evaluate the accuracy of our newly
developed LOT in a case study with a priori disaster knowledge and
suitable images (2013 Boulder, Colorado flood event). Then, we ap-
ply our method to a 2016 Wuhan flood event to figure out how it
works in a data-deficient case study.
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2. PROPOSED METHOD

2.1. Data fusion

In our approach, we adopt the spatial and temporal adaptive re-
flectance fusion model (STARFM) [10] to generate images with
30m spatial resolution during the disaster period in 2016 Wuhan
flood event. The Landsat and MODIS images after co-registration
and atmosphere correction are imported into STARFM. This spa-
tiotemporal fusion model assumes that changes of reflectance are
consistent and comparable at coarse and fine resolutions if pixels
in coarse-resolution images are pure. In this case, changes derived
from coarse pixels can be directly added to pixels in fine-resolution
images to get the predictions. The STARFM method works under
the following expression:

L2 = G(L1 +M2−M1), (1)

where G represents a weight factor, M1 and L1 are MODIS and
Landsat 8 images (collected in our case on July 23, 2016) and M2
is a MODIS 8-day composite surface reflectance product obtained
during the flood event.

2.2. Feature extraction

In our method, the inundated areas indicated by remote sensing fea-
tures are used as the prior flood distribution. The modified nor-
malized difference water index (MNDWI) during the flood event
has been proven to be an effective method for flood monitoring [7,
11]. Compared with NDWI (normalized difference water index),
MNDWI can better distinguish water bodies from buildings and re-
duce background noise [12]. We first calculate the MNDWI values
of the non-flood image and flood image as follows:

MNDWI =
Green−MIR

Green +MIR
, (2)

where MIR is mid-infrared band, such as band 6 of Landsat 8. The
value ranges of MNDWI are [-1, 1]. In our experiment, the MNDWI
threshold for water bodies or floods is set to 0.1. Then, the areas are
classified as non-water bodies during non-flood period, and those
areas labeled as floods during flood period are used to represent the
prior distribution as follows:

PD = {s|(MNDWInon(s) ≤ 0.1)&(MNDWIflood(s) > 0.1)}
(3)

where s represents the locations of pixels in the Landsat image.
Since floods are contiguous and often spread to a certain extent, in
order to simplify the relocation we select the regions with a continu-
ous area larger than 5 hectares for subsequent analysis.

2.3. Domain adaptation

Before the relocation of original social media data, domain adaption
of different data sources needs to be implemented. Let us assume
that there are K data modalities from K different sources, repre-
sented as maps {fi}i=1,...,K :

fi : Di → Vi, (4)

whereDi and Vi are the domains and ranges of different data modal-
ities. Then, we homogenize the domains of different data modalities
(including social media data, remote sensing images and disaster risk
information) into a common information space D:

φi : Di → D. (5)

We consider the 30m Landsat 8 image as the common informa-
tion space D for domain adaption. Each cell in the image is denoted
as an elemental unit s ∈ D. We also use geotagged Weibo messages
and ground verification points, geo-referenced to UTM-WGS84 co-
ordinates in ArcGIS using latitude and longitude meta-data. A map-
ping from points to the nearest cell centers (corresponding to the
resolution of Landsat 8 images) is then carried out. In this case, the
domains of heterogeneous data sources are all homogenized to the
common information space D := {s1, ..., sn}, each si ∈ R2.

2.4. Locally optimal transport (LOT)

To relocate geo-referenced social media data to the actual flood areas
that users intend to indicate (rather than to represent the entire flood
extent directly), we introduce a new spatial bias relocation method,
called LOT. Compared with OT, LOT does not need to predefine the
weight of each location in the prior distribution, which makes LOT
more widely applicable. In our context, the cost function of LOT
consists of different distances and remote sensing features capable
of characterizing water bodies. In addition to the aforementioned
MNDWI, we used the well-known normalized difference vegetation
index (NDVI), which enhances the contrast between land and wa-
ter. To characterize floods more accurately, a previous study cal-
culates the difference between NDVI before and during the flood
event, namely DIFF-NDVI := NDVIt2 − NDVIt1, with the time
stamp t2 > t1. The value ranges of DIFF-NDVI is [-2, 2]. When
DIFF-NDVI is closer to -2 or MNDWI is closer to 1, the area is
more likely to be inundated.

Here, we mainly use the square l2 cost function to consider the
transport cost of distance and features between si and sj . In Eq. (6),
si tends to be transported to closer sj , with similar DIFF-NDVI and
MNDWI to si:

m(si, sj) = α2‖si − sj‖22
+ ‖MNDWI(si)−MNDWI(sj)‖22
+ ‖DIFF-NDVI(si)−DIFF-NDVI(sj)‖22,

(6)

where the parameter α can be tuned by observing the distance trans-
port cost in D. In our experiments, α is set to 100 according to [9].
In fact, LOT is a one-to-one or many-to-one transport, and there is no
need to predefine the probability mass of each location in different
distributions. Specifically, LOT tends to transport si to the most ap-
propriate sj based on the cost function matrix. The relocation using
LOT can be expressed as follows:

T (si) = argmin
sj∈PD

m(si, sj). (7)

2.5. Disaster risk analysis

To estimate the density distributions of the original and relocated
social media points, we use the kernel density estimation model as
follows:

f(s) =
1

nh

n∑
i=1

K(
ω(s− si)

h
), (8)

where K is the quartic kernel function, {s1, ..., sn} are the set of
independent social media points, h is the search radius, and ω de-
scribes the weight of the points. Locations with higher density usu-
ally indicate higher disaster risk. The difference between flood den-
sity calculated by relocated points and original points is given by:

DIFF-f(s) = fr(s)− fo(s), (9)
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Fig. 1. Random ground verification points indicating real flood ar-
eas.

where fr(s) and fo(s) respectively indicate the flood density cal-
culated by relocated points and original points in location s. If
DIFF-f(s) > 0, the relocation increases the flood risk of location
s. We define such locations as the areas with increased flood risk
(AIFR), that is:

AIFR = {s|DIFF-f(s) > 0}. (10)

2.6. Accuracy analysis

To evaluate the effectiveness of LOT relocation, the precision is sim-
ply given by:

Precision =
TP

TP + FP
. (11)

In the 2013 Boulder flood event, TP (true positive) and FP (false
positive) denote the number of relocated tweets that fall within (and
not within) UFE, respectively. In the 2016 Wuhan flood event, since
ground verification points represent the real flooded locations, TP
and FP are the number of ground verification points that fall within
(and not within) AIFR, respectively.

