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SUMMARY

Hyperspectral imaging instruments are capable of collecting hundreds of images, corresponding to
different wavelength channels, for the same area on the surface of the Earth. One of the main problems
in the analysis of hyperspectral data cubes is the presence of mixed pixels, which arise when the spatial
resolution of the sensor is not enough to separate spectrally distinct materials. Hyperspectral unmixing is
one of the most popular techniques to analyze hyperspectral data. It comprises two stages: (i) automatic
identification of pure spectral signatures (endmembers) and (ii) estimation of the fractional abundance of
each endmember in each pixel. The spectral unmixing process is quite expensive in computational terms,
mainly due to the extremely high dimensionality of hyperspectral data cubes. Although this process maps
nicely to high performance systems such as clusters of computers, these systems are generally expensive
and difficult to adapt to real-time data processing requirements introduced by several applications, such
as wildland fire tracking, biological threat detection, monitoring of oil spills, and other types of chemical
contamination. In this paper, we develop an implementation of the full hyperspectral unmixing chain
on commodity graphics processing units (GPUs). The proposed methodology has been implemented,
using the CUDA (compute device unified architecture), and tested on three different GPU architectures:
NVidia Tesla C1060, NVidia GeForce GTX 275, and NVidia GeForce 9800 GX2, achieving near real-time
unmixing performance in some configurations tested when analyzing two different hyperspectral images,
collected over the World Trade Center complex in New York City and the Cuprite mining district in
Nevada. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Hyperspectral imaging instruments are capable of collecting hundreds of images, corresponding to
different wavelength channels, for the same area on the surface of the Earth [1]. For instance, NASA
is continuously gathering imagery data with instruments such as the Jet Propulsion Laboratory’s
Airborne Visible-Infrared Imaging Spectrometer (AVIRIS), able to record the visible and near-
infrared spectrum (wavelength region from 0.4 to 2.5 um) of the reflected light of an area 2-12km
wide and several kilometers long, using 224 spectral bands [2]. The resulting multidimensional data
cube typically comprises several GB per flight (see Figure 1). The wealth of spectral information
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Figure 1. The concept of remotely sensed hyperspectral imaging.

provided by latest generation hyperspectral sensors has opened ground breaking perspectives in
many applications [3]. One of the main problems in the analysis of hyperspectral data cubes is the
presence of mixed pixels [4], which arise when the spatial resolution of the sensor is not enough
to separate spectrally distinct materials [5]. For instance, the pixel vector labeled as ‘vegetation’ in
Figure 1 may actually be a mixed pixel comprising a mixture of vegetation and soil, or different
types of soil and vegetation canopies. In this case, several spectrally pure signatures (endmembers)
are combined into the same (mixed) pixel. Hyperspectral unmixing [6] is one of the most popular
techniques to analyze hyperspectral data. It comprises two stages: (i) identification of endmembers
and (ii) estimation of the abundance of each endmember in each pixel. The unmixing process is
computationally quite expensive, due to the extremely high dimensionality of hyperspectral data
cubes [7].

Spectral unmixing involves the separation of a pixel spectrum into its pure component
endmember spectra, and the estimation of the abundance value for each endmember [4]. The linear
mixture model assumes that the endmember substances are sitting side-by-side within the field of
view of the imaging instrument (see Figure 2(a)). On the other hand, the nonlinear mixture model
assumes nonlinear interactions between endmember substances (see Figure 2(b)). In practice, the
linear model is more flexible and can be easily adapted to different analysis scenarios [6]. It can
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Figure 2. Linear (a) versus nonlinear (b) mixture models in remotely sensed hyperspectral imaging.
be simply defined as follows:

p
r=Ea+n=) eq;+n, (1)
i=1
where r is a pixel vector given by a collection of values at different wavelengths, E= {ei}f’:1 is
a matrix containing p endmembers , a=[aj,az, ...,dp] is a p-dimensional vector containing the
abundance fractions for each of the p endmembers in r, and n is a noise term. Two physical
constraints are generally imposed into the model described in (1), these are the abundance non-
negativity constraint, i.e. a¢; >0, and the abundance sum-to-one constraint, i.e. Zip:l ai=1 [8].
Solving the linear mixture model involves: (i) identifying a collection of {ei}f’:l endmembers in
the image and (ii) estimating their abundance in each pixel. Several techniques have been proposed
for such purposes [4], but all of them are very expensive in computational terms. Although these
techniques map nicely to high performance computing systems such as commodity clusters [9],
these systems are difficult to adapt to on-board processing requirements introduced by applications,
such as wildland fire tracking, biological threat detection, monitoring of oil spills, and other types of
chemical contamination. In those cases, low-weight integrated components are essential to reduce
mission payload. In this regard, the emergence of graphics processing units (GPUs) now offers a
tremendous potential to bridge the gap towards real-time analysis of remotely sensed hyperspectral
data [10-15].

In this work, we develop a new GPU implementation of a full hyperspectral unmixing chain. The
proposed methodology has been implemented using NVidia’s compute device unified architecture
(CUDA), and tested on three different GPU architectures and two different hyperspectral images
collected by AVIRIS. The remainder of the paper is organized as follows. Section 2 describes the
different modules that conform to the considered unmixing chain. Section 3 describes the GPU
implementation of these modules. Section 4 presents an experimental evaluation of the proposed
implementations in terms of both unmixing accuracy and parallel performance. Section 5 concludes
the paper with some remarks and hints at plausible future research lines.

