
http://hpc.sagepub.com

Computing Applications
International Journal of High Performance

DOI: 10.1177/1094342007088376
 2008; 22; 366 International Journal of High Performance Computing Applications

Antonio Plaza and Chein-I Chang
 Clusters Versus FPGA for Parallel Processing of Hyperspectral Imagery

http://hpc.sagepub.com/cgi/content/abstract/22/4/366
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 can be found at:International Journal of High Performance Computing Applications Additional services and information for

 http://hpc.sagepub.com/cgi/alerts Email Alerts:

 http://hpc.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.co.uk/journalsPermissions.navPermissions:

 http://hpc.sagepub.com/cgi/content/refs/22/4/366 Citations

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://hpc.sagepub.com/cgi/content/refs/22/4/366
http://hpc.sagepub.com

366 COMPUTING APPLICATIONS

The International Journal of High Performance Computing Applications,
Volume 22, No. 4, Winter 2008, pp. 366–385
DOI: 10.1177/1094342007088376
© 2008 SAGE Publications Los Angeles, London, New Delhi and Singapore
Figures 1, 7, 8 appear in color online: http://hpc.sagepub.com

CLUSTERS VERSUS FPGA FOR
PARALLEL PROCESSING OF
HYPERSPECTRAL IMAGERY

Antonio Plaza1

Chein-I Chang2

Abstract

Hyperspectral imaging is a new technique in remote sens-
ing that generates images with hundreds of spectral bands,
at different wavelength channels, for the same area on the
surface of the Earth. Although in recent years several
efforts have been directed toward the incorporation of
parallel and distributed computing in hyperspectral image
analysis, there are no standardized architectures for this
purpose in remote sensing missions. To address this issue,
this paper develops two highly innovative implementations
of a standard hyperspectral data processing chain uti-
lized, among others, in commercial software tools such as
Kodak’s Research Systems ENVI software package (one
of the most popular tools currently available for process-
ing remotely sensed data). It should be noted that the full
hyperspectral processing chain has never been imple-
mented in parallel in the past. Analytical and experimental
results are presented in the context of a real application,
using hyperspectral data collected by NASA’s Jet Propul-
sion Laboratory over the World Trade Center area in New
York City, shortly after the terrorist attacks of September
11th 2001. The parallel implementations are tested in two
different platforms, including Thunderhead, a massively
parallel Beowulf cluster at NASA’s Goddard Space Flight
Center, and a Xilinx Virtex-II field programmable gate array
(FPGA) device. Combined, these platforms deliver an excel-
lent snapshot of the state-of-the-art in those areas, and offer
a thoughtful perspective on the potential and emerging chal-
lenges of incorporating parallel processing systems into
realistic hyperspectral imaging problems.

Key words: hyperspectral imaging, commodity clusters,
reconfigurable computing, hyperspectral data processing
chain, pixel purity index

1 Introduction

The development of computationally efficient techniques
for transforming the massive amount of remote sensing
data into scientific understanding is critical for Earth obser-
vation and planetary exploration (Schowengerdt 2007). In
particular, the wealth of spatial and spectral information
provided by latest generation remote sensing has opened
ground-breaking perspectives in many applications, includ-
ing environmental modeling and assessment (Patrino 2005)
or hazard prevention and response (Clark et al. 2006)
including fire detection and tracking, biological threat
detection, monitoring of oil spills and other types of
chemical contamination, target detection for military and
defense/security purposes, urban planning and manage-
ment studies, and so forth. (Chang 2007). Many of the
above-mentioned applications require analysis algorithms
able to provide a response in real-time (Winter et al.
2002), which is quite an ambitious goal because the price
paid for the rich information available from latest genera-
tion sensors is the enormous amounts of data that they
generate (Aloisio and Cafaro 2003; Chen, Fujishiro, and
Nakajima 2003; Hawick, Coddington, and James 2003).

Hyperspectral imaging (Chang 2003) is a new tech-
nique in remote sensing, in which an image spectrometer
collects hundreds or even thousands of measurements (at
multiple wavelength channels) for the same area on the
surface of the Earth. The images provided by such sen-
sors are often called image cubes to denote the extremely
high dimensionality of the data. The NASA Jet Propul-
sion Laboratory’s Airborne Visible Infra-Red Imaging
Spectrometer (AVIRIS; Green et al. 1998) is the most
advanced airborne-based Earth observation hyperspectral
instrument currently available, and routinely records the
visible and near-infrared spectrum (wavelength region
from 0.4 to 2.5 µm) of the reflected light of an area 2 to
12 km wide and several kilometers long using 224 spec-
tral bands (see Figure 1). The resulting image cube is a
stack of images in which each pixel (vector) has an asso-
ciated spectral signature or fingerprint that uniquely
characterizes the underlying objects, and the resulting
data volume typically comprises several gigabytes per
flight. The extremely high computational requirements
already introduced by hyperspectral imaging applications

1 DEPARTMENT OF TECHNOLOGY OF COMPUTERS
AND COMMUNICATIONS, TECHNICAL SCHOOL OF
CÁCERES, UNIVERSITY OF EXTREMADURA, AVDA.
DE LA UNIVERSIDAD S/N, E-10071 CÁCERES, SPAIN,
(APLAZA@UNEX.ES)
2 REMOTE SENSING SIGNAL AND IMAGE PROCESSING
LABORATORY (RSSIPL), DEPARTMENT OF COMPUTER
SCIENCE AND ELECTRICAL ENGINEERING, UNIVERSITY
OF MARYLAND BALTIMORE COUNTY (UMBC), 1000
HILLTOP CIRCLE, BALTIMORE MD-20250

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

367CLUSTERS VS FPGA FOR HYPERSPECTRAL

(and the fact that these systems will continue to increase
their spatial and spectral resolutions in the near future)
make them an excellent case study to illustrate the need for
high performance computing (HPC) systems in remote
sensing applications.

Specifically, the utilization of HPC systems in hyper-
spectral imaging applications has become increasingly
widespread in recent years. From a computational perspec-
tive, hyperspectral image processing algorithms exhibit
inherent parallelism at multiple levels: across pixel vectors
(coarse grained pixel-level parallelism), across spectral
information (fine grained spectral-level parallelism) and
even across tasks (task-level parallelism). Because data
accesses in these algorithms are regular and predictable,
they can be implemented using vector programming
techniques, thus taking advantage of the SIMD (single-
instruction, multiple-data) capabilities of vector proces-
sors. The introduction of MMX technology in 1997 and
other architecture extensions in subsequent years, espe-
cially SSE and SSE2 in Intel processors (Skoglund and
Felsberg 2005), and AltiVec in PowerPC (Diefendorff
et al. 2000), allowed for the development of improved
hyperspectral image processing algorithms (Wang, Rucker,
and Fowler 2004).

Another approach to tackling the extremely high data
volumes collected by Earth observation instruments in a
cost-effective way was to utilize commodity Beowulf
clusters (Sterling 2002). The idea of using commercial off-

the-shelf (COTS) computer equipment clustered together
to work as a computational “team” was originally devel-
oped to create a parallel computing system from com-
modity components to satisfy specific requirements for
the Earth and space sciences community (Dorband, Palen-
cia, and Ranawake 2003). This strategy has already offered
access to greatly increased computational power, but at a
low cost (commensurate with falling commercial PC costs)
in a number of remote sensing applications (Dhodhi et al.
1999; Kalluri et al. 2001; Le Moigne, Campbell, and
Cromp 2002; Wang et al. 2002; Achalakul and Taylor
2003; Tilton 2005; Tehranian et al. 2006). In theory, the
combination of commercial forces driving down cost and
positive hardware trends (e.g. CPU peak power doubling
every 18–24 months, storage capacity doubling every
12–18 months and networking bandwidth doubling every
9–12 months) offers supercomputing performance that
can now be applied to a wide range of hyperspectral
problems.

Although hyperspectral image processing algorithms
map nicely to parallel systems made up of commodity
CPUs (Plaza et al. 2006), these systems are generally
expensive and difficult to adapt to onboard remote sens-
ing data processing scenarios. In onboard processing,
low-weight and low-power integrated components are
essential to reduce mission payload and obtain analysis
results in real-time. In pushbroom instruments such as
AVIRIS, a main goal of onboard real-time processing is

Fig. 1 The concept of hyperspectral imaging using NASA Jet Propulsion Laboratory’s Airborne Visible Infra-Red
Imaging Spectrometer (AVIRIS) system.

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

368 COMPUTING APPLICATIONS

to be able to use a coprocessor system to analyze a full
hyperspectral cube frame (consisting of 614 × 512 lines
and 224 spectral bands, with about 140 MB in size
because of the integer format used to store each radiance
value) before the next frame is collected. Since the cross-
track scan line in AVIRIS is quite fast (8.3 ms), this intro-
duces the need to process a full cube frame in no more
than 5 s to fully achieve real-time performance.

