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ABSTRACT 

In this paper, we propose an improved superpixel 
segmentation algorithm for ship target detection in synthetic 
aperture radar (SAR) images, called adaptive Fisher vector-
based simple linear iterative clustering (AFVSLIC). 
Compared with existing algorithms, three new features 
produced by Fisher vectors, i.e., zero-order, first-order and 
second-order features, are exploited by the proposed 
AFVSLIC algorithm to enhance segmentation performance. 
Besides, AFVSLIC adaptively adjusts the weights of the 
features to maintain the segmentation performance in 
different signal-to-clutter ratio (SCR) scenarios. 
Experimental results demonstrate that the proposed 
AFVSLIC algorithm outperforms existing, commonly used 
algorithms for superpixel segmentation and (accordingly) 
improves the performance of ship target detection. 

Index Terms—Adaptive superpixel segmentation, fisher 
vectors, ship detection, synthetic aperture radar (SAR) 

1. INTRODUCTION 

Superpixel segmentation aims at producing locally coherent 
regions in a processed image. Recently, simple linear iterative 
clustering (SLIC) and its variants [1], [5], [7] have been 
proposed for superpixel segmentation, including the problem 
of ship detection in synthetic aperture radar (SAR) images. 
Only simple intensity and spatial features of pixels are 
exploited in superpixel segmentation algorithms based on 
SLIC [1], [5], [7], which may lead to inaccurate segmentation 
especially in low signal-to-clutter ratio (SCR) cases and 
degrade the subsequent detection performance [2]. Moreover, 
the weights of the features need to be manually adjusted in 
[1], [5], [7] to achieve superpixel segmentation in different 
SCR cases. Ref. [3] has proposed an algorithm to achieve 
adaptive superpixel segmentation of urban/land SAR images. 
In [3], the features of pixels and their corresponding weights 
are selected based on the image gradient, which is helpful to 
extract edge information in urban/land SAR images. 
However, strong and heterogeneous sea clutter background in 
marine SAR images makes it difficult to characterize the 
boundaries of ship targets by using the image gradient. 

The Fisher vector (FV) of an image pixel is computed 

according to the gradient of the log-likelihood function with 
respect to the global Gaussian mixture model (GMM) 
parameters [6]. FV contains multi-order information (i.e., 
zero-order, first-order and second-order information) of a 
pixel. In [1], [2], it has been demonstrated that the multi-order 
features in FV can effectively discriminate ship targets and 
the sea clutter, even in low SCR cases. Note that FV is only 
utilized at the step of decision-making in existing superpixel-
based detectors in [1], [2]. To the best of our knowledge, 
multi-order features in FVs have not been exploited for 
superpixel segmentation of SAR images thus far. 

In this paper, we introduce an adaptive FV-based simple 
linear iterative clustering (AFVSLIC) algorithm for 
superpixel segmentation of SAR images. AFVSLIC 
considers not only the intensity and spatial features, but also 
the multi-order features produced by FVs, where the weights 
of the features are adaptively adjusted in the iterative process. 
Mainly, there are three steps in the iteration of AFVSLIC: 1) 
locally clustering pixels to generate supeprixels based on the 
pixel distance with aggregated features; 2) updating each 
superpixel center by averaging the features of its pixels; 3) 
adjusting the weights of the features to obtain more compact 
superpixels. Experiments with real SAR data show that the 
proposed AFVSLIC algorithm achieves better segmentation 
performance than the commonly used algorithms, improving 
the performance of ship target detection. 

2. DISTANCE MEASURE  

Superpixel segmentation is regarding as a local clustering 
process [4]. A key problem for clustering is how to define the 
distance between two pixels in the image. In this section, we 
consider five distance measures based on different aspects, 
such as intensity, spatial location, zero-order, first-order and 
second-order characteristics produced by FVs, respectively. 

2.1. Distance Measures of Intensity and Spatiality 

The intensity distance 𝑑 (𝑖, 𝑗)  and the spatial distance 
𝑑 (𝑖, 𝑗)  between the pixel 𝑖  and the pixel 𝑗  are 
respectively calculated as: 

𝑑 (𝑖, 𝑗) = |𝛿 − 𝛿 |,               (1) 

𝑑 (𝑖, 𝑗) = (𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) ,        (2)                 
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where (𝑥 , 𝑦 ) and 𝛿  represent the spatial coordinates and 
the intensity value of the pixel 𝑖 , respectively, 𝑖 , 
𝑗 ∈{1,2,…,𝑃}, and 𝑃 is the number of pixels in the whole 
SAR image.  