2. METHODS

The hyperspectral unmixing chain [16] that we have implemented in this work is graphically
illustrated by a flowchart in Figure 3. It should be noted that another traditional approach to
implement the hyperspectral unmixing chain is based on including a dimensionality reduction step
prior to the analysis. However, this step is mainly intended to reduce processing time but often
discards relevant information in the spectral domain. As a result, in our implementation we do
not include the dimensionality reduction step in order to work with the full spectral information
available in the hyperspectral data cube. Therefore, our implementation consists of two main parts:
(i) selection of pure spectral signatures or endmembers and (ii) estimation of the abundance of
each endmember in each pixel of the scene.
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Figure 3. Implemented hyperspectral unmixing chain.

The algorithm used in this work for endmember extraction purposes is based on the concept of
orthogonal subspace projections (OSP) [17—19]. First, it calculates the pixel vector with maximum
length in the hyperspectral image and labels it as an initial endmember e; using the following
expression:

sx1
e1=arg:m_ax2e,-~eiT}, (2)

toj=1

where s and /, respectively, denote the number of samples and the number of lines in the hyper-
spectral image (meaning that s x/ is the total number of pixels) and the superscript “T” denotes
the vector transpose operation. The operation e; -el.T is the dot product between a pixel vector
e; and its transposed version. The output of the dot product is a scalar value. This operation
is computed for all pixels in the hyperspectral image, and the pixel vector with the maximum
associated scalar value as the first endmember e;. Once an initial endmember has been identi-
fied, the algorithm assigns U; =[e;] and applies an orthogonal projector [18] to all image pixel
vectors, thus calculating the next endmember e, as the pixel with maximum projection value
as follows:

e2=arg{miax[(PIJJ‘l €)' (Pg, ei)]} with Py, =I-U;(UU)~'UY, 3)

where I is the identity matrix. The algorithm then assigns U, =[e;e;] and obtains the next
endmember e3 as follows:

e3=arg{mlax[(Pd‘2 &) (Pg, ei)]} with P, =I-Up(U;Uy)~'UJ. 4)
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The procedure is repeated iteratively so that a new endmember is obtained at each iteration as
follows:

€t =arg{m?x[(P¢ e)' (P, ei)]} with Pg, =1-U,;(U;U;)~'U]. )

The iterative procedure is terminated once a pre-defined number of p endmembers has been
identified. The final set of endmembers, E= {ei}f’zl, can be used to unmix a certain pixel vector
r; by estimating the vector a; containing the fractional abundances of each of the p endmembers
in the pixel using the technique described in [8].

3. GPU IMPLEMENTATION OF A HYPERSPECTRAL UNMIXING CHAIN

GPUs can be abstracted in terms of a stream model, under which all data sets are represented as
streams (i.e. ordered data sets). Algorithms are constructed by chaining so-called kernels, which
operate on entire streams, taking one or more streams as inputs and producing one or more streams
as outputs. Thereby, data-level parallelism is exposed to hardware, and kernels can be concurrently
applied without any sort of synchronization. The kernels can perform a kind of batch processing
arranged in the form of a grid of blocks, as displayed in Figure 4(a), where each block is composed
of a group of threads which share data efficiently through the shared local memory and synchronize
their execution for coordinating accesses to memory. There is a maximum number of threads
that a block can contain but the number of threads that can be concurrently executed is much
larger (several blocks executed by the same kernel can be managed concurrently, at the expense
of reducing the cooperation between threads since the threads in different blocks of the same grid
cannot synchronize with the other threads). Figure 4(a) displays how each kernel is executed as
a grid of blocks of threads. On the other hand, Figure 4(b) shows the execution model in the
GPU, which can be seen as a set of multiprocessors. Each multiprocessor is characterized by a
single instruction multiple data (SIMD) architecture, i.e. in each clock cycle each processor of the
multiprocessor executes the same instruction but operating on multiple data streams. Each processor
has access to a local shared memory and also to local cache memories in the multiprocessor, while
the multiprocessors have access to the global GPU (device) memory.

In order to implement the full unmixing procedure in a GPU, the first issue that needs to be
addressed is how to map a hyperspectral image onto the memory of the GPU. Since the size of
hyperspectral images may exceed the capacity of such memory, in that case we split the image

m__.,ﬂ; Muiti-processors ———" &
Blocks
per grid
Threads
per block 5

Figure 4. Schematic overview of a GPU architecture: (a) threads, blocks,
and grids and (b) execution model in the GPU.
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Figure 5. Spatial-domain decomposition of a hyperspectral image into four and five partitions.

into multiple spatial-domain partitions [20] made up of entire pixel vectors (see Figure 5, which
shows two examples of spatial-domain partitioning of a hyperspectral image in four and five
partitions, respectively). With the above ideas in mind, our GPU implementation of the hyperspectral
unmixing chain comprises two stages (see Figure 3): (i) endmember extraction and (ii) abundance
estimation.

3.1. GPU implementation of endmember extraction

Our GPU implementation of the OSP algorithm (called GPU-OSP hereinafter), used for endmember
extraction purposes in this work, can be summarized by the following steps:

1. Once the hyperspectral image is mapped onto the GPU memory, a structure (d_image_
vector) in which the number of blocks equals the number of lines (num_lines)
in the hyperspectral image and the number of threads equals the number of samples
(num_samples) is created, thus ensuring that as many pixels as possible are processed in
parallel (see Appendix). The amount of pixels processed in parallel depends on the memory
and register resources available in the GPU.

2. Using the aforementioned structure, calculate the brightest pixel e; in the original hyperspec-
tral scene by means of a CUDA kernel (CalculateBright), which computes (in parallel)
the dot product between each pixel vector r; in the original hyperspectral image and its own
transposed version rl.T. Then, the kernel MaxBright calculates e; from the output provided
by CalculateBright.