An exciting new development in the field of special-
ized commodity computing is the emergence of hardware
devices such as field programmable gate arrays (FPGAs),
which can bridge the gap toward onboard and real-time
analysis of remote sensing data (Fry and Hauck 2002; El-
Araby et al. 2004; Valencia and Plaza 2006; Vladimirova
and Wu 2006). FPGAs are now fully reconfigurable,
which allows one to adaptively select a data processing
algorithm (out of a pool of available ones) to be applied
onboard the sensor from a control station on Earth. The
ever-growing computational demands of remote sensing
applications can fully benefit from compact, reconfigura-
ble hardware components and take advantage of the
small size and relatively low cost of these units as com-
pared to clusters or networks of computers.

In this paper, our main goal is to discuss the role of sev-
eral HPC-based architectures in hyperspectral imaging,
with the ultimate goal of analyzing the possibility of
obtaining (near) real-time processing results in time-criti-
cal applications. To achieve this goal, we develop and
compare several new parallel versions of a well-known
hyperspectral data processing chain adopted in standard
remote sensing software. In particular, our goal is to pro-
vide an application-oriented case study in which the per-
formance of different architectures and techniques for
efficient processing of hyperspectral image data is dis-
cussed in the context of a real problem in which an effi-
cient utilization of hyperspectral data clearly depends on
high computing performance of algorithm analysis. The
paper is organized as follows. Section 2 describes a hyper-
spectral data processing chain that will serve as our case
study throughout the paper. This framework has been
widely used to analyze hyperspectral images and is avail-
able in Kodak’s Research Systems ENVI, a very popular
commercial tool for remote sensing image processing.
Section 3 provides several HPC-based implementations
of the data processing chain, including a cluster-based
parallel version and an FPGA-based implementation.
Section 4 provides an experimental comparison of the
proposed parallel implementations using several HPC
architectures. Specifically, we use Thunderhead, a mas-
sively parallel Beowulf cluster at NASA’s Goddard Space
Flight Center, and a Xilinx Virtex-II FPGA device. The
results obtained in these two platforms are thoroughly dis-
cussed in the context of the considered application (anal-
ysis of hyperspectral data collected after the World Trade

Center terrorist attacks in September 2001). Finally, Sec-
tion 5 concludes with some remarks and plausible future
research lines.

2 Hyperspectral Data Processing Chain

This section describes a commonly accepted hyperspec-
tral data processing chain that will be used as a case study
for the development of parallel algorithms (Chang 2003).
It consists of the following stages. First, a set of pure
spectral signatures (often called endmembers in hyper-
spectral analysis) are extracted from the input data set. The
goal of using endmembers is to deal with the problem of
mixed pixels, which arise when the spatial resolution of
the sensor is not high enough to separate different materi-
als. For instance, the pixel vector labeled as “vegetation
+ soil” in Figure 1 actually comprises a mixture of vege-
tation and soil. As a result, the spectral signature associ-
ated to each pixel vector measures the response of multiple
underlying materials at the imaged site. To deal with this
problem, spectral unmixing (Keshava and Mustard 2002)
has been used to decompose the measured spectrum of a
mixed pixel into a linear combination of endmembers
weighted by a set of abundance fractions that indicate
the proportion of each endmember (pure) pixel present
in the mixture. A hyperspectral image is often a combi-
nation of the two situations, where a few sites in a scene
are pure materials, but many others are mixtures of mate-
rials.

One of the most successful algorithms for automatic
endmember extraction in the literature has been the PPI
algorithm, originally developed by Boardman, Kruse,
and Green (1993), and soon incorporated into Kodak’s
Research Systems ENVI software package. The algo-
rithm proceeds by generating a large number of random,
N-dimensional unit vectors called “skewers” through the
dataset. Every data point is projected onto each skewer,
and the data points that correspond to extrema in the direc-
tion of a skewer are identified and placed on a list (see Fig-
ure 2). As more skewers are generated, the list grows, and
the number of times a given pixel is placed on this list is
also tallied. The pixels with the highest tallies are consid-
ered the final endmembers.

The inputs to the algorithm are a hyperspectral data
cube F with N dimensions; a maximum number of end-
members to be extracted, E; the number of random skewers
to be generated during the process, K; a cut-off threshold
value, tv, used to select as final endmembers only those
pixels that have been selected as extreme pixels at least tv
times throughout the PPI process; and a threshold angle,
ta, used to discard redundant endmembers during the
process. The output of the algorithm is a set of E final
endmembers {ee} . The algorithm can be summarized
by the following steps:

e 1=
E

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

369CLUSTERS VS FPGA FOR HYPERSPECTRAL

1. Skewer generation. Produce a set of K randomly
generated unit vectors {skewerj} .

2. Extreme projections. For each skewerj, all sample
pixel vectors fi in the original data set F are pro-
jected onto skewerj via dot products to find sample
vectors at its extreme (maximum and minimum)
projections, thus forming an extrema set for skew-
erj which is denoted by Sextrema(skewerj). The dot
products are calculated as follows:

(1)

Despite the fact that a different skewerj would
generate a different extrema set Sextrema(skewerj),
it is very likely that some sample vectors may
appear in more than one extrema set. In order to
deal with this situation, we define an indicator func-
tion of a set S, denoted by IS(x), to denote mem-
bership of an element x to that particular set as
follows:

(2)

3. Calculation of PPI scores. Using the indicator
function above, we calculate the PPI score associ-
ated to the sample pixel vector fi (i.e. the number
of times that given pixel has been selected as
extreme in step 2) using the following equation:

(3)

4. Endmember selection. Find the pixels with value
of NPPI(fi) above tv, and form a unique set of end-
members {ee} by calculating the spectral angle
mapper (SAM; Chang 2003) for all possible vec-
tor pairs and discarding those pixels which result
in an angle value below ta. It should be noted that
the SAM between a pixel vector fi and a different
pixel vector fj is defined as follows:

(4)

It should be noted that, although other spectral
similarity metrics have been used in hyperspectral
imaging research (Chang 2003), the SAM is widely
regarded as a standard spectral similarity metric in
remote sensing operations, mainly because it is
invariant under the multiplication of the input vec-
tors by constants and, consequently, is invariant to
unknown multiplicative scalings that may arise due
to differences in illumination and sensor observa-
tion angle.

5. Spectral unmixing. Although this step is not part
of the PPI algorithm itself, we have decided to
include it as part of our algorithmic description of
the full hyperspectral data processing chain avail-
able in Research Systems ENVI to account for the
need of interpreting mixed pixels as combinations
of pure pixels in hyperspectral image processing
applications. This step is accomplished as follows.
For each sample pixel vector fi in F, a set of abun-
dance fractions specified by {ai1, ai2, , aiE} is
obtained using the set of endmembers {ee} , so
that fi can be expressed as a linear combination of
endmembers as follows:

fi = e1 · ai1 + e2 · ai2 + + eE · aiE (5)

It should be noted that, in the expression above, abun-
dance sum-to-one and non-negativity constraints are
imposed, i.e. aie = 1 and aie ≥ 0 for all i = {1 T},
where T is the total number of pixels in the image F, and
for all e = {1 E}, where E is the total number of end-
members extracted by the PPI.

From the algorithmic description above, it is clear that
the PPI is not an iterative algorithm (Chang and Plaza
2006). In order to set parameter values for the PPI, the
authors recommend using as many random skewers as pos-
sible in order to obtain optimal results. As a result, the

Fig. 2 Toy example illustrating the performance of the
endmember extraction algorithm in a 2-dimensional
space.

j 1=
K

fi skewerj⋅
fi skewerj⋅

fi skewerj⋅
-------------------------------------=

IS fi() 1 if x S∈
0 if x S∉ 

 
 

=

NPPI fi() ISextrema skewerj() fi()
j 1=

K

∑=

e 1=
E

SAM fi fj,() 1– fi fj⋅
fi fj⋅

---------------------cos=

…
e 1=
E

…

e 1=

E∑ …

…

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

370 COMPUTING APPLICATIONS

PPI can only guarantee to produce optimal results asymp-
totically and its computational complexity is very high.
According to our experiments using standard AVIRIS
hyperspectral data sets (typically, 614 × 512 pixels and
224 spectral bands per frame), the PPI generally requires
a very high number of skewers (in the order of K = 104 or
K = 105) to produce an accurate final set of endmembers
(Plaza et al. 2004), and results in processing times above
1 hr when the algorithm is run on a latest-generation
desktop PC. Such a response time is unacceptable in
time-critical remote sensing applications. In the follow-
ing section, we provide an overview of HPC paradigms
applied to speed up computational performance of the
PPI using different kinds of parallel and distributed com-
puting architectures.

3 Parallel Implementations

This section first develops a parallel implementation of
the hyperspectral data processing chain presented in the
previous section which has been specifically developed
to be run on massively parallel, homogeneous clusters of
Beowulf type. Then, an FPGA-implementation aimed at
onboard hyperspectral data processing is provided.