2.2. Distance Measures of FVs 

The basic idea of FV lies in: 1) establishing a GMM to 
approximate the global SAR image, and 2) calculating the 
gradients of the log-likelihood function with respect to the 
model parameters in GMM as the coding vectors of pixels.  
It is well known that GMM can model continuous 
distributions with arbitrary precision [10]. The probability 
density function (PDF) of GMM for the SAR image is 
expressed as: 

𝑓(𝛿) = ∑ 𝜔 𝑓 (𝛿),            (3) 

where 𝑓 (𝛿) = 1 2𝜋𝜎⁄ exp − (𝛿 − 𝜇 ) , 𝜔 , 𝜇 , 

𝜎  represent the weight, mean value and standard deviation 
of the 𝑘-th Gaussian component, respectively, 𝑘 = 1,2,…,𝐾, 
∑ 𝜔 = 1 and 𝐾 is the number of Gaussian components 

in GMM. The GMM parameter set 𝚯  {𝜔 , 𝜇 , 𝜎 , 𝑘 = 
1,2,…, 𝐾 } can be estimated by using the expectation-
maximization (EM) algorithm [11].  

The FV 𝛂  of the i-th pixel is the normalized gradient 
vector of the log-likelihood function with respect to the 
parameter set 𝚯 [6]: 

𝛂 = [𝛼 , , … , 𝛼 , ,

𝛂
( )

𝛼 , , … , 𝛼 , ,

𝛂
( )

𝛼 , , … , 𝛼 ,

𝛂
( )

] , (4)                   

where  
𝛼 , = 𝜙 , − 𝛽 𝛽 ,            (5) 

𝛼 , = 𝜙 , (𝛿 − 𝜇 ) 𝜎 𝛽⁄ ,         (6) 

𝛼 , = 𝜙 , 2𝛽⁄ [(𝛿 − 𝜇 ) 𝜎⁄ − 1],     (7) 
𝑖 =1,2,…, 𝑃 , 𝑘 =1,2,…, 𝐾 , (.)T represents the transpose 
operation,  𝜙 , = 𝜔 𝑓 (𝛿 ) ∑ 𝜔 𝑓 (𝛿 ) , and 𝛽 =

exp(𝜔 ) ∑ exp(𝜔 )⁄ . We refer readers to [6] for the 

detailed derivations of (5)-(7). In (4), we use {𝛂
( )

, 𝜂 =0,1,2} 
to denote the sub-vectors in FV corresponding to the weights, 
mean values and standard deviations in GMM, respectively, 
for 𝑖=1,2,…,𝑃. Then, the signed square-rooting operation is 

performed on {𝛂
( )

, 𝜂 =0,1,2}, ∀𝑖, like in [6] to avoid FV 
close to null. 

Note that {𝛂
( )

, 𝜂 =0,1,2} in (4) represent the zero-order, 
the first-order and the second-order information (see (5)-(7)) 
of the 𝑖 -th pixel, respectively. In [1], [2], the multi-order 
features in FV have shown the good discrimination ability 
between ship targets and the clutter background in SAR 
images, while they have not been exploited for the problem 
of superpixel segmentation.  

Next, the multi-order features produced by FVs are 
introduced to measure the distance of two pixels in the image. 
Based on (4)-(7), the distances between FVs of pixel i and 
pixel j are defined as follows:  

𝑑 , = ∑ 𝐺(𝑡) 𝛂
( )

− 𝛂
( ) ,       (8) 

where 𝜂 ∈ {0,1,2}, 𝐺 (.) is the standard Gaussian kernel, 
t  ∈{1,2,…,9}, 𝑖  represents the t-th element in the 3  3 
patch centered by pixel 𝑖, and 𝑖, 𝑗 ∈{1,2,…,𝑃}. Here, the 
Gaussian kernel 𝐺(.) is used to suppress the speckle noise in 
SAR images [5]. 

3. PROPOSED AFVSLIC ALGORITHM 

The proposed AFVSLIC algorithm aggregates not only the 
distances of the (commonly used) intensity and spatial 
features, but also the distances of the multi-order features in 
FVs. The weights of features are adaptively selected in the 
iteration of AFVSLIC to enhance the compactness of 
superpixels.  

Algorithm 1: AFVSLIC  
Input: The SAR image with P pixels, the superpixel size 

S, the amplification factor  𝜆 , the number of 
components in GMM K, and the maximum iteration 
count Iter. 

Initialization: The expected number of superpixels is 𝐿 
= P/S2. Estimate the GMM parameters via the EM 
algorithm and calculate the FV for each pixel in the 
SAR image by (4)-(7). Set the center coordinate 
𝑐( ) = [𝑥( ), 𝑦( )]  of the l-th superpixel with the 
regular grid interval S, for 𝑙  = 1,2,…,𝐿 . Initialize 
distance D = [𝐷 , 𝐷 , … , 𝐷 ], 𝐷 = + , p = 1,2,…,P, 
label 𝛀 = 0, 𝛀 ∈ ℝ , and the weights ℎ  = 1/𝑅, for 
r = 1,2,...,𝑅.  