3. Once the brightest pixel in the original hyperspectral image has been identified as the first
endmember, the pixel (vector of bands) is allocated as the first column in the U; matrix by
Uj =[e1]. A kernel (called UtxU) with i blocks and i threads is now applied to calculate
UrlrUl, where 1 is the iteration number (between 1 and the desired number of endmembers,
p). Now the algorithm calculates the inverse of the previous product using the Gauss—
Jordan elimination method [21], thus obtaining (U?Ul)_l. A new kernel (Uxinv) with
i blocks and num_bands threads is now applied to multiply U; and the inverse of the
previous step, thus obtaining U1(UTU1)_1. Another kernel (AnsxUt) with num_bands
blocks and num_bands threads is then applied to multiply the previous result by U? ,
thus obtaining Ul(UTUl)_lUT. The subtraction of the identity matrix I is calculated by a
kernel (SustractIdentity) with num_bands blocks and num_bands threads, thus
obtaining the orthogonal subspace projector PIJJ- =I-U (UPfUl )_IUFIF. Finally, a new kernel
(PixelProjection) in which the number 0% blocks equals the number of lines (/) in the
hyperspectral image and the number of threads equals the number of samples (s) is applied
to project the orthogonal subspace projector to each pixel r; in the image (see Appendix).
Finally, the maximum of all projected pixels is calculated using the kernel MaxProjection,
which obtains the second endmember as follows: e, =arg{max; [(PI}1 e,')T(P[JJ-1 e)l}.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011;23:1538-1557
DOI: 10.1002/cpe



1544 S. SANCHEZ ET AL.

4. The GPU-OSP now extends the reference matrix U, =[eje;] and repeats from step 3 until
the desired number of endmembers (specified by the input parameter p) has been extracted.
The output of the algorithm is a set of endmembers E= {e,-}le.

3.2. GPU implementation of abundance estimation

Our GPU version of the unconstrained abundance estimation algorithm (GPU-LSU hereinafter)
uses the endmember set produced by the GPU-OSP algorithm to produce a set of endmember
abundance maps as follows:

1. The first step in the GPU-LSU is to calculate a so-called compute matrix (ETE)~'ET, where
E={e;} f’ _; is formed by the p endmembers extracted by the GPU-OSP. This compute matrix
will be multiplied by all pixel vectors r; in the original image. In our implementation, the
compute matrix is calculated in the CPU mainly due to two reasons: (i) its computation is
relatively fast and (ii) once calculated, the compute matrix remains the same throughout the
whole execution of the code.

2. The compute matrix calculated in the previous step is now multiplied by each pixel r; in
the hyperspectral image, thus obtaining a set of abundance vectors a;, each containing the
fractional abundances of the p endmembers in each pixel. This is accomplished in the GPU
by means of a kernel called Unmixing (see Appendix).

In addition to the GPU-LSU, which does not incorporate the abundance non-negativity and
sum-to-one unmixing constraints, we have also implemented partially and fully constrained abun-
dance estimation algorithms. Specifically, our GPU version of the non-negative constrained linear
spectral unmixing algorithm (called GPU-NCLSU) is obtained by resorting to the image space
reconstruction algorithm (ISRA) [11], which imposes the abundance non-negativity constraint
in abundance estimation. The algorithm guarantees convergence in a finite number of itera-
tions and positive values in the abundance estimation results for any input set of endmembers.
The ISRA kernel is shown in the Appendix. We have also implemented a fully constrained
linear spectral unmixing algorithm (called GPU-FCLSU) by simply normalizing the abundances
provided by GPU-NCLSU to provide the non-negativity and sum-to-one constraints at the
same time. The CUDA kernel FCLSU that performs this operation is also displayed in the
Appendix.

4. EXPERIMENTAL RESULTS

4.1. Hyperspectral image data

The first hyperspectral image scene used for experiments in this work was collected by the
AVIRIS instrument, which was flown by NASA’s Jet Propulsion Laboratory over the World Trade
Center area in New York City on 16 September 2001, just five days after the terrorist attacks
that collapsed the two main towers and other buildings in the WTC complex. The full data set
selected for experiments consists of 614 x 512 pixels, 224 spectral bands, and a total size of
(approximately) 140 MB. The spatial resolution is 1.7 m per pixel. The leftmost part of Figure 6
shows the hyperspectral data set selected for experiments, in which vegetated areas, burned areas
and smoke coming from the WTC area (in the rectangle) and going down to south Manhattan can
be appreciated. Extensive reference information, collected by U.S. Geological Survey (USGS), is
available for the WTC scene. In this work, we use a USGS thermal map® which shows the target
locations of the thermal hot spots at the WTC area, displayed at the rightmost part of Figure 6.
The map is centered at the region where the towers collapsed, and the temperatures of the targets
range from 700 to 1020 K. Further information available from USGS about the targets (including

http://speclab.cr.usgs.gov/wtc.
$http://pubs.usgs.gov/of/2001/0fr-01-0429/hotspot key.tgif . gif.
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Figure 6. False color composition of an AVIRIS hyperspectral image collected by NASA’s Jet Propulsion
Laboratory over lower Manhattan on 16 September 2001 (left). Location of thermal hot spots in the fires
observed in World Trade Center area (right).

Table 1. Properties of the thermal hot spots reported in the rightmost part of Figure 6.

Hot Latitude Longitude Temperature Area according to USGS  Area according to unmixing
spot (North) (West) (K) (square meters) (square meters)

A 40°42/47.18"  74°00'41.43" 1000 0.56 0.55

B 40°42/47.14"  74°00'43.53" 830 0.08 0.06

C 40°42/42.89"  74°00'48.88" 900 0.80 0.78

D 40°42/41.99” 74°00/46.94" 790 0.80 0.81

E 40°42/40.58"  74°00'50.15” 710 0.40 0.45

F 40°42/38.74"  74°00'46.70” 700 0.40 0.37

G 40°42/39.94" 74°00'45.37” 1020 0.04 0.05

H  40°42'38.60" 74°00'43.51” 820 0.08 0.09

location and estimated size) is reported in Table I. As shown by Table I, all the targets are sub-pixel
in size since the spatial resolution of a single pixel is 1.7m?. The information in Table I will be
used as the ground truth to validate the accuracy of the proposed parallel hyperspectral unmixing
algorithms.