3.1 Multiprocessor Implementation

In this subsection, we describe a master–slave parallel ver-
sion of the proposed hyperspectral data processing chain.

To reduce code redundancy and enhance reusability, our
goal was to reuse much of the code for the sequential
algorithm in the parallel implementation. For that pur-
pose, we adopted a spatial-domain decomposition approach
(Seinstra, Koelma, and Geusebroek 2002; Veeravalli and
Ranganath 2003), that subdivides the image cube into
multiple blocks made up of entire pixel vectors, and
assigns one or more blocks to each processing element
(see Figure 3).

It should be noted that the PPI algorithm is mainly
based on projecting pixel vectors which are always treated
as a whole. This is a result of the convex geometry process
implemented by the PPI, which is based on the spectral
“purity” or “convexity” of the entire spectral signature
associated to each pixel. Therefore, a spectral-domain
partitioning scheme (which subdivides the whole multi-
band data into blocks made up of contiguous spectral
bands or sub-volumes, and assigns one or more sub-vol-
umes to each processing element) is not appropriate in our
application (Plaza et al. 2006). This is because the latter
approach breaks the spectral identity of the data as each
pixel vector is split amongst several processing elements.
A further reason that justifies the above decision is that, in
spectral-domain partitioning, the calculations made for each
hyperspectral pixel need to originate from several process-
ing elements, and thus require intensive inter-processor
communication. Therefore, in our proposed implementa-
tion, a master–worker spatial domain-based decomposition
paradigm is adopted, where the master processor sends

Fig. 3 Domain decomposition adopted in the parallel implementation of the endmember extraction part of the con-
sidered hyperspectral data processing chain.

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

371CLUSTERS VS FPGA FOR HYPERSPECTRAL

partial data to the workers and coordinates their actions.
Then, the master gathers the partial results provided by
the workers and produces a final result.

As was the case with the serial version, the inputs to
our cluster-based implementation are a hyperspectral
data cube F with N dimensions; a maximum number of
endmembers to be extracted, E; the number of random
skewers to be generated during the process, K; a cut-off
threshold value, tv; and a threshold angle, ta. The output
of the algorithm is a set of E endmembers {ee} . The
parallel algorithm is given by the following steps:

1. Data partitioning. Produce a set of L spatial-
domain homogeneous partitions of F and scatter
all partitions by indicating all partial data struc-
ture elements which are to be accessed and sent to
each of the workers.

2. Skewer generation. Generate K random unit vec-
tors {skewerj} in parallel, and broadcast the
entire set of skewers to all the workers.

3. Extreme projections. For each skewerj, project all
the sample pixel vectors at each local partition l
onto skewerj to find sample vectors at its extreme
projections, and form an extrema set for skewerj
which is denoted by S (skewerj). Now calcu-
late the number of times each pixel vector f in
the local partition is selected as extreme using the
following expression:

(6)

4. Candidate selection. Select those pixel vectors with
N (f) > tv and send them to the master node.

5. Endmember selection. The master gathers all the
individual endmember sets provided by the work-
ers and forms a unique set {ee} by calculating
the SAM for all possible pixel vector pairs in par-
allel and discarding those pixels which result in
angle values below ta.

6. Spectral unmixing. The master broadcasts the set
of endmembers {ee} to all workers. Each worker
then obtains a set of abundances {a , a , , a }
for each pixel vector f in its local partition l, using
the set {ee} so that the following expression is
satisfied taking into account the abundance sum-
to-one and abundance non-negativity constraints:

f = e1 · a + e2 · a + + eE · a (7)

It should be noted that the proposed parallel algorithm
has been implemented in the C++ programming language,
using calls to message passing interface (MPI; Gropp et al.

1999). We emphasize that, in order to implement step
one of the parallel algorithm, we resorted to MPI derived
datatypes to directly scatter hyperspectral data structures,
which may be stored non-contiguously in memory, in a
single communication step. As a result, we avoid creat-
ing all partial data structures on the master node (thus
making a better use of memory resources and compute
power).

3.2 FPGA Implementation

In this subsection, we describe a hardware-based parallel
strategy for implementation of the hyperspectral data
processing chain which is aimed at enhancing replicabil-
ity and reusability of slices in FPGA devices through the
utilization of systolic array design (Valero-Garcia et al.
1992). One of the main advantages of systolic array-based
implementations is that they are able to provide a system-
atic procedure for system design that allows for the deri-
vation of a well defined processing element-based structure
and an interconnection pattern which can then be easily
ported to real hardware configurations (Zhang and Pal
2002). Using this procedure we can also calculate the
data dependencies prior to the design in a very straight-
forward manner. Before describing our implementation,
we emphasize that our proposed design intends to maxi-
mize computational power of the hardware and minimize
the cost of communications. These goals are particularly
relevant in our specific application, where hundreds of
data values will be handled for each intermediate result, a
fact that may introduce problems associated with limited
resource availability and inefficiencies in hardware repli-
cation and reusability.

The rationale behind our systolic array-based paralleli-
zation can be summarized as follows. It has been shown
in previous sections that the PPI algorithm consists of
computing a very large number of dot-products, and all
these dot-products can be performed simultaneously. As
a result, a possible way of parallelization is to have a
hardware system able to compute K dot-products in the
same time against the same pixel fi, where K is the number
of skewers. Supposing such a system, the PPI can be sim-
ply written as described in Algorithm 1.

The par loop in Algorithm 1 expresses that K dot
products are first performed in parallel, then K Min and
Max operations are also computed in parallel. Now, if we
suppose that we cannot simultaneously compute K dot
products but only a fraction K/P, where P is the number
of available processing units in the underlying parallel
platform, then the extreme projections step can be split
into P passes, each performing T × K/P dot products, as
indicated in Algorithm 2. From an architectural point of
view, each processor receives successively the T pixels,
computes T dot-products, and keeps in memory the two

e 1=
E

j 1=
K

extrema
l()

i
l()

NPPI
l() fi

l()() I
Sextrema

l()
skewerj()

fi
l()()

j 1=

K

∑=

PPI
l()

i
l()

e 1=
E

e 1=
E

i1
l()

i2
l() …

iE
l()

i
I()

e 1=
E

i
l()

i1
l()

i2
l() …

iE
l()

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

372 COMPUTING APPLICATIONS

producing the Min and the Max dot products. In this
scheme, each processor holds a different skewer which
must be input before each new pass.

Figure 4 describes the systolic array design adopted
for the proposed FPGA implementation. Here, local
results remain static at each processing element, while
pixel vectors are input to the systolic array from top to
bottom and skewer vectors are fed to the systolic array
from left to right. In Figure 4, asterisks represent delays
while skewer denotes the value of the nth band of the
jth skewer, with j ∈ {1, , K} and n ∈ {1, , N}, being
N the number of bands of the input hyperspectral scene.
Similarly, f denotes the reflectance value of the nth
band of the ith pixel, with i ∈ {1, , T}, being T is the
total number of pixels in the input image. The processing
nodes labeled as dot in Figure 4 perform the individual
products for the skewer projections. On the other hand,
the nodes labeled as max and min respectively compute
the maxima and minima projections after the dot product
calculations have been completed. In fact, the max and
min nodes can be respectively seen as part of a 1-D systo-
lic array which avoids broadcasting the pixel while sim-
plifying the collection of the results.

The operational functionality of each dot processing
node in Figure 4 is depicted in Figure 5. Each processing

node accumulates the positive or negative values of the
pixel input according to the skewer input. For instance, if
the ith component of the skewer is 0, then the ith compo-
nent of the pixel vector is summed up to the accumulator
(AC). If it equals 1, it is subtracted. This unit is com-
posed of a single 16-bit Add/Sub module. This module
computes the dot product by summing up positive or
negative pixel values. The skewer is stored in a 1-bit, N-
word memory, where N is the number of spectral chan-
nels. The initialization mechanism is not represented. It
should be noted that Figure 5 also illustrates the perform-
ance of the min and max processing nodes in Figure 4
(their performance is similar and hence they are repre-
sented in the figure as a single unit called Min/Max).
This unit performs bit-serially a comparison between a
Min/Max value. If the value of the dot-product exceeds
the corresponding Min/Max value, then the current dot-
product value is substituted and the number of the pixel
which has caused this change is memorized.

Basically, a systolic cycle in the architecture described
in Figure 4 consists of computing a single dot-product
between a pixel and a skewer, and to memorize the
index of the pixel if the dot-product is higher or smaller
than a previously computed max/min value. Remember
that a pixel is a vector of N spectral values, just like a

Algorithm 1. Parallel implementation of extreme projections step.