3. EXPERIMENTAL RESULTS

3.1. 2013 Boulder, Colorado flood event

As for the 2013 Boulder Colorado flood event, flood-related geo-
tagged data were obtained using Web tools [6]. Other sources of
data, including Landsat images, historical flood extent and ground-
truth are publicly available [9]. In this event, the special flood hazard
area (SFHA) can be used as the prior flood distribution, which is the
area that will be inundated by the flood event having a 1-percent
chance of being equaled or exceeded in any given year. The ur-
ban flood extent (UFE) is also publicly available as the ground-truth.
Table 1 shows that the precision of original geo-ferenced tweets is
only 11.93%. As a result, there is a serious spatial bias in the geo-
referenced tweets. The direct use of biased data will no doubt af-
fect specific disaster applications. The precision of geo-referenced
tweets relocated by our LOT is increased by 43.75%, which proves
the effectiveness of our relocation approach.

3.2. 2016 Wuhan flood event

In July 2016, Wuhan was hit by severe rainstorms that caused se-
rious floods, with 570 mm (about 22.44 in) of rainfall during July
1-7, surpassing the record of the city in 1991. According to the

Table 1. Accuracy evaluation of relocated tweets in the 2013 Boul-
der, Colorado flood event.

Transport TP FP Precision
None 269 1985 11.93%
LOT 1255 999 55.68%

Legend

Weibo messages0 4 8 12 162
Km

Fig. 2. Distribution of geotagged Weibo messages in the 2016
Wuhan flood event.

statistics, more than 27 people died and the economic losses reached
U5.7 billion (about $850 million) in this catastrophic event. Central
Wuhan is selected as our study area, where social media messages
are widely published. We adopt Sina Weibo open platform API to
collect geotagged data with latitude and longitude coordinates from
June 29, 2016 to July 10, 2016, located in central Wuhan. A total
of 2705 geotagged Weibo messages describing this flood event were
acquired (see Fig. 2). Unlike 2013 Boulder flood event, cloudless
Landsat images during disaster period, historical flood distribution,
and ground-truth were lacking in 2016 Wuhan flood event, which
brought additional challenges to the spatial bias correction.

Since there are no cloudless 30m Landsat 8 images in central
Wuhan during the flood period, we obtain replaceable image by spa-
tiotemporal fusion. The specific images in the considered fusion
model include cloudless 500m MODIS 8-day composite images dur-
ing the flood period, and cloudless Landsat 8 image and MODIS im-
ages on July 23, 2016 after the floods. Cloudless Landsat 8 image on
June 5, 2016 is used to provide the data before the flood event. And
the inundated areas indicated by MNDWI extracted from replaceable
30m image are used as the prior distribution in LOT.

In order to test how our methodology performs in a data defi-
cient region for disaster response, we collected flood-related news
reports, pictures and videos as the ground verification points (see
Fig. 1). The latitude and longitude coordinates are recorded using
Amap. According to the flood features extracted from MNDWI in
the flood and non-flood period, it can be seen that the floods have
spread extensively in central Wuhan. Floods on both sides of the
Yangtze River are particularly severe. And the overall distribution of
the original Weibo points is similar to the distribution of flood fea-
tures. Compared with the original Weibo points, relocated Weibo
points are more concentrated, and can better show the extent of
floods in local areas, as can be seen in Fig. 3.

Then, we relocated Weibo points into a continuous density map
using the kernel density estimation model in Fig. 4. It is easy to find
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Legend

relocated points

Flood features0 4 8 12 162
Km

Fig. 3. Distribution of relocated Weibo messages and flood features
extracted from MNDWI in the 2016 Wuhan flood event.

Legend

Verificaiton points

High

Low
0 4 8 12 162

Km

Fig. 4. Flood hazard map of the 2016 Wuhan flood event using relo-
cated Weibo messages by LOT.

that most of the random ground verification points are located in
relatively high-risk areas. This result indicates that the flood hazard
map generated from relocated Weibo messages is able to reflect real
flood risk to a certain degree.

Finally, we evaluate the precision of LOT relocation by record-
ing the number of ground verification points falling inside AIFR.
There are a total of 110 verification points, of which 87 are within
the AIFR extent and 23 are outside the AIFR extent. Therefore, we
conclude that the precision of relocation of our LOT in the 2016
Wuhan flood event reaches 79.08%.

4. CONCLUSIONS AND FUTURE LINES

In this paper, we introduce a new method for spatial correction of
social media data by resorting to remote sensing knowledge in data-
deficient regions. Our newly proposed method can better transport
geo-referenced social media data to the actual disaster locations that
the users intend to indicate. At the same time, the proposed method
achieves good accuracy in regions with sufficient information (e.g.,
the considered 2013 Boulder, Colorado case study) and also in data-
deficient regions (e.g., the considered 2016 Wuhan case study). In

the future, we will apply relocated social media data to different
stages of disaster response and further analyze the need to conduct
more accurate relocation.
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