A second hyperspectral image scene has been considered for experiments. It is the well-known
AVIRIS Cuprite scene (see Figure 7(a)), collected in the summer of 1997 and available online in
reflectance units after atmospheric correction!. The portion used in experiments corresponds to a
350 x 350-pixel subset of the sector labeled as f970619t01p02_r02_sc03.a.rfl in the online data,
which comprises 188 spectral bands in the range from 400 to 2500 nm and a total size of around
50 MB. Water absorption and low SNR bands were removed prior to the analysis. The site is
well understood mineralogically, and has several exposed minerals of interest, including alunite,
buddingtonite, calcite, kaolinite, and muscovite. Reference ground signatures of the above minerals
(see Figure 7(b)), available in the form of a USGS library” will be used to assess endmember
signature purity in this work.

4.2. Analysis of algorithm precision

Table II shows the spectral angles [18] (in degrees) between the most similar endmember pixels
detected by GPU-OSP and the pixel vectors at the known target positions in the AVIRIS World

Thttp://aviris.jpl.nasa.gov.
Ihttp://speclab.cr.usgs.gov/spectral-lib.html.
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Figure 7. (a) False color composition of the AVIRIS hyperspectral over the Cuprite mining district in
Nevada and (b) U.S. Geological Survey mineral spectral signatures used for validation purposes.

Table II. Spectral angle values (in degrees) between the pixels extracted by GPU-OSP
from the AVIRIS World Trade Center scene and the known ground-truth pixels
associated to the thermal hot spots in Figure 6.

A B C D E F G H

9.17° 13.75° 0.00° 0.00° 20.05° 28.07° 21.20° 21.77°

Trade Center scene, labeled from ‘A’ to ‘H’ in the rightmost part of Figure 6. The lower the
spectral angle, the more similar the spectral signatures. The range of values for the spectral angle is
[0°,90°]. In all cases, the number of endmembers to be detected was set to p =29 after calculating
the virtual dimensionality (VD) of the hyperspectral data [7]. As shown by Table II, the GPU-OSP
extracted endmembers which were very similar, spectrally, to the known ground-truth pixels in
Figure 6 (this method was able to perfectly detect the pixels labeled as ‘C’ and ‘D’, and had more
difficulties in detecting very small targets). Finally, an evaluation of the precision of the GPU-LSU
in estimating the abundance of the extracted endmembers is contained in Table I, in which the
accuracy of the estimation of the sub-pixel abundance of fires in Figure 6 can be assessed by
taking advantage of the information about the area covered by each thermal hot spot available
from the USGS. Since each pixel in the AVIRIS scene has a size of 1.7m?, it is inferred that the
thermal hot spots are sub-pixel in nature, and thus require spectral unmixing in order to be fully
characterized. In this regard, the area estimations reported in the last column of Table I demonstrate
that the considered hyperspectral unmixing chain (implemented using unconstrained abundance
estimation) can provide accurate estimations of the area covered by thermal hot spots. In particular,
the estimations for the thermal hot spots with higher temperature (labeled as ‘A’, ‘C’, and ‘G’ in
the table) are almost perfect. We have also experimentally tested that the area estimations obtained
using the considered partially constrained and fully constrained abundance estimation methods are
almost identical to those reported in Table I.

For illustrative purposes, Figure 8 shows the first three endmembers extracted from the AVIRIS
World Trade Center scene after applying the proposed GPU-OSP implementation. If we relate
the endmember plots with the three channels visible by the human eye (red, green, and blue), we
can see from Figure 8 that the smoke endmember exhibits high spectral reflectance in the blue
(470 nm) channel, while vegetation exhibits a peak of reflectance in the green (530 nm) channel,
hence motivating that the human eye associates green color to vegetation, although the spectral
signature of vegetation exhibits many other peaks and valleys. Finally, the fire endmember has
high reflectance in the red (700 nm) channel, but it also shows even higher reflectance values in
the short-wave infra-red (SWIR) region, located between 2000 and 2500 nm. This indicates the
much higher temperature of the fires when compared to other representative endmembers in the
scene.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011;23:1538-1557
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Figure 8. Spectral endmembers of vegetation, smoke and fire extracted
from the original scene by GPU-OSP.

On the other hand, Figure 9 shows the abundance maps extracted for the endmembers in Figure 8
(the fire abundance maps have been rescaled to match the dimensions of the subscene displayed
in the rightmost part of Figure 6, while the vegetation and smoke maps correspond to the scene
displayed in the leftmost part of Figure 6). We recall that endmember abundance maps are the
outcome of the unmixing process, where each map reflects the sub-pixel composition of a certain
endmember in each pixel of the scene. Specifically, the maps displayed in Figure 9 correspond to
vegetation, smoke, and fire. As shown in Figure 9 there are some scaling differences between the
maps estimated by different unmixing methods, although the best compromise results are provided
by GPU-NCLS (vegetation and fire maps with a clear separation between no abundance at all (0.0
estimated value) and high concentration of the estimated endmember) and GPU-FCLSU (good
compromise result for the vegetation endmember). In turn, the GPU-LSU provides maps with
fewer 0.0 estimated abundance values.

