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ABSTRACT:

Recent innovations in microelectronic and semiconductor technology enable the creation of smaller and economical hyperspectral
cameras. A filter combined camera with advanced scanning module is a game changer that extends the application of miniature
hyperspectral imagers to many security domains. This work presents the assessment of the imager L4 from Glana Sensors to detect
concealed targets in woodland areas. Several target detection methods were applied to a collection of scenes acquired under various
illumination conditions and containing different materials. The potential and limitations of this new imaging device in the context
of difficult target detection in forested area are evaluated and discussed.

1. INTRODUCTION

Detecting targets concealed in foliage or camouflage in large
areas is a topic of interest in several security applications, such
as search & rescue, fighting cross-border crimes, or detecting
enemies hidden in a forest. However, automatic detection and
recognition of targets in forested areas is a very challenging re-
search task, mainly due to the high intra-class variability of the
background clutter including vegetation species, texture, and il-
lumination.

With tens to hundreds contiguous spectral bands, hyperspectral
imaging technology is now able to differentiate subtle spectral
differences between land-cover objects, thus allowing for ad-
vanced material identification and separation techniques such
as target detection (Q. Ling, 2019). Accordingly, hyperspec-
tral technology has been successfully implemented for several
applications areas, including, e.g., medicine, environment, pub-
lic safety, and defense (Stefanou, Kerekes, 2010). Miniature
sensors on-board unmanned aerial systems (UAS) are chan-
ging the operational capacity of security forces in forested land-
scapes, as they can acquire imagery of unreachable narrow and
confined spaces (Petra et al., 2018). Traditionally, such systems
are equipped with night-vision cameras and thermal sensors,
but recent technological developments have enabled deploy-
ment of active sensing and multi/hyperspectral imagers (Wa-
harte, Trigoni, 2018), (Jafari et al., 2014).

This paper presents the results of a study that evaluates the cap-
ability of advanced miniature hyperspectral imaging to detect
concealed target in woodland areas. Specifically, it assesses
the detection of concealed vehicle and small objects in forested
zone using benchmarked detection algorithms, and discusses
the limitation and the potential of the newly presented scanning
technique.

∗Corresponding author

2. DATA COLLECTION

2.1 Hyperspectral Imager

The miniature hyperspectral imager, L4 developed by Glana
Sensors AB, was used in this study for spectral measurements.
This advanced sensor is based on an exponentially variable fil-
ter (EVF) which is attached on, or in the direct proximity to the
detector plane (Figure 1). The bandpass EVF filter allows the
light to pass only in a narrow wavelength band, centered at a
wavelength λc. This center wavelength varies over the filter as
a function of the pixel position (x, y). The center wavelength
is a function of only one dimension, according to λc = λc(x).
As the EVF is mounted on, or very close to, the detector plane,
the light registered by the sensor element at position (x, y) will
only contain wavelengths close to λc(x, y). When the camera
and the observed surface are static, each point on the object will
thus be observed in a specific wavelength (Renhorn et al., 2016,
Ahlberg et al., 2017). By rotating the camera, it can be used as
an imaging spectrometer, as described in (Renhorn, Axelsson,
2019).

Figure 1. The EVF unit mounted on the detector plane of the
miniature hyperspectral imager Glana-L4

2.2 Spectral References

The objects in the woodland scene were concealed with camou-
flage nets. For calibration and collection of reference spectra,
the Glana-L4 was used to measure the camouflage nets at mid-
summer time, under clear sky conditions and known reflectance
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materials (panels). Specifically, a 5% panel (Zenith SG3165)
was placed behind the net and 20% (Zenith SG3164) panel was
positioned next to the net, as shown in Figure 2.

Figure 2. Collection of reference spectra.

2.3 Image Acquisition

Two sets of image data were collected in Vlaasmeer, a forested
area at the North-East part of Belgium, using the Glana-L4. The
camera was mounted on a tripod and scanned the field of view
with horizontal motion and a frame rate (i.e. recording time) of
2 seconds for each independent band. In the first set of data,
a concealed vehicle using two camouflage nets was placed in
the shadow of the trees and scanned from near distance (Figure
3). This operational setting produced a common geometrical
acquisition using UAS (Unmanned Aerial Systems), where the
target covers most of the scene and only a limited amount of
background pixels is available.

Figure 3. Concealed vehicle.

In the second set of data, two vertical metal objects were con-
cealed using camouflage nets and positioned in front of a tree
line and under direct illumination (Figure 4). Meteorological
parameters such as ambient temperature, wind speed, atmo-
spheric pressure, humidity and sun irradiation were simultan-
eously monitored using a dedicated station.

3. METHODOLOGY

3.1 Pre-processing

The selected frame rate of 2 seconds, for each independent
band, created a temporal delay that produced a spatial displace-
ment of moving objects between the bands. Using this config-
uration, leaves that moved with the wind were recorded in dif-
ferent pixel location in each band frame. Consequently, these

Figure 4. Concealed objects in a woodland scene

displacements created a situation where a single pixel contains
reflectance that is correspondent to different materials along the
wavelengths. To overcome this artifact, a spectral gradient ana-
lysis is used to mask out the pixels that are corresponded to
moving objects. In general, a pixel with this characteristic has
big differences in reflectance between adjacent bands, produ-
cing high spectral gradient values.

A transformed hyperspectral cube is then generated using the
1st derivative of the spectrum (Z) in each pixel, according to
the following equation (1),

Z′ = [z(2)− z(1); z(3)− z(2); ...; z(m)− z(m− 1)] (1)

where Z′ = spectral gradient vector
z = individual components of spectrum vector Z
m = number of bands

In addition, a threshold on the spectral gradient vector is com-
puted from a spectral reference library. The spectral vegetation
library of the United States Geological Survey (USGS) (Kokaly
et al., 2017) was chosen, from which vectors corresponding
to trees, grass and leaves were selected and spectral gradients
computed, as above. The resulting spectral gradient was then
used as a threshold reference, to which the spectral gradient
vector from each pixel in the acquired images were compared.