Repeat: 
Step 1: For each center coordinate 𝑐( ), 𝑙 = 1,2,…,𝐿, 

For each pixel (q = 1,2,…,4S2) in the area 2S
 2S centered by 𝑐( ),  

1) Calculate the distance dall between the 
center 𝑐( ) and the pixel q via (9).  

2) If dall<Dq, then Dq = dall, 𝛀  = l. 
         End 

End 
Step 2: Update each superpixel center {𝑐( ), ∀𝑙}  by 
averaging the intensities, spatial locations and FVs of its 
pixels. 
Step 3: Adjust the weights {ℎ , ∀𝑟} of the features via 
(11). 
Until the count of iterations is larger than Iter. 
Postprocessing: If there is a disjoint superpixel denoted 
by C in the segmentation result  𝛀 , 1) find its 
neighboring supeprixels and calculate their averaged 
intensity values {𝛿̅ , 𝛿̅ , … , 𝛿̅ } , where 𝑁  is the 
number of neighboring supeprixels; 2) assign the label 
of the n*-th supepixel to C, where n* =
arg min

∈{ , ,…, }
|𝛿̅ − 𝛿̅ |, 𝛿̅  is the averaged intensity 

value of the disjoint superpixel C. 
Output: The superpixel segmentation result 𝛀. 
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The iterative process of the proposed AFVSLIC algorithm 
mainly contains three steps: 

1) Step 1: Set the centers of superpixels and the weights of 
features, then solve the pixel labels. The search area for each 

superpixel center is its neighboring 2S 2S region, where S is 
the predefined size of the superpixel. The distance between 
the l-th superpixel center 𝑐( ) and the 𝑞-th pixel in its 2S
2S search area is defined by aggregating the five feature 
distances introduced in Section 2: 

𝑑 = ∑ ℎ 𝑑 (𝑐(𝑙), 𝑞),           (9) 

where 𝑅  = 5 is the number of features, 𝑟  = 1,2,…, 𝑅 
represent ‘int’, ‘spa’, ‘FV, 0’, ‘FV, 1’ and ‘FV, 2’, 
respectively (see (1), (2) and (8)), ℎ  is the weight parameter 
of the 𝑟 -th feature, ∑ ℎ = 1 , 𝜆 > 1  represents the 
amplification factor of the weights [8], 𝑞 = 1, 2,…,4S2, 𝑙 = 
1, 2,…, 𝐿 , and 𝐿  = P/S2 is the expected number of 
superpixels in the SAR image. Based on the distance measure 
in (9), each pixel is assigned to its closest superpixel center. 
Note that the values in {𝑑 𝑐(𝑙), 𝑞 , ∀𝑟} are pre-normalized 
before (9) by using their corresponding maximum values in 
the 2S  2S search area of the 𝑙 -th superpixel center to 
guarantee that they have the same dynamic range [0, 1], ∀𝑙.  

2) Step 2: Obtain the superpixel centers with the fixed 
pixel labels and the weights of features. In detail, each 
superpixel center is updated by averaging the intensity values, 
spatial coordinates and FVs of the pixels corresponding to it. 

3) Step 3: Update the weights of features with the fixed 
pixel labels and superpixel centers. First, the sum of the 
within-superpixel variances (SSV) [10] is defined as:  

SSV = ∑ ∑ ∑ sign(𝑝 ∈ 𝐬 )ℎ 𝑑 (𝑐(𝑙), 𝑝),  (10) 
where 𝐬  denotes the l-th superpixel with the center 𝑐(𝑙), for 
𝑙 = 1,2,…,𝐿, sign(.) is 1 if its input is true and 0 otherwise. 
Then, the optimal weights { ℎ , ∀𝑟 } are obtained by 
minimizing SSV  in (10), i.e., the weights { ℎ , ∀𝑟 } are 
adjusted to make each superpixel more compact. By setting 
the first derivative of SSV with respect to {ℎ , ∀𝑟} into zero, 
we have: 

= 0  ℎ = 1 ∑ [sSSV sSSV ́⁄ ] ( )⁄
́⁄ ,∀𝑟, (11) 

where sSSV = ∑ ∑ sign(𝑝 ∈ 𝐬 )𝑑 (𝑐(𝑙), 𝑝).  
When the number of iterations in AFVSLIC exceeds a 

predefined maximum iteration count Iter, postprocessing is 
performed to eliminate the disjoint superpixels as [1], [5], [7]. 
The implementation of the proposed AFVSLIC algorithm is 
summarized in Algorithm 1. 