Finally, we also provide an experimental assessment of endmember extraction accuracy with the
AVIRIS Cuprite scene. Table III shows the spectral angles (in degrees) between the most similar
endmember pixels detected by GPU-OSP and the USGS library signatures in Figure 7(b). In this
experiment, the number of endmembers to be detected was set to p =19 after calculating the VD
of the AVIRIS Cuprite data. As shown by Table III, the GPU-OSP extracted endmembers which
were very similar, spectrally, to the USGS library signatures, despite the potential variations (due
to possible interferers still remaining after the atmospheric correction process) between the ground
signatures and the airborne data. In this case, the three considered unmixing methods provide
similar results. Since these results have been discussed in the previous work (see for instance [22]),
we do not display them here.

4.3. GPU architectures used in our experiments

The proposed GPU implementation of the full hyperspectral unmixing chain has been tested on
three different platforms:

e NVidia Tesla C1060 GPU, which features 240 processor cores operating at 1.296 GHz, with
single precision floating point performance of 933 Gflops, double precision floating point
performance of 78 Gflops, total dedicated memory of 4 GB, 800 MHz memory (with 512-bit
GDDR3 interface) and memory bandwidth of 102 GB/s**. The GPU is connected to an

**http://www.nvidia.com/object/product_tesla_c1060_us.html.
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Figure 9. Abundance maps extracted by different GPU implementations for the vegetation
(a), smoke (b), and fire (c) endmembers.

Intel core 17 920 CPU at 2.67 GHz with 8 cores, which uses a motherboard Asus P6T7 WS
SuperComputer.

e NVidia GeForce GTX 275 GPU, which features 240 processor cores operating at 1.550 GHz,
80 texture processing units, a 448-bit memory interface, and a 1792 MB GDDR3 framebuffer
at a 2520 MHz. It is based on the GT200 architecture’’. The GPU is connected to a CPU Intel
Q9450 with 4 cores, which uses a motherboard ASUS Striker II NSE (with NVidiaTM 790i
chipset) and 4 GB of RAM memory at 1333 MHz.

T http://www.nvidia.com/object/product_geforce_gtx_275_us.html.
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Table III. Spectral angle values (in degrees) between the pixels extracted by GPU-OSP from
the AVIRIS Cuprite scene and the USGS library signatures in Figure 7(b).

Alunite Buddingtonite Calcite Kaolinite Muscovite

4.81° 4.16° 9.52° 10.76° 5.29°

Table IV. Processing times (s) and speedups achieved for the OSP, LSU, NCLSU, and FCLSU implemented

with three different GPU platforms and tested with two different hyperspectral images. It should be noted

that the full unmixing chain considered in this work is made up of: (1) endmember extraction (implemented

in this work using OSP) and (2) abundance estimation (implemented in this work using one out of three
possible algorithms: LSU, NCLSU, or FCLSU).

AVIRIS World Trade Center AVIRIS Cuprite

OSP LSU NCLSU FCLSU OSP LSU NCLSU  FCLSU

Tesla C1060

Time serial (s) 757.67 33.28 3336.12 3337.32  175.31 4.79 456.71 457.03
Time GPU (s) 58.57 0.34 126.62 126.68 16.32 0.10 24.37 24.38
Speedup 12.93 97.88 26.34 26.35 10.74 47.90 18.74 18.74
GeForce GTX 275

Time serial (s) 2590.52 28.92 3402.45 3403.55 599.37 5.05 485.98 486.21
Time GPU (s) 45.51 0.77 77.16 77.18 13.53 0.26 12.49 12.49
Speedup 56.92 37.55 44.09 44.09 44.29 19.42 38.90 38.92
GeForce 9800 GX2

Time serial (s) 2590.52 28.92 3402.45 3403.55 599.37 5.05 485.98 486.21
Time GPU (s) 366.38 0.85 275.24 275.32  102.40 0.29 47.45 47.61
Speedup 7.07 34.02 12.36 12.36 5.85 17.41 10.24 10.21

e NVidia GeForce 9800 GX2 GPU, which features two G92 graphics processors, each with
128 individual scalar processor (SP) cores and 512 MB of fast DDR3 memory*. The SPs
are clocked at 1.5 GHz, and each can perform a fused multiply—add every clock cycle, which
gives the card a theoretical peak performance of 768 Gflop/s. The GPU is also connected to
a CPU Intel Q9450 with 4 cores and 4 GB of RAM memory at 1333 MHz.

4.4. Analysis of parallel performance

Before describing our parallel performance results, it is first important to emphasize that our
GPU versions of OSP, LSU, NCLSU, and FCLSU provide exactly the same results as the serial
versions of the same algorithms, implemented using the Intel C/C++ compiler and optimized
using several compilation flags to exploit data locality and avoid redundant computations. Hence,
the only difference between the serial and parallel algorithms is the time they need to complete
their calculations. The serial algorithms were executed in one of the available cores, and the parallel
times in each GPU platform were measured five times and the mean values are reported (these
times were always very similar, with differences—if any—on the order of a few milliseconds
only). The parallel times in the NVidia GeForce 9800 GX2 were measured using only one of the
two G92 graphics processors available in this GPU architecture.

Table IV summarizes the obtained results in terms of parallel performance (the GPU and serial
processing times are reported in each case). In all cases, the C function clock () was used for

Fhttp://www.nvidia.com/object/product_geforce_9800gx2_us.html.
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Figure 10. Summary plot describing the percentage of the total GPU time consumed by
the different kernels used in the implementation of the GPU-OSP in the NVidia Tesla
C1060 GPU (AVIRIS World Trade Center scene).

timing the CPU implementations, and the CUDA timer was used for the GPU implementations.
The time measurement was started right after the hyperspectral image file was read to the CPU
memory and stopped right after the results provided by the considered algorithm are stored in the
CPU memory. It should be noted that the GPU implementations have been carefully optimized
taking into account the specific parameters of each considered architecture, including the global
memory available, the local shared memory in each multiprocessor, and also the local cache
memories. Whenever possible, we have accommodated blocks of pixels in small local memories
in the GPU in order to guarantee very fast accesses, thus performing block-by-block processing
to speed up the computations as much as possible. In the following, we analyze the performance
of each implemented algorithm individually.