Algorithm 2. Parallel implementation of extreme projections step (rewritten to be split into P algorithm iterations).

j
n()

… …

j
n()

…

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

373CLUSTERS VS FPGA FOR HYPERSPECTRAL

skewer. A dot-product calculation (dp) betwen a pixel fi
and a skewerj can be simply obtained by using the expres-
sion f × skewer . Therefore, a full vector dot
product calculation requires N multiplications and N – 1
additions, where N is the number of spectral bands. It has
been shown in previous work that the skewer values can
be limited to a very small set of integers when N is large,
as in the case of hyperspectral images. A particular and
interesting set is {1, –1} since it avoids the multiplication
(Lavernier et al. 1999). The dot product is thus reduced to
an accumulation of positive and negative values (the self-
connections in the dot nodes of Figure 4 represent the
accumulation of intermediate results in those nodes).
With the above assumptions in mind, the dot nodes only
need to accumulate the positive or negative values of the
pixel input according to the skewer input. These units are
thus only composed of a single 16-bit addition/subtrac-
tion operator. If we suppose that an addition or a subtrac-
tion is executed every clock cycle, then the calculation of
a full dot product requires N clock cycles. During the first
systolic cycle, dot11 starts processing the first band of the
first pixel vector, f1. During the second systolic cycle, the
node dot12 starts processing the first band of pixel f2,

while the node dot11 processes the second band of pixel
f1, and so on.

The main advantage of the systolic array described in
Figures 4 and 5 is its scalability. Depending of the resources
available on the reconfigurable board, the number of proc-
essors can be adjusted without modifying the control of
the array. In other words, although in Figure 4 we repre-
sent an ideal systolic array in which T pixels can be proc-
essed, this is not the usual situation, and the number of
pixels usually has to be divided by P, the number of avail-
able processors. In this scenario, after T/P systolic cycles,
all the nodes are working. When all the pixels have been
flushed through the systolic array, T/P additional systolic
cycles are required to collect the results for the considered
set of P pixels and a new set of P different pixels would be
flushed until processing all T pixels in the original image.
In summary, the principle of our parallelization frame-
work is that K/P processors perform successively N dot
products, as shown in Algorithm 2. The pixels are broad-
cast to all the processors and the computation is pipelined
(systolized) to provide a highly scalable system.

Finally, to obtain the vector of endmember abun-
dances {ai1, ai2, , aiE} for each pixel fi, we multiply

Fig. 4 Systolic array design for the proposed FPGA implementation of the hyperspectral data processing chain.

k 1=

N∑ i
k()

i
k()

…

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

374 COMPUTING APPLICATIONS

each fi by (MTM)–1MT, where M = {ee} and the
superscript “T” denotes the matrix transpose operation.
As recently described (Dou et al. 2005), this operation
can be done using a so-called parallel block algorithm,
which has been adopted in this work to carry out the final
spectral unmixing step added to our description of the
PPI algorithm using part of the systolic array design out-
lined above.

Based on the design described above, we have devel-
oped a high-level implementation of PPI using Handel-
C,1 a design and prototyping language that allows using a
pseudo-C programming style. The final decision on
implementing our design using Handel-C instead of other
well-known hardware description languages such as
VHDL or Verilog was taken because a high-level lan-
guage may allow users to generate hardware versions of
available hyperspectral analysis algorithms in a relatively
short time. For illustrative purposes, the source code in

Handel-C corresponding to the extreme projections step
of our FPGA implementation of the PPI algorithm is
shown in Algorithm 3. The skewer initialization and
spectral unmixing-related portions of the code are not
shown for simplicity. The code assumes that the number
of endmembers to be found by the PPI algorithm is
known in advance. The high-level implementation in
Algorithm 3 was compiled and transformed to an EDIF
specification automatically by using the DK3.1 software
package. With this specification, and using other tools
such as Xilinx ISE2 to simplify the final steps of the hard-
ware implementation, we also incorporated hardware-
specific limitations and constraints to the mapping proc-
ess into a Virtex-II FPGA. These tools allowed us to
evaluate the total amount of resources needed by the
whole implementation, along with sub-totals related to
different functional units available in the FPGA that will
be discussed in the following section, along with our results

Fig. 5 Architecture of each dot and max/min processing nodes in the proposed systolic array design.

e 1=
E

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

375CLUSTERS VS FPGA FOR HYPERSPECTRAL

in terms of algorithm performance and execution time for
the two parallel implementations of PPI developed in this
section.

4 Experimental Results

This section provides an assessment of the effectiveness
of the parallel versions of the hyperspectral data process-
ing described throughout this paper. Before describing
our study on performance analysis, we first describe the
parallel computing architectures used in this work. These
include Thunderhead, a massively parallel Beowulf clus-
ter at NASA’s Goddard Space Flight Center, and a Xilinx
Virtex-II XC2V6000-6 FPGA. Next, we describe the hyper-
spectral data sets used for evaluation purposes. A detailed
survey on algorithm performance in a real application is

then provided, along with a discussion of the advantages
and disadvantages of each particular approach. The sec-
tion concludes with a discussion of the results obtained
for the data processing chain implemented using different
HPC architectures.

4.1 Parallel Computing Architectures

This subsection provides an overview of the HPC plat-
forms used in this study for demonstration purposes. The
first system considered is Thunderhead (see Figure 6), a
256-processor homogeneous cluster which can be seen as
an evolution of the HIVE project, started in 1997 to build
a homogeneous commodity cluster to be exploited in a
remote sensing applications. It is composed of 256 dual
2.4 GHz Intel Xeon nodes, each with 1 GB of memory

Algorithm 3. Source code of the Handel-C (high level) FPGA implementation of the Pixel Purity Index algorithm.

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

376 COMPUTING APPLICATIONS

and 80 GB of main memory. The total peak performance
of the system is 2457.6 Gflops. Along with the 512-proc-
essor computer core, Thunderhead has several nodes
attached to the core with 2 GHz optical fiber Myrinet. The
proposed cluster-based parallel version of the PPI algo-
rithm proposed in this paper was run from one such nodes,
called thunder1. The operating system used at the time of
experiments was Linux Fedora Core, and MPICH3 was
the message-passing library used.

In order to test the proposed systolic array design in a
hardware-based computing architecture, our parallel design
was implemented on a Virtex-II XC2V6000-6 FPGA of
the Celoxica’s ADMXRC2 board. It contains 33, 792
slices, 144 Select RAM Blocks and 144 multipliers (of
18-bit × 18-bit). Concerning the timing performances, we
decided to pack the input/output registers of our imple-
mentation into the input/output blocks in order to try and
reach the maximum achievable performance.

4.2 Hyperspectral Data

The image scene used for experiments in this work was
collected by the AVIRIS instrument, which was flown by
NASA’s Jet Propulsion Laboratory over the World Trade
Center (WTC) area in New York City on September 16,
2001, just five days after the terrorist attacks that col-
lapsed the two main towers and other buildings in the
WTC complex. The data set selected for experiments was

geometrically and atmospherically corrected prior to data
processing, and consists of 614 × 512 pixels, 224 spectral
bands and a total size of 140 MB. The spatial resolution
is 1.7 m per pixel. Figure 7(left) shows a false color com-
posite of the data set selected for experiments using the
1682, 1107 and 655 nm channels, displayed as red, green
and blue, respectively. A detail of the WTC area is
shown in a red rectangle. Vegetated areas appear green in
Figure 7(left), while burned areas appear dark gray. Smoke
appears bright blue as a result of high spectral reflectance
in the 655 nm channel.

At the same time as data collection, a small U.S. Geo-
logical Survey (USGS) field crew visited lower Manhat-
tan to collect spectral samples of dust and airfall debris
deposits from several outdoor locations around the WTC
area (see Figure 8). These spectral samples were then
mapped into the AVIRIS data using reflectance spectros-
copy and chemical analyses in specialized USGS labora-
tories. For illustrative purposes, Figure 7(right) shows a
thermal map centered at the region where the buildings
collapsed. The map shows the target locations of the ther-
mal hot spots, shown as bright red, orange and yellow
spots on Figure 7(right). The temperatures range from
700 °F (marked as “F” to 1300 °F (marked as “G”. This
thermal map, along with a dust/debris map produced by
USGS (available online from http://pubs.usgs.gov/of/
2001/ofr-01-0429), are used in this work as ground-truth
to validate the proposed parallel implementations of the
PPI algorithm.

4.3 Performance Evaluation

Before empirically investigating the parallel performance
of the proposed algorithms, we first evaluate their endmem-
ber extraction and classification accuracy in the context of
the considered application. Prior to a full examination and
discussion of results, it is important to outline parameter
values used for the different implementations of the PPI
algorithm (endmember extraction) in the considered data
processing chain, since the subsequent spectral unmixing
step executed after endmember extraction only uses as
input parameters the endmembers extracted in the previous
stage. In all our considered implementations, the number of
endmembers to be extracted was set to E = 16 after esti-
mating the intrinsic dimensionality of the data using the
virtual dimensionality concept in Chang (2003). In addi-
tion, the number of skewers was set to K = 104 (although
values of K = 103 and K = 105 were also tested, we exper-
imentally observed that the use of K = 103 resulted in the
loss of important endmembers, while the endmembers
obtained using K = 105 were essentially the same as those
found using K = 104). Finally, the threshold angle parame-
ter was set to ta = 0.1, which is a reasonable limit of toler-
ance for this metric, while the threshold value parameter

Fig. 6 Thunderhead Beowulf cluster at NASA’s God-
dard Space Flight Center in Maryland.

