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ABSTRACT
Hyperspectral unmixing aims to decompose a hyperspectral
image (HSI) into a collection of constituent materials, or end
members, and their corresponding abundance fractions. Re
cently, nonnegative tensor factorization (NTF)-based spectral
unmixing methods have attracted significant attention owing
to their outstanding performance when representing an HSI
without any information loss. However, tensor factorization
based HSI methods do not fully exploit the spatial contextual
information present in the scene. Besides, these approach
es are sensitive to low signal-to-noise ratio (SNR) in HSIs.
To address this limitation, we propose a new spectral-spatial
weighted sparse nonnegative tensor factorization (SSWNTF)
method to preserve the spatial details in the abundance map
s via the spectral and spatial weighting factors. Our exper
iments with simulated data sets certified that the proposed
method outperforms other advanced methods.

Index Terms- Hyperspectral unmixing, blind source
separation, nonnegative tensor factorization, spatial informa
tion.

1. INTRODUCTION

Due to insufficient spatial resolution and spatial complex
ity, pixels in remotely sensed hyperspectral images (HSIs) are
likely to be formed by a mixture of pure spectral constituents
(endmembers) rather than a single substance [1]. Spectral un
mixing, which estimates the fractional abundances of the pure
spectral signatures or endmembers in each mixed pixel, was
proposed to deal with the mixing problem [2].
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Linear unmixing techniques can be classified into geomet
rical [3] and statistical-based [4]. The former exploits the fact
that the spectral vectors are in a simplex whose vertices cor
respond to the endmembers, whereas the latter category ad
dresses spectral unmixing as an inference problem [1]. For
the geometrical-based methods, they usually assume that pure
pixels exist, i.e., they contain only one type of material. How
ever, in many cases, the existence of pure pixels in an image
cannot be guaranteed. Here, we focus on the statistical ap
proach to spectral unmixing.

From the statistical point of view, hyperspectral unmix
ing can be treated as a blind source separation (BSS) prob
lem. Nonnegative matrix factorization (NMF)-based unmix
ing [5,6] is a classic method in statistics that not only pro
vides a fully unsupervised procedure (without the pure pix
el assumption), but is also able to simultaneously determine
the endmember signatures and corresponding fractional abun
dances. However, due to the fact that the cost function of the
standard NMF model is nonconvex, there may exist many lo
cal optimal solutions. To alleviate this situation, researchers
have introduced a series of additional constraints into the s
tandard NMF model. On the one hand, some methods impose
constraints on the endmembers themselves. The minimum
volume constrained nonnegative matrix factorization (MVC
NMF) [7] is one of the most representative of such method
s. On the other hand, other methods impose constraints on
the abundances, such as L1/ 2-NMF [8], the graph-regularized
L1/ 2 -NMF (GLNMF) [9], and the total variation regularized
reweighted sparse NMF (TV-RSNMF) [10].

Even though these constrained NMF methods offer
promising performance, under a matrix factorization frame
work information loss is unavoidable when unfolding a 3-D
HSI into a 2-D matrix form. Compared to matrices, ten
sors [11] offer a more natural representation of HSI cubes
which characterizes two spatial dimensions and one spec
tral dimension. Tensor decompositions have been widely
applied for HSI feature extraction, denoising and target de-
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tection [12]. Recently, the matrix-vector nonnegative tensor
factorization (MV-NTF) [13] unmixing method based on
block-term decomposition (BTD) has been proposed, which
has obtained encouraging unmixing results. The introduction
of MV-NTF opened new avenues and brought new insights
into the concept of NTF unmixing. However, in practical
applications, the results of tensor decomposition are usually
unstable due to its sensitivity to low SNR. Furthermore, the
BTD takes the tensor data as a whole and ignores the detailed
spatial structure information contained in the scene.

Inspired by the success of weighted £'1 minimization in
sparse signal recovery [14], in this paper we proposed a new
spectral-spatial weighted sparse nonnegative tensor factor
ization (SSWNTF) hyperspectral unmixing method. The
proposed SSWNTF method aims at simultaneously exploit
ing the sparsity as well as the spatial smoothness of fractional
abundances. On the one hand, the spatial weighting factor is
used to promote piecewise smoothness in abundance maps
and alleviate the drawbacks of the NTF-based methods in
noisy scenarios. On the other hand, the spectral weighting
factor is used to enhance the sparsity of the solution. In the
implementation of SSWNTF, an augmented multiplicative
update scheme is proposed to solve the optimization prob
lem.

The remainder of the paper is organized as follows. In
Section 2, we briefly describe some related works. Section 3
describes the proposed SSWNTF method in detail. Section
4 presents the experimental results with simulated hyperspec
tral scenes. Finally, section 5 concludes the paper with some
remarks and hints at plausible future research lines.