4.4.1. Parallel performance of endmember extraction. Table IV reveals that the GPU-OSP algo-
rithm, used in this work for endmember extraction purposes, achieved the best speedup with regard
to the serial version in the NVidia GTX 275 architecture. The lower speedup achieved in the
GeForce 9800 GX2 architecture may be due to the fact that our implementation only used one of
the two G92 graphics processors available in this architecture, and also because this GPU provides
less processing cores than GeForce GTX 275. In this case, our results indicate that the iterative
nature of the OSP algorithm requires a large number of processing cores to achieve significant
speedups. Our results also indicate that the GPU-OSP can benefit from the higher processing speed
of the cores in the GeForce GTX 275 compared to those available in the Tesla C1060 architecture.
Also, the slightly lower speedups achieved for the AVIRIS Cuprite image (50 MB in size) compared
to those obtained for the AVIRIS World Trade Center image (140 MB in size) indicate that the
GPU-OSP provides more significant acceleration factors as the amount of data to be processed is
larger.

For illustrative purposes, Figure 10 shows the percentage of the total GPU execution time
consumed by each of the CUDA kernels (obtained after profiling the GPU-OSP implementation)
along with the number of times that each kernel was invoked (in the parentheses) for the extraction
of p =29 endmembers from the AVIRIS World Trade Center scene in the NVidia Tesla C1060 archi-
tecture (very similar results were also obtained in the other GPU architectures tested). In the figure,
the percentage of time for data movements from host (CPU) to device (GPU), from device to host,
and from device to device are also addressed. As shown in Figure 10, the PixelProjection
kernel consumes about 92% of the total GPU time, while MaxProjection is the second most
relevant kernel. The remaining kernels and the data movement operations are not significant (all
below 1% of the total GPU time), which indicates that most of the GPU processing time is invested
in the most time-consuming operation, i.e. the calculation of pixel projections and maxima scores
leading to endmember identification.

4.4.2. Parallel performance of unconstrained abundance estimation. Table IV reveals that the
GPU-LSU algorithm, used in this work for unconstrained linear unmixing purposes, provided
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Figure 11. Summary plot describing the percentage of the total GPU time consumed by
the different kernels used in the implementation of the GPU-LSU in the NVidia Tesla
C1060 GPU (AVIRIS World Trade Center scene).

significant speedups with the two considered hyperspectral scenes. Since the LSU algorithm is
not iterative, the performance results were also relevant in all considered GPU architectures. In
this case, the configuration of the Unmixing kernel (which receives the endmembers calculated
by GPU-OSP as input) was based on allocating as many threads as pixels in the image. The idea
is that each thread computes only one multiplication with the compute matrix to calculate the
endmember abundances in the pixel. Before executing the Unmixing kernel, we need to load
in the GPU global memory the hyperspectral image and the compute matrix. For each pixel, we
perform the multiplication with the compute matrix by moving such matrix (line by line) to the
shared memory in the GPU and performing the needed operations. With this scheme, we obtain
a significant speedup in all cases. It is also worth noting that, as it was already the case with the
GPU-OSP, the GPU-LSU provided slightly better speedups for the AVIRIS World Trade Center
scene than for the AVIRIS Cuprite scene. However, in both cases the GPU-LSU provided a very
fast response (in less than 1) for all considered GPU architectures.

For illustrative purposes, Figure 11 shows the percentage of the total GPU execution time
employed by each of the CUDA kernels (obtained after profiling the GPU-LSU implementation)
when unmixing the AVIRIS World Trade Center scene in the NVidia Tesla C1060 architecture.
The first bar represents the percentage of time employed by the Unmixing kernel, while the
second and third bars, respectively, denote the percentage of time for data movements from host
(CPU) to device (GPU) and from device to host. As shown in Figure 11, the Unmixing kernel
consumes about 80% of the total GPU time, while the time for data movements is not significant
when compared with the time invested in performing the spectral unmixing operation.

4.4.3. Parallel performance of partially and fully constrained abundance estimation. Table IV
reveals that the GPU-NCLSU and GPU-FCLSU implementations, respectively, used in this work
for partially and fully constrained unmixing (and both based on the ISRA algorithm), are much
more time-consuming than GPU-LSU, for all considered scenes and GPU architectures. In both
algorithms, the performance increase in the GPU implementation with regard to the respective
serial versions is significant, but the processing times are much larger than those reported for the
GPU-LSU. This is due to the iterative nature of the ISRA algorithm (see Appendix), which imposes
the non-negativity and sum-to-one constraints when solving the unmixing problem at the expense
of increasing the computation time significantly. From the results in Figure 9 we can see that
both NCLSU and FCLSU unmixing algorithms provide slightly more consistent results than LSU
(especially for abundance values close to zero) but the increase in computational performance of
these algorithms with regard to LSU makes the latter algorithm a tool of choice in many applications
due to its simplicity. In any event, it is clear from Table IV that both NCLSU and FCLSU can be
significantly accelerated by means of GPU implementation in any considered architecture.