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

377CLUSTERS VS FPGA FOR HYPERSPECTRAL

tv was set to the mean of PPI scores obtained after K = 104

iterations. These parameter values are in agreement with
those used before in the literature (Plaza et al. 2004).

Using the algorithm parameters above, an experiment-
based cross-examination of algorithm endmember extrac-
tion accuracy is presented in Table 1, which tabulates the
SAM scores obtained after comparing field spectra corre-
sponding to different materials, obtained by USGS on the
WTC area, with the corresponding endmembers extracted
by the parallel algorithms. The smaller the SAM values
across the field spectra considered in Table 1, the better
the results. It should be noted that Table 1 only displays
the smallest SAM scores of all endmembers with respect
to each USGS signature for each algorithm.

On the other hand, Table 2 estimates the accuracy of
the parallel algorithms in estimating the sub-pixel abun-
dance of fires in Figure 7(right) by taking advantage of
available USGS reference information regarding the area
covered by each thermal hot spot at the time the AVIRIS
data was collected (given in square meters). It should be
noted that each pixel in the AVIRIS data is has a size of
1.7 square meters. As a result, all thermal hot spots are

Fig. 7 False color composite of an AVIRIS hyperspectral image collected by NASA’s Jet Propulsion Laboratory over
lower Manhattan on September 16, 2001 (left). Location of thermal hot spots in the fires observed in World Trade
Center area, available online: http://pubs.usgs.gov/of/2001/ofr-01-0429/hotspot.key.tgif.gif (right).

Fig. 8 Spectral signatures of sample materials in the
WTC area, available online: http://speclab.cr.usgs.gov/
wtc/clark-wtc-chapter/figure3.gif.

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

378 COMPUTING APPLICATIONS

sub-pixel in nature and hence require a spectral unmixing
step as the last one provided in our proposed PPI. Sum-
marizing, experiments in Table 1 reveal that the proposed
parallel implementations can extract endmembers which
very accurately resemble ground (pure) spectral signa-
tures, while experiments in Table 2 demonstrate that the
parallel algorithms can provide accurate estimations of
the area covered by thermal hot spots, which can lead to
better fire characterization results. In particular, it is
worth noting that the estimations for the thermal hot
spots with higher temperature (labeled “A” and “G” in
the table) were almost perfect, and identical for the three
considered implementations.

It is important to note that the output produced by all
parallel methods in Tables 1 and 2 was verified using not
only our own serial implementations, but the original
version of PPI available in Kodak’s Research Systems
ENVI software version 4.0 as well (using the same
parameters in both cases). The endmembers found by our

parallel implementations were exactly the same as the
ones found by our serial implementations of the original
algorithms. To arrive to this conclusion, we made sure
that the same set of random skewers was used to guaran-
tee that both the serial and parallel versions were exactly
the same. It should be noted, however, that our parallel
implementations of PPI produced slightly different results
than those found by ENVI’s PPI. In particular, only 1 out
of 16 endmembers produced by ENVI’s PPI (gypsum
wall board) was not included in the final endmember set
produced by the multiprocessor version of PPI, while 2
out of 16 endmembers produced by ENVI’s PPI (gypsum
wall board and cement) were not found by our FPGA
implementation of PPI. However, we experimentally
tested that the SAM scores between the endmembers that
were different between the original and parallel algo-
rithms were always very low (below 0.015), a fact that
reveals that the final endmembers sets were almost iden-
tical, spectrally.

Table 1
SAM-based spectral similarity scores between endmembers extracted by different parallel
implementations of the hyperspectral data processing chain and USGS reference signatures.

Dust/debris class ENVI Multiprocessor FPGA

Gypsum wall board – GDS 524 0.081 0.089 0.089

Cement – WTC01-37A(c) 0.094 0.094 0.099

Dust – WTC01-15 0.077 0.077 0.077

Dust – WTC01-36 0.086 0.086 0.086

Dust – WTC01-28 0.069 0.069 0.069

Concrete – WTC01-37Am 0.073 0.073 0.073

Concrete – WTC01-37B 0.090 0.090 0.090

Table 2
Comparison of area estimation (in square meters) for each thermal hot spot by different parallel
implementations of the hyperspectral data processing chain (USGS ground area estimations are
also included, along with latitude and longitude coordinates, and the temperature of fires).

Thermal
hot spot

Latitude
(North)

Longitude
(West)

Temperature
(Kelvin)

Area
(USGS)

Area
(ENVI)

Area
(Multiprocessor)

Area
(FPGA)

A 40°42′47.18″ 74°00′41.43″ 1000 0.56 0.53 0.53 0.53

B 40°42′47.14″ 74°00′43.53″ 830 0.08 0.06 0.10 0.06

C 40°42′42.89″ 74°00′48.88″ 900 0.80 0.78 0.78 0.78

D 40°42′41.99″ 74°00′46.94″ 790 0.80 0.81 0.81 0.83

E 40°42′40.58″ 74°00′50.15″ 710 0.40 0.55 0.59 0.57

F 40°42′38.74″ 74°00′46.70″ 700 0.40 0.36 0.31 0.31

G 40°42′39.94″ 74°00′45.37″ 1020 0.04 0.05 0.05 0.05

H 40°42′38.60″ 74°00′43.51″ 820 0.08 0.12 0.12 0.12

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

379CLUSTERS VS FPGA FOR HYPERSPECTRAL

4.3.1 Experiments on the Beowulf cluster To empir-
ically investigate the parallel properties of our multiproc-
essor PPI implementation, we tested its performance on
NASA’s Thunderhead Beowulf cluster. For that pur-
pose, Figure 9 plots the speedups achieved by the multi-
processor runs over a single-processor run of our C++
implementation of the PPI algorithm using only one
Thunderhead processor. It should be noted that the spee-
dup factors in Figure 9 were calculated as follows: the
real time required to complete a task on P processors,
T(P), was approximated by T(P) = AP + (BP/P), where AP
is the sequential (non-parallelizable) portion of the com-
putation and BP is the parallel portion. In our parallel
code, AP corresponds to the data partitioning and end-
member selection steps (performed by the master), while
BP corresponds to the skewer generation, extreme projec-
tions, candidate selection and spectral unmixing steps,
which are performed (in “embarrassingly parallel” fash-
ion) at the different workers. With the above assumptions
in mind, we can define the speedup for P processors, SP,
as follows:

(8)

In the above relationship, known as Amdahl’s Law
(Hennessy and Patterson 2002), T(1) denotes the single-
processor execution time. It is obvious from this expres-
sion that the speedup of a parallel algorithm does not
continue to increase with increasing the number of proc-
essors. The reason is that the sequential portion AP is pro-
portionally more important as the number of processors
increase and, thus, the performance of the parallelization
is generally degraded for a large number of processors. In
our experiments, we have observed that although the
speedup plot in Figure 9 flattens out a little for a large
number of processors, it is still very close to linear spee-
dup. For the sake of quantitative comparison, Table 3
reports the measured execution times by the multiproces-
sor runs of our parallel algorithm on Thunderhead. Results
in Table 3 reveal that our multiprocessor implementation
of PPI can effectively adapt to a massively parallel envi-
ronment and provide a response in real-time (i.e. in less
than 5 s for our considered problem size) but using a
large number of processors.

To further explore the parallel properties of the consid-
ered algorithms in more detail, an in-depth analysis of
computation and communication times achieved by the
proposed multiprocessor implementation is also highly
desirable. For that purpose, Table 4 shows the total time
spent by the parallel implementation in communications
and computations in the considered Beowulf cluster, where
two types of computation times were analyzed, namely,
sequential (those performed by the root node with no
other parallel tasks active in the system, labeled as AP in
the table) and parallel (the rest of computations, i.e. those
performed by the root node and/or the workers in paral-
lel, labeled as BP in the table). The latter includes the
times in which the workers remain idle. Since communi-
cations (labeled as CP in the table) only take place at the
beginning (initial data scatter in the data partitioning
step) and at the end (final data gather in the endmember
selection step) of the parallel algorithm, these are not
overlapped with the computations in our implementation.

It can be seen from Table 4 that, although AP scores
were non-zero mainly because of the endmember selec-

Fig. 9 Scalability of the multiprocessor implementa-
tion of the endmember extraction algorithm on NASA’s
Thunderhead cluster.

SP
T 1()
T P()

AP BP+
AP BP P⁄()+
-------------------------------≈=

Table 3
Processing times and speedups achieved by the multiprocessor implementation of the
hyperspectral data processing chain using different numbers of processors on NASA’s
Thunderhead Beowulf cluster.