4. EXPERIMENTAL RESULTS 

In this section, we compare the performance of the SLIC [1], 
pixel intensity and the location similarity (PILS) [5], 
exponential-SLIC (E-SLIC) [7] and the proposed AFVSLIC 
algorithm by using SAR images collected by the Gaofen-3 
satellite. For these segmentation algorithms, the predefined 
superpixel size is S = 26 and the maximum iteration count is 
Iter = 10, which are selected according to [1] and [4]. The 
other hyper-parameters in SLIC, PILS and E-SLIC are well-
tuned in the case of SCR = 15dB. The amplification factor 𝜆 
in AFVSLIC is 7. The number of Gaussian components in 
GMM is 𝐾 = 7, which is sufficient to model the SAR images 
[2]. To evaluate the robustness of above superpixel 
segmentation algorithms in different SCR cases, semi-
controlled SAR images are generated according to the 
guideline in [9]. Let 𝐔  and 𝐕  denote the original SAR 
image containing ship targets and the pure sea surface SAR 
image, respectively. Given the value of SCR in dB, the semi-

controlled SAR image U  is obtained by 𝐔′ = 𝐔 + 𝜌𝐕 , 

where 𝜌 = 10 ⁄ ∑ | |∈𝐔

∑ | |∈𝐕
 [9]. 

4.1. Segmentation Performance 

Fig. 1 shows the segmentation performances of SLIC [1], 
PILS [5], E-SLIC [7] and the proposed AFVSLIC algorithm 
in the case of SCR = -1dB. From Fig. 1, it can be observed 
that AFVSLIC provides more distinct boundaries to 
distinguish ship targets and sea clutter. This is because 1) the 
newly introduced FV features in AFVSLIC enhance the 
discrimination between ship targets and the sea clutter, and 2) 
the weights of the features are adaptively adjusted to improve 

  
(a)                 (b) 

  
(c)                 (d) 

  
(e)                 (f) 

Fig. 1 Results of superpixel segmentation. (a) The original SAR 
image (SCR = -1dB), (b) the ground truth, (c) SLIC [1], (d) PILS 
[5], (e) E-SLIC [7], (f) proposed AFVSLIC algorithm. 
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the compactness of superpixels.  
In Fig. 2, we quantitatively evaluate the segmentation 

performance by two commonly used metrics, i.e., boundary 
recall (BR) and undersegmentation error (UE) [4]. BR and 
UE are defined as  

BR = 
∑

∈𝐁(𝐬)
( ) ( )

∈𝐁(𝛉)

|𝐁(𝛉)|
,   (12) 

UE = 
∑ ∑ |𝐬 |× (|𝐬 ⋂𝛉 | |𝐬 |)

∑ |𝛉 |
− 1,      (13) 

respectively, where 𝑙 = 1,2,…,𝐿, 𝐁(𝐬) represents the set of 
all the boundary pixels in the segmentation result, 𝛉  is the z-
th ground truth of segment, for 𝑧 = 1,2,…,𝑍, 𝐁(𝛉)  is the 
ground truth set of boundary pixels, 𝜖  is the bound 
parameter, and 𝜉 is the threshold parameter. In this paper, 
we set 𝜖 =2 and 𝜉 =0.05. A larger value of BR means that 
the generated superpixels have better consistency with the 
ground truth of boundaries. A smaller value of UE implies 
that the generated superpixels show less overlapping of 
targets and clutter. From Fig. 2, we can conclude that 
AFVSLIC provides larger BR and smaller UE, i.e., better 
segmentation performance is achieved by AFVSLIC. 

4.2. Detection Performance  

Superpixel-based constant false alarm rate (SP-CFAR) [7] is 
a commonly used superpixel-based detector. Here, SLIC [1], 
PILS [5], E-SLIC [7] and AFVSLIC are considered for the 
superpixel segmentation step of SP-CFAR, respectively. The 
detection performance is evaluated by the area under the 
receiver operating characteristic curve (AUC) [9]. In Fig. 3, 
we show the AUC of the SP-CFAR detector. We can see that 
the proposed AFVSLIC algorithm leads to better detection 
performance, due to its more accurate superpixel 
segmentation. 

5. CONCLUSION 

In this paper, we introduce a new superpixel segmentation 
algorithm called AFVSLIC. Compared with existing 
algorithms, the multi-order characteristics contained in FVs 
are utilized in AFVSLIC to measure the distance between 
pixels in SAR images. In addition, AFVSLIC selects 
adaptively the weights of the features. Our experiments 
demonstrate that AFVSLIC provides better segmentation 
performance, leading to better performance in ship target 
detection than existing state-of-the-art algorithms. 
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Fig. 3 Detection performance: AUC of SP-CFAR [7] versus SCR. 

 
(a)                         (b) 

Fig. 2 Segmentation performance: (a) BR, (b) UE. 
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