For illustrative purposes, Figure 12 shows the percentage of the total GPU execution time
employed by each of the CUDA kernels obtained after profiling the GPU-FCLSU implementation
when unmixing the AVIRIS World Trade Center scene in the NVidia Tesla C1060 architecture. It
should be noted that the GPU-NCLSU implementation is a subset of the GPU-FCLSU one, with
the addition of a normalization kernel (called FCLSU and displayed in the Appendix). The first
bar represents the percentage of time employed by the ISRA kernel, while the second and third
bars, respectively, denote the percentage of time for data movements from host (CPU) to device
(GPU) and from device to host. The reason why there are four data movements from host to
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Figure 12. Summary plot describing the percentage of the total GPU time consumed by the different
kernels used in the implementation of GPU-NCLSU and GPU-FCLSU in the NVidia Tesla C1060 GPU
(AVIRIS World Trade Center scene).

device is because not only the hyperspectral image but also the endmember matrix, the transposed
endmember matrix, and the structure where the abundances are stored need to be forwarded to the
GPU, which returns the structure with the estimated abundances after the calculation is completed.
The fourth bar in Figure 12 represents the percentage of time employed by the FCLSU kernel,
which is very small compared with the ISRA kernel that dominates the computations. As shown
in Figure 12, the ISRA kernel consumes more than 99% of the GPU time.

4.5. Real-time considerations

Before concluding the paper, it is important to emphasize that the processing times reported in
the previous section are not strictly in real-time since the cross-track line scan time in AVIRIS,
a push-broom instrument, is quite fast (8.3 ms to collect 512 full pixel vectors). For instance,
this introduces the need to process the considered AVIRIS scene over the World Trade Center
(614 x512 pixels) in approximately 5.096s to fully achieve real-time performance. It should
be noted that the number of endmembers to be extracted from this scene was set to a rela-
tively high number (p=29) in our experiments. However, the most relevant endmembers are
always extracted by OSP in the first iterations (e.g. the fire, vegetation, and smoke endmembers
in Figure 8 were the first three endmembers detected by the algorithm). As a result, reducing
the value of p to extract only the most relevant endmembers can result in real-time perfor-
mance of our GPU implementation of the hyperspectral unmixing chain. For illustrative purposes,
Table V shows the processing times (endmember extraction plus unconstrained abundance esti-
mation) measured for the AVIRIS World Trade Center scene using different values of p on
the NVidia GeForce GTX 275. As shown by Table V, real-time performance is achieved for
values of p<3. A strategy that we have in mind to further speedup the performance of the
unmixing chain in the task of endmember extraction is to apply a fast spectral pre-screening oper-
ation to remove those pixels, which are not sufficiently pure prior to the endmember searching
process implemented by OSP. In this regard, we are currently experimenting with different GPU
architectures in order to fully achieve the goal of real-time endmember extraction from hyper-
spectral imagery, which may allow incorporation of processing hardware onboard hyperspectral
imaging instruments for real-time data exploitation at the same time as the data is collected by the
Sensor.

5. CONCLUSIONS AND FUTURE RESEARCH LINES

The ever increasing spatial and spectral resolutions that will be available in the new gener-
ation of hyperspectral instruments for remote observation of the Earth anticipates significant
improvements in the capacity of these instruments to uncover spectral signals in complex real-
world analysis scenarios. Such a capacity demands parallel processing techniques which can
cope with the requirements of time-critical applications and properly scale with image size,
dimensionality, and complexity. In order to address such needs, in this paper we have devel-
oped new GPU implementations for endmember extraction and spectral unmixing algorithms
(which comprise a full hyperspectral unmixing chain). The performance of the proposed parallel
algorithms has been evaluated (in terms of the quality of the solutions they provide and their
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Table V. Processing times in milliseconds (endmember extraction plus

unmixing) measured for our proposed GPU implementations for different

values of p (number of endmembers) after processing the hyperspectral
image in Figure 6 on the NVidia GeForce GTX 275.

p Total processing time (ms)
1 893.929
2 2513.475
3 4134.080
4 5757.922
5 7379.620
6 9000.881
7 10629.570
8 12248.098
9 13874.533
10 15486.669
11 17119.659
12 18732.180
13 20352.209
14 21971.695
15 23587.203
16 25213.494
17 26834.799
18 28457.176
19 30078.781
20 31702.641
21 33331.697
22 34959.563
23 36584.867
24 38198.699
25 39811.379
26 41423.340
27 43036.207
28 44658.691
29 46281.070

parallel performance) in the context of two real applications, using three different GPU architec-
tures. The experimental results reported in this paper indicate that remotely sensed hyperspec-
tral imaging can greatly benefit from the development of efficient implementations of unmixing
algorithms in specialized hardware devices for better exploitation of high dimensional data sets.
In this case, significant speedups are obtained using only one GPU device, with few on-board
restrictions in terms of cost and size, which are important when defining mission payload in
remote sensing missions (defined as the maximum load allowed in the airborne or satellite
platform that carries the imaging instrument). Although the proposed implementations are not
strictly in real-time for processing chains with a high number of endmembers, we expect future
developments to perform in real-time mode. In order to fully substantiate the aforementioned
remarks, further experimentation with additional hyperspectral scenes and GPU architectures is
desirable.