2. RELATED WORKS

Let X E jRKxN denote a hyperspectral image, where N
is the number of pixel vectors and K is the number of bands.
The linear mixture model can be expressed as

where X E jRlxJxK denotes the observed 3-D HSI with
I x J pixels and K-bands. E r E jRlxJ represents the abun
dance map of the r-th endmember, which is approximately
represented by two rank L matrices A r and B r . C r is the r-th
endmember. N denotes the additive noisy tensor, 0 denotes
the out-product. Taking the ASC into account, the solution of
(2) becomes minimizing the reconstruction error between X
and its R components tensors, which is represented by

s.t.:A, B, C 2: 0

where lIxJ is a matrix of all-ones, A = [A1 , ... , A R ], B =
[B1 , ... , B R ], C = [C1,"" CR], the operators II·IIF denotes
the Frobenius norm, 5 balances the tradeoff between the re
construction error and sum-to-one constraint.

3. PROPOSED METHOD

In order to exploit the spatial information more efficiently
and protect the outcome of tensor decomposition under low
SNR conditions, we develop a new method called SSWNTF
for hyperspectral unmixing. Note that in order to avoid trivial
solutions, we make L~=l (ArB;) equal to one. It is obvi
ous that the L~=l (ArB;) is equal to ABT . The model of
SSWNTF can be written as

R

+>- L II (w?ew?a) 8 (A r B;)111 s.t.A,B,C 2: 0
r=l

(4)

whereA E jRKxR represents a matrix containing R endmem
bers. S E jRRxN denotes the abundance maps. E E jRKxN

is the additive noisy matrix. Generally, the abundance matrix
S needs to satisfy two constraints, i.e. the abundance nonneg
ative constraint (ANC) and the abundance sum-to-one con
straint (ASC).

The MV-NTF model [13] factorizes the observed 3-D HSI
into the sum of R component tensors, where each one is the
outer product of a rank L matrix and a vector, representing
abundances and endmembers, respectively. It can be formu
lated as

X=AS+E

R R

X = LArB; OCr +N = LEr OCr +N
r=l r=l

s.t.:A, B, C 2: 0

(1)

(2)
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where 8 denotes element-wise multiplication, >- is a regular
ization parameter and 5 E jR+ balances the tradeoff between
the reconstruction error and sum-to-one constraint.

For the spectral weighting factor w spe E jRRxR, relying
on the success of [15], we adopt row collaborativity to enforce
joint sparsity among all the pixels. Let S = ArB; denote
the abundance matrix. In detail, at iteration t + 1, it can be
updated as

wspe,t+1 _ d' [1 1]
- lag IISt(l, :)112 + E: ... IISt(R, :)112 + E: '

(5)
where St(R, :) denotes the R-th row in the abundance matrix
at the t-th iteration, and E: is a small positive value.

Similar to the spatial weighting factor in S2WSU [14],
the w spa E jRRxN is used to promote piecewise smoothness
in abundance maps. Let w spa ,t+1 be the element of the i-th
(i = 1, ... , R) line and j-th (j = 1, ... , N) row in w spa
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at iteration t + 1. We incorporate the spatial neighborhood
information as follows Table 1. SAD of the unmixing methods under different noise

level.

where X(3) denotes the mode-3 unfolding of X, M = [(A1 8

B 1)IL ... (A R 8 B R )IL ]

Table 2. RMSE of the considered unmixing methods under
different noi~se~le~v:i'e~ls~. IT"r'7UiC=r'7UiC=r=niC==

(7)

(6)spa,t+1 _ 1
wij - f ( t ) ,

hEN(j) Sij + E

where E represents the neighborhood importance. For sim
plicity, we consider the 8-connected (3 x 3 window) for al
gorithm design and experiments. With respect to the neigh
boring importance, for any two entries i and j, Eij = im(i,j)'

where function im(-) is the importance measurement over the
two elements Si and S j' Let (e, g) and (k, m) be the spatial
coordinates of Si and Sj' The European distance is specifical
ly considered, that is, Eij = 1/V(e - k)2 + (g - m)2.

We adopted an augmented multiplicative update method
to solve the model (4). Specially, in the tensor factorization
term, A r and B r are treated as a whole, while in the sparse
regularization term we treat them independently. By embed
ding U = A and V = B in (4) to split the variables, the
model of SSWNTF can be rewritten as

where N(j) denotes the neighboring set for element Sij and
f(-) is a function explicitly exploiting the spatial correlation
s through the neighborhood system. Here, the neighboring
coverage and importance are used to incorporate the spatial
correlation as follows

R (8)
+>- L II (w?ew?a) 8 (A r B;)111 + ~(IIU - AII~

r=l

+ IIV - BII~) s.t.A, B, C 2 0

Fig. 1. Spectral signatures of six endmembers considered in
our simulations.