Number of CPUs 1 4 16 36 64 100 144 196 256

Time (s) 1163.05 295.92 76.91 33.97 18.84 12.38 8.57 6.41 4.98

Speedup (SP) – 3.93 15.12 34.23 61.73 93.89 135.67 181.34 233.45

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

380 COMPUTING APPLICATIONS

tion step of the parallel algorithm which is performed at
the master node once the workers have finalized their
parallel computations, these scores were always very low
and irrelevant when compared with the BP scores, which
anticipates high parallel efficiency of the multiprocessor
algorithm, even for a very high number of processors. On
the other hand, it can also be seen from Table 4 that the
impact of communications is not particularly significant
since BP scores were always much higher than CP scores.
Despite the above results seeming promising, the fact
that BP is by far the most significant fraction of the paral-
lel algorithm requires a detailed study of load balance to
fully substantiate the parallel properties of the considered
algorithm.

To analyze the important issue of load balance in more
detail, Table 4 also shows the imbalance scores achieved
by the multiprocessor implementation of PPI on Thunder-
head. The imbalance is defined as D = Rmax/Rmin, where
Rmax and Rmin are the maxima and minima processor run
times, respectively. Therefore, perfect balance is achieved
when D = 1. In the table, we display the imbalance con-
sidering all processors, Dall, and also considering all proc-
essors but the root, Dminus. As we can see from Table 4, the
multiprocessor PPI was able to provide values of Dall
close to 1 in all considered networks. Further, the algo-
rithm provided almost the same results for both Dall and
Dminus, which indicates that the workload assigned to the
master node is balanced with regards to that assigned to
the workers.

Although the results presented above demonstrate that
the proposed multiprocessor implementations of PPI
algorithm is satisfactory from the viewpoint of algorithm
scalability, code reusability and load balance in a mas-
sively parallel Beowulf cluster, there are several restric-
tions in order to incorporate this type of platform for
onboard processing in remote sensing missions. Although
the idea of mounting clusters and networks of processing
elements onboard airborne and satellite hyperspectral imag-
ing facilities has been explored in the past, the number of

processing elements in such experiments has been very
limited thus far, because of payload requirements in most
remote sensing missions. For instance, a low-cost, porta-
ble Myrinet cluster of 16 processors was recently devel-
oped at NASA’s GSFC for onboard analysis (see http://
thunderhead.gsfc.nasa.gov/PDF/Low_Power.pdf for addi-
tional details). The portable system, called Proteus and
composed of 12 mini-ITX (PC) nodes, was developed for
the purpose of spacecraft/satellite data processing and
also used as a mobile Beowulf cluster for field processing
of collected data. The cost of the portable cluster was
3000 U.S. dollars. Unfortunately, it could still not facili-
tate real-time performance since the measured processing
times were similar to those reported in Table 3 for the
same number of processors on Thunderhead, and the
incorporation of additional processing elements to the
cluster was reportedly difficult due to heat, power and
weight considerations which limited its exploitation for
onboard processing.

4.3.2 FPGA experiments As an alternative to cluster
computing, FPGA-based computing provides several
advantages for image processing, such as increased com-
putational power, adaptability to different applications
via reconfigurability, and compact size.4 Specifically, the
cost of the Xilinx Virtex-II XC2V6000-6 FPGA used for
experiments in this work is currently only slightly higher
than that of the portable Myrinet cluster mentioned in the
previous subsection. However, the mobile cluster required
several 9U VME motherboards to accommodate the multi-
ple processors, with an approximate weight of 14 lbs and
required power of 300 watts. On the other hand, the Xilinx
Virtex-II FPGA required only one 3U Compact PCI card
(weight below 1 lb) and power of approximately 25 watts,
offering full real-time reconfigurability. These are very
important considerations from the viewpoint of remote
sensing mission payload requirements, which are widely
regarded as a key aspect for sensor design and operation.
In particular, it is important to note that electronic compo-

Table 4
Sequential computation, parallel computation, and communication times achieved by the
multiprocessor implementation on Thunderhead. For illustrative purposes, load-balancing rates
considering all processors, and considering all processors but the root, are also displayed.

Number of CPUs 4 16 36 64 100 144 196 256

Sequential computations (AP) 1.63 1.26 1.12 1.19 1.06 0.84 0.91 0.58

Parallel computations (BP) 292.09 73.24 30.46 15.64 9.26 6.08 4.28 3.37

Communications (CP) 2.20 2.41 2.39 2.21 2.46 2.65 2.32 2.49

Load balancing considering all processors (Dall) 1.15 1.10 1.09 1.11 1.07 1.10 1.05 1.04

Load balancing considering all processors but
the root (Dminus)

1.04 1.02 1.04 1.03 1.01 1.02 1.03 1.01

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

381CLUSTERS VS FPGA FOR HYPERSPECTRAL

nents and hardware likely to compromise mission payload
are often discarded from Earth observation instruments,
and therefore evaluating the potential use of FPGAs as an
alternative to much heavier computer equipment is of
great importance for remote sensing mission design and
planning.

In order to fully substantiate the performance of our
systolic array-based FPGA implementation, we should
first describe the scalability of the systolic array. The peak
performance of the array is mainly determined by the dot-
product capacity, that is the number of additions/subtrac-
tions executed in 1 s. It is expressed (in millions of oper-
ations per second) as follows:

Ppeak = F × T/P (9)

In the above expression, F is the frequency in MHz
and P represents the number of processors of the systolic
array. The above formula supposes that the array is con-
stantly fed: on each cycle a new data is available on its
input. Unfortunately, this may not be the case, especially
if we consider a reconfigurable board plugged through
the input/output (I/O) bus system of the micro-processor.
The PPI algorithm proceeds into T/P passes, and each
pass requires flushing the hyperspectral image from the
main memory to the array. Thus, instead of considering
that a data is present every clock cycle, it is better to con-
sider the transfer capacity of the I/O bus for estimating
the average performance of the array. The average per-
formance is estimated as follows:

Paverage = (Bw × T)/P (10)

In the above equation, Bw denotes the bandwidth
expressed in Mbytes/s. Now, if we want to estimate the
execution time for computing the PPI algorithm, texec, the
bandwidth should be taken into consideration as follows:

(11)

In the above expression, N is the number of spectral
bands. Using the above rationale, we have performed an
estimation of the computing time and speedup that can be
achieved by the proposed FPGA implementation of the
PPI on the considered AVIRIS scene (with 614 × 512 pix-
els and 224 spectral bands) using a reconfigurable board
connected to a microprocessor through its I/O bus. Fig-
ure 10(left) shows the estimated computing times consid-
ering various bandwidths (from F = 10 Mbytes/s to F =
50 Mbytes/s) and various numbers of processors (P = 100,
P = 200 and P = 400). On the other hand, Figure 10(right)
shows the speedups compared to a single-processor run of
the PPI in one of the Thunderhead nodes, again with a
bandwidth ranging from 10 to 50 Mbytes/s and a systolic
array with 100, 200 and 400 processors. As can be seen in
Figure 10, the achieved speedups can be very high,
reducing hours of computation to only a few seconds. In
the following, we validate these estimations on a Xilinx
FPGA architecture.

texec
P T N×()×

Bw

----------------------------=

Fig. 10 Time, in seconds, for computing the hyperspectral data processing chain using a reconfigurable board con-
nected to a PC through the I/O bus (left). Speedup compared to a single-processor version running on a single Thun-
derhead node (right).

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

382 COMPUTING APPLICATIONS

Table 5 shows a summary of resource utilization by
the proposed systolic array-based implementation of the
PPI on a complete system (systolic array plus PCI inter-
face), implemented on a XC2V6000-6 board, using dif-
ferent numbers of processors. We measured an average
PCI bandwidth of 15 Mbytes between the PC and the
board, leading to a speed-up of 120 when running the PPI
algorithm with 400 processors. It should be noted that, in
our experimentation, the performance was seriously lim-
ited by the transfer rate between the PC and the board: the
array is able to absorb a pixel flow of above 40 Mbytes/s,
while the PCI interface can only provide a flow of 15
Mbytes. This experiment, however, demonstrates that the
considered board, even with a non-optimized PCI con-
nection (with no DMA), can still yield very good speedup
for the PPI algorithm, with a final measured processing
time of about 20 s for P = 400 processors. This response,
although not strictly in real-time, can be further increased
by increasing the number of processors in the FPGA.
However, in our opinion it is very important to leave
room in the FPGA for additional algorithms so that
dynamic algorithm selection can be performed on the fly.
In addition, it is also worth noting that full reconfigura-
bility requires additional logic and space in the FPGA
(El-Araby et al. 2004). Another reason which led us to
try to minimize resource utilization as much as possible
is that radiation-tolerant FPGAs (required in satellite-
based hyperspectral imaging applications) have two orders
of magnitude fewer equivalent gates. Therefore, we have
decided to report realistic experiments by resorting to a
moderate amount of resources (gates) in the considered
FPGA board. As shown in Table 5, when 400 processors
are used, only 36% of the total resources in the FPGA are
consumed (which is a reasonable figure in light of the
above-mentioned considerations).