APPENDIX A
In this appendix we display the code of some illustrative CUDA kernels used in our GPU imple-
mentations:
e Figure Al shows the code for the kernel PixelProjection used in GPU-OSP to apply

an orthogonal subspace projector to each pixel in the image in order to find p endmembers.
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__g-obal _ void PixelProjection (short int *d_image_vector, fleoat
*d bright matrix, flocat *d projmatrix, long irt lines samples,

int num bands)

{

// d_image wector is the structure That stores the hyperspectral image in the device
/¢ d_bright matrix is the structure that stores the projestion values

i ﬁ_pr:]mﬁ'l:l‘llt i3 the atru e that scores the orthogonal subspace projector

/f 14X 13 The LASATIILCATLON NLEDEr O The TAreaa

int i,j, ddx;

float value = 2

float pixel[num bands];

float p.i.xel_aux [num_bands] ;

idx = blockDim.x * blockIdx.x + threadIdx.x;

for (i=0; i < num bands; i++){
pixel[i] = d image vector[idwx+i*lines samples];

}

for (i=0:; i < num_bands; i++){
for (j=0; j < num banda; j++){
value += (d projmatrix[j+i*num bands]*pixel[3j]);
}
pixel aux[i] = wvaluest*value;
valus = 0;

}

valus = 0;

for (i=0; i < num band=s; i++) {
value += pixel aux[i];

}

d bright matrix|idx| = value;

Figure Al. CUDA kernel PixelProjection that applies an orthogonal subspace
projector to each pixel in the image.

__global woid Ummixing(float *d image wector, float *d image unmixed,
fleat *d compute matrix, int pum lines, int num samples, int num_bands,
int num endmembers)

{

// d_image vector is the structure that stores the hyperspectral image in the device

o :i_;:.ﬂl;:_un:'_x“:d is th= unmixed image

f idx is the identificacion mamber aof the chread

_ shared float co\mpute_matrix [pum bands];
int idx = blockDim.x * blockIdx.x+threadIdx.x;
float pracessed_pixel [num_bands]:

for (int t = 0; t < num bands; t++) {
processed pixel[t] = d_image_ vector[idz+ (num lines*num samples=t)];
}

for (int iter = 0; iter < num endmembers; iter++) {

if (threadIdx.x == 0} {
for (int i = 07 i < num bands; i++) {
compute matrixii] = d_compute matrixliter*num_bands+il;
}

}

syncthreads () ;

for (int k = 0; k < num _bands; k++) {
d_image unmixed[idx+(num lines*num samples*iter)] +=
compute _matrix[k]*processed pixel [k]:

Figure A2. CUDA kernel Unmixing that computes endmember abun-
dances in each pixel of the hyperspectral image.
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__global wvoid ISRA(float *d_imags vector, float *d_ image unmixed,

float *d_endwembers, float *d endwembersT, int num lines, int num sawples,
int num bends, int N_END, int MAX ITER})

{

// d image wector is the structure char stores the hyperspectral image in the deviee
Af d image waixed is the stracture that stores the abundance estimation maps
fAf idx is the identification mumber of the thread

int idx = blockDim.x % blockIdx.x + threadIdx.x:
floac =_end[NUM_BANDS] : floa: s_endc[NUM_END] :

floar 1 pixel [NUM BANDS]: float 1 abu[NUM END]:
float numerator: float dencminator: float dot = :

//For all pixels
for {int t=0; t<num bands; t++){

1 pixel[t]=d_image vector [idx+(num lines*num samplestc)]:
}

//Caleulate abundances using ISRA for one pixel
for (int it=0; it<=MAX ITER: it++){
numerator=_; denominator=_;

//For all endmwembers
for (int e=0: e<N_END: e++){

//Pead an endmenber and store it in shared memory
if (chreadIdx.x==0){
for (int i=0; i<num bands; i++){
s_end[i]=d_endmenbers[e*nun bands+i] :}
¥
syncthreads() ;

//For all bands
for (int k=0; k<num bands; k++){
AUmMErAtOr=numerator+s_end[k]*1_pixel[k] ;

if (thread dx.x==0){
for (int i=0; i<num bands; i++){
g endt[i]l=d endmembersT[k*N_END+i]:
H
¥
syncthreads() ;

f/Calculate dot product
for {(int s=0; s<N_END;: a++){
dot+=s_endt[s]*1_abu[=]:

H
denominator+=dot*s_end[k] ;
dot=0;}

//Calculate a new abundance
1_sbu[e] *=({nwreratorfdenominator) ;
numerator=>_; denominator=_;
1
//5tore abundance in global memory
for (int k=0; k<N END: k++){
d_image_unmixed{p?xel+{num_lines*nunLaﬂmplea'k]]-l_ubu[k];

Figure A3. CUDA kernel ISRA that computes endmember abundances in each pixel of the hyperspectral
image imposing the abundance non-negativity constraint.

e Figure A2 shows the code for the Unmixing kernel used in the GPU-LSU implementation.
This kernel calculates the p endmember abundance maps in an unconstrained fashion.

e Figure A3 shows the ISRA kernel used to implement the GPU-NCLSU (partially constrained
unmixing), which iteratively calculates the abundances of a set of p pre-calculated
endmembers.

e Figure A4 shows the FCLSU kernel used to implement the GPU-FCLSU (fully constrained
unmixing) algorithm.
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__global wvoid FCLSU(float *d image unmixed, int nuww lines,
int nur_samples, int N_END)

{

Ff d image wnmixed i the structure that stores the abundance estimaticn maps
£/ ddx dis the identificarion mumber of the thread

float s_pixels[Tamanio_Wector]:
float sum;
float pixel [NUM_END] :

int idx = blockDim.x * blockIdx.x + threadIdx.x;

for {(int i=0; 1i<NUM_END: i++){
pixel[i]=d image urmixed[idx+(num lines*num seamplesti)]:

1

sune=0 ;

for {(int j=0:; J<NUH_END: j++){
sun=sum+pixel [j]

}

for {(int k=0; k<NUM END: k++){
pixel[k]l=pixel[k] feun;
d_image unmixed[idx+{num_lines*num samplesvk)]=pixel [Kk]:

Figure A4. CUDA kernel FCLSU that computes endmember abundances in each pixel of the hyperspectral

10.

11.

12.

13.

14.

15.

16.

image imposing the abundance non-negativity and sum-to-one constraints.
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