4. EXPERIMENTAL RESULTS

In order to illustrate the performance of the proposed
method, we compare the SSWNTF algorithm presented in

A+--- A*(XT M+51 B+ U)/(AM™+5ABTB+ A)this ~?rk with.other ad:anced algorithms for hypersp~ctral
(1) Ix J f-L (9( unm1xmg, speClfically w1th the vertex component analys1s (V-

. _ CA) method [3], the basic NMF [5] method, L 1/ 2 -NMF [8]
where X(1) denotes the mode-l unfoldmg of X and M - th d d th t' _ t NMF (MV-NTF) [13] th d
B - C h' . . Kr k d f me 0 ,an e rna nx vec or me 0 .8 represents t e partltlon-w1se onec er pro uct 0 ma- nT d h' HSI d b d' "1. . vve generate synt etlc ata y a optmg a slm1 ar
tnx Band C. The operands * and / denote element-w1se. .. .

1 · 1" d d' . . procedure w1th regards to the one adopted m [13]. Erst, SlXmu tlp lCatlon an 1V1S10n. ...endmember slgnatures that contam 224 spectral bands, w1th
B +--- B.*(XT M+51T A+ V)./(BM™+5BATA+ B)wavelengths ran.ging from 0.38 to ~.5 f-Lm, are randoml~ cho-

(2) IxJ f-L (lot ~en from the Um~ed States Geolog1c~1 Survey (USG~) hbrary

h X d t th d 2 ,. Id' f M - Ci:\A . The spectral slgnatures of these SlX endmember slgnatureswere (2) eno es e mo e- unlo mg 0 X, - '0 . h' F' 1are sown m 19. .

where f-L is a parameter for controlling the difference between
the primal and the auxiliary variables. The optimization prob
lem of each variable is split. Under the model in (4), the up
date rules are given by

(l1) 1Available online: https://speclab.cr.usgs.gov/spectral-lib.htrnl
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(a)SSWNTF (b)MVNTF (d)NMF (e)YCA

Fig. 2. Abundance maps obtained for the sixth endmember from the simulated data sets under SNR=20dB.

After generating the simulated data cubes, the zero
mean white Gaussian noise with SNR=20, 30, and 40d
B are included in the experiments. The spectral angle
distance (SAD) and the root mean square error (RMSE)
were used to measure the unmixing performance. The

SADr = arccos Clc:~II~'rll) evaluates the dissimilarity of
the r-th endmember signature Cr and its estimated signature

1

Cr' The RMSE = (-bIEr - ErI2)" measures the error
between the real abundance map E r of the r-th endmember
and its estimated map Er , where N = I x J is the num
ber of pixels in the image. In our experiments, we use the
average SAD of all endmembers and the average RMSE of
all abundance maps to indicate the unmixinl performance,
which are defined as SAD = (1/R) Lr=1 SADr and
RMSE = (1/R) L~=1 RMSEr, respectively. The smaller
the SAD and the RMSE, the more accurate the unmixing re
sults. For all the considered algorithms, the input parameters
have been carefully adjusted to achieve optimal performance.
Besides, we use a random method to initialize A,B, C, and
all the tested methods are initialized with the same values.

Table 1 and Table 2 show the SAD and RMSE results ob
tained by different algorithms under all considered SNR lev
els. We can see that the proposed SSWNTF algorithm obtains
better SAD and RMSE results than other algorithms in all cas
es, which indicates that the spectral-spatial weighted strategy
can improve the unmixing performance. Fig. 2(a)-(e) show a
graphical comparison of the considered unmixing algorithms
for the simulated problem with SNR of 20dE, in which only
the abundance map of endmember 6 is presented, as the abun
dance maps estimated for all endmembers exhibited similar
behavior. It can be seem from Fig.2 that the results obtained
by SSWNTF are better than those provided by other method
s in the case of low SNR, which indicates that the inclusion
of the spatial weighting factor in the NTF model can further
promote the piecewise smoothness of the abundance map.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a new spectral-spatial
weighted sparse nonnegative tensor factorization (SSWNTF)
algorithm for blind unmixing of hyperspectral data. For the
proposed SSWNTF algorithm, the spatial weighting factor is
used to promote piecewise smoothness in abundance maps,

2180

while the spectral weighting factor is used to enforce the s
parsity of the solution. The experimental results with simulat
ed hyperspectral data reveal that the SSWNTF algorithm out
performs other state-of-the-art unmixing algorithms. Future
work will focus on conducting additional experiments with
real hyperspectral images.
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