4.3.3 Discussion Once experimental results for Beowulf
clusters and FPGA architectures have been provided, this
section discusses the two discussed strategies for parallel
implementation of hyperspectral image processing algo-
rithms. Through the detailed analysis of a standard hyper-
spectral data processing chain available in commercial

software but never implemented in parallel before, we
have explored two different strategies to increase compu-
tational performance of the algorithm (which can take up
to several hours of computation in latest-generation desk-
top computers). One of the considered strategy consisted of
a multiprocessor implementation for commodity clusters.
This approach seems particularly appropriate for informa-
tion extraction from very large hyperspectral data archives
after the remotely sensed images have been transmitted to
Earth.

To fully address the real-time requirements introduced
by many remote sensing applications, we have also
developed a systolic array-based FPGA implementation
of the hyperspectral data processing chain for onboard
analysis (before the hyperspectral data is transmitted to
Earth). A major goal is to overcome an existing limita-
tion in many remote sensing and observatory systems:
the bottleneck introduced by the bandwidth of the down-
link connection from the observatory platform. Experi-
mental results demonstrate that our hardware version
makes appropriate use of computing resources in the con-
sidered FPGA, and further provides a response in (near)
real-time which is believed to be acceptable in most remote
sensing applications.

To conclude this section, we emphasize that efficient
onboard processing has been a long-awaited goal by the
remote sensing community. In this regard, the reconfig-
urability of FPGA systems opens many innovative per-
spectives from an application point of view, ranging from
the appealing possibility of being able to adaptively select
one out of a pool of available data processing algorithms
(which could be applied on the fly aboard the airborne/sat-
ellite platform, or even from a control station on Earth), to
the possibility of providing a response in real-time in appli-
cations that certainly demand so, such as military target
detection, wildland fire monitoring and tracking, oil spill
quantification, and so forth. Although the experimental
results presented in this section are very encouraging,
further work is still needed to arrive to optimal parallel
design and implementations for the proposed data process-
ing chain and other hyperspectral imaging algorithms for
image analysis and compression.

Table 5
Summary of resource utilization for the FPGA-based implementation of the hyperspectral data
processing chain (operation frequency is given in MHz and processing time is given in seconds).

Number of
processors

Total
gates

Total
slices

Percentage
of total

Operation
frequency

Processing
time

100 97,443 1185 3% 29,257 69.91

200 212,412 3587 10% 21,782 35.56

400 526,944 12,418 36% 18,032 20.48

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

383CLUSTERS VS FPGA FOR HYPERSPECTRAL

5 Conclusions and Future Research

Remotely sensed hyperspectral data processing exempli-
fies a subject area that has drawn together an eclectic col-
lection of participants. However, a common requirement
in most available hyperspectral imaging applications is
the need to develop efficient processing systems and archi-
tectures able to cope with the extremely high dimensional-
ity of the data. In particular, there is a clear need to
develop cost-effective algorithm implementations for deal-
ing with hyperspectral imaging problems, and the goal to
speed up algorithm performance has already been identi-
fied as an essential target in many on-going and planned
remote sensing missions.

In this paper, we have taken a necessary first step toward
the development of real-time hyperspectral imaging algo-
rithms. Specifically, two innovative high-performance
implementations of a standard hyperspectral data process-
ing chain have been introduced and evaluated from the
viewpoint of both algorithm accuracy and parallel per-
formance, including a commodity cluster-based imple-
mentation and an FPGA-based hardware implementation.
The analytical techniques presented in this work offer an
excellent snapshot of the state-of-the-art in the field of
HPC in remote sensing.

Performance data for the proposed implementations
have been provided in the context of a real, time-critical
application. These results reflect the versatility that cur-
rently exists in the design of high-performance approaches,
a fact that currently allows users to select a specific high-
performance architecture that best fits the requirements
of their application domains. In this regard, one of the
main purposes of this study has been to present current
efforts toward the integration of hyperspectral image
processing techniques with parallel and distributed com-
puting practices, with the ultimate goal of designing
(near) real-time systems expected to introduce substan-
tial changes in the systems currently used by NASA and
other agencies for exploiting the sheer volume of Earth
and planetary remotely sensed data collected on a daily
basis. In particular, one of the main conclusions of our
study is that massively parallel clusters may be the tool
of choice for processing massive archives of hyperspec-
tral images which have already been transmitted to Earth
(the increased storage capacity of those systems is essen-
tial to catalog the ever-growing amount of remotely
sensed data that is now being collected on a daily basis).
On the other hand, applications requiring a quick response
onboard, FPGAs provide a solution which is scalable,
compact in size and affordable in cost.

Although the experimental results presented in this
work are encouraging (especially from the viewpoint of
their suitability to address a very important application
case study), further work is still needed to arrive to opti-

mal parallel design and implementations for the consid-
ered data processing chain. We also plan to implement
the proposed parallel techniques on other massively par-
allel computing architectures, such as NASA’s Project
Columbia and other computing environments of grid/het-
erogeneous type (Plaza, Plaza, and Valencia 2007). We
are also developing real-time implementations of hyper-
spectral imaging algorithms on commodity graphics hard-
ware (GPUs; Setoain et al. 2007), which also represent a
very appealing type of high performance hardware archi-
tecture for onboard hyperspectral image processing.

Acknowledgments

This research was supported in part by the European
Commission through the Marie Curie Research Training
Network project Hyperspectral Imaging Network (MRTN-
CT-2006-035927). The authors would like to gratefully
thank John E. Dorband, James C. Tilton and J. Anthony
Gualtieri for several helpful discussions, and also for
their collaboration on experimental results using the
Thunderhead Beowulf cluster at NASA’s Goddard Space
Flight Center. The first author would also like to acknowl-
edge support received from the Spanish Ministry of Edu-
cation and Science (Fellowship PR2003-0360), which
allowed him to conduct postdoctoral research at NASA’s
Goddard Space Flight Center and University of Mary-
land, Baltimore County in 2004. Last but not least, the
authors gratefully acknowledge the anonymous review-
ers for their fruitful suggestions and comments, which
greatly helped increase the quality and presentation of the
manuscript.

Author Biographies

Antonio Plaza received his Ph.D. degree in computer
science from the University of Extremadura, Spain, in
2002, where he is currently an Associate Professor with
the Computer Science Department. He has also been a
visiting researcher with the University of Maryland,
NASA Goddard Space Flight Center and Jet Propulsion
Laboratory. His main research interests include the devel-
opment and efficient implementation of high-dimensional
data algorithms on parallel homogeneous and heterogene-
ous computing systems and hardware-based computer
architectures such as FPGAs and GPUs. He has authored
or co-authored more than 150 publications including jour-
nal papers, book chapters and peer-reviewed conference
proceedings, and currently serves as regular manuscript
reviewer for more than 15 highly cited journals in the
areas of parallel and distributed computing, computer
architectures, pattern recognition, image processing and
remote sensing. He is editing a book on High-Perform-
ance Computing in Remote Sensing (with Prof. Chein-I

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

384 COMPUTING APPLICATIONS

Chang) for Chapman & Hall/CRC Press and a special issue
on Architectures and Techniques for Real-Time Process-
ing of Remotely Sensed Images for the Journal of Real-
Time Image Processing. He is the coordinator of the
Hyperspectral Imaging Network, an FP6 Marie Curie
Research Training Network European project, and cur-
rently serves as Associate Editor for the IEEE Transac-
tions on Geoscience and Remote Sensing journal in the
areas of Hyperspectral Image Analysis and Signal Process-
ing.

Chein-I Chang received his B.S. degree from Soochow
University, Taipei, Taiwan, M.S. degree from the Insti-
tute of Mathematics at National Tsing Hua University,
Hsinchu, Taiwan and M.A. degree from the State Univer-
sity of New York at Stony Brook, all in mathematics. He
also received his M.S., M.S.E.E. degrees from the Uni-
versity of Illinois at Urbana-Champaign and Ph.D. degree
in electrical engineering from the University of Mary-
land, College Park. Dr Chang has been with the Univer-
sity of Maryland, Baltimore County (UMBC) since 1987
and is currently professor in the Department of Computer
Science and Electrical Engineering. He received an NRC
(National Research Council) senior research associate-
ship award from 2002–2003 sponsored by the US Army
Soldier and Biological Chemical Command, Edgewood
Chemical and Biological Center, Aberdeen Proving
Ground, Maryland. Additionally, Dr Chang is currently
holding a chair professorship of disaster reduction tech-
nology from 2006–2009 with the Environmental Restora-
tion and Disaster Reduction Research Center, National
Chung Hsing University, Taichung, Taiwan, ROC. He
has three patents and several pending on hyperspectral
image processing. He is on the editorial board of the Jour-
nal of High Speed Networks and was an associate editor
in the area of Hyperspectral Signal Processing for the
IEEE Transactions on Geoscience and Remote Sensing.
Dr Chang is the author of Hyperspectral Imaging: Tech-
niques for Spectral Detection and Classification pub-
lished by Kluwer Academic Publishers in 2003, as well
as several other books on hyperspectral imaging. He is a
Fellow of SPIE and a member of Phi Kappa Phi and Eta
Kappa Nu.