As shown in Figure 5 (top), when a derivative spectrum is
within the threshold range, the pixel is retained. Otherwise,
if a derivative spectrum is outside the threshold (Figure 5, bot-
tom), the pixel is masked out and not further considered in the
processing. The results of the gradient filter analysis for the
vehicle scene are presented in Figure 6. It must be noticed that
only pixels that contain moving background objects (i.e. leaves,
in yellow) were masked out.

3.2 Detection Algorithms

Four supervised target detection methods were applied after
implementing the above mentioned gradient filter. Specific-
ally, the Constrained Energy Minimization (CEM), Adaptive
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Figure 5. Mask using spectral gradient analysis. The original
spectrum of a pixel (blue) and its derivative (orange)

Figure 6. Results of the gradient filter; in yellow background
pixels that were masked out.

Cosine Estimator (ACE), Adaptive Matched Subspace Detector
(AMSD), and Orthogonal Subspace Projection (OSP) (Wang et
al., 2016) were considered using reference spectra collected in
Section 2.2 and random background pixels from the scene used
as training or input.

4. RESULTS

4.1 Concealed Vehicle

The vehicle was concealed using two different camouflage nets
(Figure 3). On the right side of the tree trunk, the vehicle is
covered by a woodland net composed of 3D blending structures.
On the left side, it is covered by printing fabric. The detection
results of the 3D net are presented in Figure 7 and Figure 9 and
the printing fabric in Figure 8 and Figure 10. ROC curves were
generated using manualy labeled pixels.

The results show that in low-illumination conditions and with
a low number of background pixels, the detection of the con-
cealed targets is almost equally hard. The best detection score
was achieved using the CEM for the printed fabric. However,
in general, the performances of the CEM and the AMSD were
quite similar in the detection of the two nets. These results are
quite surprising as it can be expected that the detectors that
require knowledge of background spectra from the scene (i.e.
AMSD and OSP) will perform better than the ones that require
only the target spectra. The results also show that the worse
performances of ASP and ACE are mainly due to the confu-
sion with the background materials, while the false alarms in
the case of AMSD and OSP are due to confusion between the
nets. In addition, results also show that it was easier to detect
the printed fabric than the 3D net in this operational scene.

CEM - False Alarm Ratio: 2% ACE - False Alarm Ratio: 2%

AMSD - False Alarm Ratio: 2% OSP - False Alarm Ratio: 2%

Figure 7. Detection results - concealed vehicle using 3D net

CEM - False Alarm Ratio: 2% ACE - False Alarm Ratio: 2%

AMSD - False Alarm Ratio: 2% OSP - False Alarm Ratio: 2%

Figure 8. Detection results - concealed vehicle using printed net
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Figure 9. Detection of concealed vehicle - ROC of 3D net
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Figure 10. Detection of concealed vehicle - ROC of printed net

4.2 Concealed Objects

In the second scenario, equipment installed on tripods used as a
heat source were covered with two different nets. The objects,
labeled 1 and 2, were positioned in front of a North-European
woodland (Figure 4) and scanned from a distance of about 200
meters. Object 1 was concealed with 3D net and Object 2 with
printed net. The detection results and their correspondent ROCs
are presented in Figures 11 and 12 for Object 1 and 13 and 14
for Object 2. It should be mentioned that these nets are different
from the ones used to cover the vehicle.

The results show that it was relatively easy to detect concealed
objects using Glana-L4 if the object is under direct illumina-
tion and not covered by trees. In general, as for the concealed
vehicle, it was easier to detect an object concealed by a printed
net than by a 3D net. Three out of the four detectors performed
exceptionally well in detecting Object 2, except of the OSP. The
confusion in the detection of the latter is mostly produced with
Object 1 and the background. The detection performance of
object-1 is less impressive and except of the CEM, the level of
false alarms are quite high using any of the other three methods.

CEM - Object 1 - False Alarm Ratio: 0.2% ACE - Object 1 - False Alarm Ratio: 0.2%

AMSD - Object 1 - False Alarm Ratio: 0.2% OSP - Object 1 - False Alarm Ratio: 0.2%

Figure 11. Object 1 target detection.
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Figure 12. Object 1 ROC.

It is difficult to distinguish between object-1 and object-2.

5. CONCLUSIONS

In this paper, we presented an assessment of the capability of
the imager L4 from Glana Sensors to detect concealed targets
in woodland areas. The data set which comprises a collection
of scenes acquired under various illumination conditions and
containing different materials, revealed the potential this new
sensing technology may bring to security operations. Specific-
ally, the results show that it is relatively easy to detect small
concealed objects under direct illumination and in front of the
tree line, using the Glana-L4. It was harder to detect concealed
vehicle under shadow and between the trees. Nevertheless, the
detection results of the concealed vehicle were satisfactory us-
ing the CEM and the AMSD methods.

The obtained results also show that implementing a gradient
filter to reduce displacement artifacts prior the detection sig-
nificantly improved the results. Further experiments should be
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CEM - Object 2 - False Alarm Ratio: 0.2% ACE - Object 2 - False Alarm Ratio: 0.2%

AMSD - Object 2 - False Alarm Ratio: 0.2% OSP - Object 2 - False Alarm Ratio: 0.2%

Figure 13. Object 2 target detection.
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Figure 14. Object 2 ROC.

conducted in order to evaluate other target detection algorithms,
particularly algorithms that do not require prior knowledge (i.e.
anomaly detection) and algorithms that are exploiting both spa-
tial and spectral information.
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