Notes
1 http://www.celoxica.com

2 http://www.xilinx.com

3 http://www-unix.mcs.anl.gov/mpi/mpich

4 http://www.xilinx.com/publications/xcellonline/xcell_47/xc_pdf/
xc_boeing47.pdf

References

Achalakul, T. and Taylor, S. (2003). A distributed spectral-
screening PCT algorithm, Journal of Parallel and Distrib-
uted Computing 63(3): 373–384.

Aloisio, G. and Cafaro, M. (2003). A dynamic earth observa-
tion system, Parallel Computing 29(10): 1357–1362.

Boardman, J., Kruse, F. A., and Green, R. O. (1993). Mapping
target signatures via partial unmixing of AVIRIS data. In
Summaries of Airborne Earth Science Workshop, JPL
Publication 93–26, pp. 111–114.

Chang, C.-I (2003). Hyperspectral imaging: Techniques for
spectral detection and classification, New York: Kluwer.

Chang, C.-I (2007). Hyperspectral data exploitation: theory
and applications, New York: Wiley.

Chang, C.-I and Plaza, A. (2006). A fast iterative implementa-
tion of the pixel purity index algorithm, IEEE Geoscience
and Remote Sensing Letters 3(1): 63–67.

Chen, L., Fujishiro, I., and Nakajima, K. (2003). Optimizing
parallel performance of unstructured volume rendering
for the Earth Simulator, Parallel Computing 29(3): 355–
371.

Clark, R. N., et al. (2006). Environmental mapping of the
World Trade Center area with imaging spectroscopy after
the September 11, 2001 attack. In Urban aerosols and
their impacts: Lessons learned from the World Trade
Center tragedy, edited by J. Gaffney and N. A. Marley,
Oxford University Press, pp. 66–83.

Dhodhi, M. K., Saghri, J. A., Ahmad, I., and Ul-Mustafa, R.
(1999). D-ISODATA: A distributed algorithm for unsu-
pervised classification of remotely sensed data on network
of workstations, Journal of Parallel and Distributed Com-
puting 59(2): 280–301.

Diefendorff, K., Dubey, P. K., Hochsprung, R., and Scales, H.
(2002). AltiVec extension to PowerPC accelerates media
processing, IEEE Micro 20(2): 85–96.

Dorband, J., Palencia, J., and Ranawake, U. (2003). Commod-
ity computing clusters at Goddard Space Flight Center,
Journal of Space Communication 1(3): 113–123.

Dou, Y., Vassiliadis, S., Kuzmanov, G. K., and Gaydadjiev, G.
N. (2005). 64-bit floating-point FPGA matrix multiplica-
tion. In Proceedings of the 13th ACM/SIGDA Interna-
tional Symposium on Field-programmable Gate Arrays,
pp. 86–95.

El-Araby, E., El-Ghazawi, T., Le Moigne, J., and Gaj, K.
(2004). Wavelet spectral dimension reduction of hyper-
spectral imagery on a reconfigurable computer. In Pro-
ceedings of the 4th IEEE International Conference on
Field-Programmable Technology, pp. 399–402.

Fry, T. W. and Hauck, S. (2002). Hyperspectral image com-
pression on reconfigurable platforms. In Proceedings of
the 10th IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, pp. 251–260.

Green, R. O., et al. (1998). Imaging spectroscopy and the air-
borne visible/infrared imaging spectrometer (AVIRIS),
Remote Sensing of Environment 65(3): 227–248.

Gropp, A., Huss-Lederman, S., Lumsdaine, A., and Lusk, E.
(1999). MPI: The complete reference, Vol. 2: The MPI
Extensions, Cambridge, MA: MIT Press.

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

385CLUSTERS VS FPGA FOR HYPERSPECTRAL

Hawick, K. A., Coddington, P. D., and James, H. A. (2003).
Distributed frameworks and parallel algorithms for
processing large-scale geographic data, Parallel Comput-
ing 29(10): 1297–1333.

Hennessy, J. L. and Patterson, D. A. (2002). Computer archi-
tecture: A quantitative approach, 3rd edition, San Mateo,
CA: Morgan Kaufmann.

Kalluri, S., Zhang, Z., JaJa, J., Liang, S., and Townshend, J.
(2001). Characterizing land surface anisotropy from
AVHRR data at a global scale using high performance
computing, International Journal of Remote Sensing
22(11): 2171–2191.

Keshava, N. and Mustard, J. F. (2002). Spectral unmixing,
IEEE Signal Processing Magazine 19(1): 44–57.

Lavernier, D., Fabiani, E., Derrien, S., and Wagner, C. (1999).
Systolic array for computing the pixel purity index (PPI)
algorithm on hyperspectral images. In Proceedings of
SPIE, Vol. 4480, pp. 130–138.

Le Moigne, J., Campbell, W. J., and Cromp, R. F. (2002). An
automated parallel image registration technique based on
the correlation of wavelet features, IEEE Transactions on
Geoscience and Remote Sensing 40(8): 1849–1864.

Patrino, A. (2005). Preface to the special issue on climate mod-
eling, International Journal of High Performance Com-
puting Applications 19(3): 175.

Plaza, A., Martinez, P., Perez, R., and Plaza, J. (2004). A quanti-
tative and comparative analysis of endmember extraction
algorithms from hyperspectral data, IEEE Transactions on
Geoscience and Remote Sensing 42(3): 650–663.

Plaza, A., Valencia, D., Plaza, J., and Martinez, P. (2006).
Commodity cluster-based parallel processing of hyper-
spectral imagery, Journal of Parallel and Distributed
Computing 66(3): 345–358.

Plaza, A., Plaza, J., and Valencia, D. (2007). Impact of platform
heterogeneity on the design of parallel algorithms for
morphological processing of high-dimensional image
data, Journal of Supercomputing 40(1): 81–107.

Schowengerdt, R. A. (2007). Remote sensing, 3rd edition, New
York: Academic Press.

Seinstra, F. J., Koelma, D., and Geusebroek, J. M. (2002). A
software architecture for user transparent parallel image
processing, Parallel Computing 28(7–8): 967–993.

Setoain, J., Prieto, M., Tenllado, C., Plaza, A., and Tirado, F.
(2007). Parallel morphological endmember extraction

using commodity graphics hardware, IEEE Geoscience
and Remote Sensing Letters 4(3): 441–445.

Skoglund, J. and Felsberg, M. (2005). Fast image processing
using SSE2. In Proceedings of the SSBA Symposium on
Image Analysis, 4 pp.

Sterling, T. (2002). Beowulf cluster computing with Linux,
Cambridge, MA: MIT Press.

Tehranian, S., Zhao, Y., Harvey, T., Swaroop, A., and McKen-
zie, K. (2006). A robust framework for real-time distrib-
uted processing of satellite data, Journal of Parallel and
Distributed Computing 66(3): 403–418.

Tilton, J. C. (2005). Method for implementation of recursive
hierarchical segmentation on parallel computers, U.S.
Patent Office, Washington, DC, U.S. Pending Published
Application 09/839147.

Valencia, D. and Plaza, A. (2006). FPGA-based compression of
hyperspectral imagery using spectral unmixing and the
pixel purity index algorithm, Lecture Notes in Computer
Science, Vol. 3993, pp. 24–31.

Valero-Garcia, M., Navarro, J., Llaberia, J., Valero, M., and
Lang, T. (1992). A method for implementation of one-
dimensional systolic algorithms with data contraflow
using pipelined functional units, Journal of VLSI Signal
Processing 4(1): 7–25.

Veeravalli, B. and Ranganath, S. (2003). Theoretical and exper-
imental study on large size image processing applications
using divisible load paradigm on distributed bus net-
works, Image and Vision Computing 20(13): 917–935.

Vladimirova, T. and Wu, X. (2006). On-board partial run-time
reconfiguration for pico-satellite constellations. In Pro-
ceedings of the First NASA/ESA Conference on Adaptive
Hardware and Systems, pp. 262–269.

Wang, P., Liu, K. Y., Cwik, T., and Green, R. O. (2002). MOD-
TRAN on supercomputers and parallel computers, Paral-
lel Computing 28(1): 53–64.

Wang, Y., Rucker, J. T., and Fowler, J. E. (2004). Three-dimen-
sional tarp coding for the compression of hyperspectral
images, IEEE Geoscience and Remote Sensing Letters
1(2): 136–140.

Winter, E. M., Schlangen, M. J., Hill, A. B., Simi, C. G., Win-
ter, M. E. (2002). Tradeoffs for real time hyperspectral
analysis. In Proceedings of SPIE 4725: 366–371.

Zhang, D. and Pal, S. K. (2002). Neural networks and systolic
array design, Singapore: World Scientific.

 at Universidad de Extremadura on April 20, 2009 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

