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the United States and a university and 
aims in building such tools. Works of art 
are dynamic entities and express a deep 
communication between the artist and 
viewer that does not need to be trans-
lated into words. It is direct and inspir-
ing. The more we understand the visual 
message, the more we come to appreciate 
the artist’s particular depth of expression. 
That is why art historians and conserva-
tors, with the aid of scientists, are always 
looking for new ways of getting under 
the skin and clarifying a work of art.

With this article we hope to invigo-
rate research in the digital conservation 
of artworks and inspire a new generation 
of engineering students in tackling such 
problems that can bridge the world of 
science with the arts. 
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R
emotely sensed hyperspec-
tral imaging instruments 
are capable of collecting 
hundreds of images corre-
sponding to different wave-

length channels for the same area on 
the surface of the Earth. For instance, 
NASA is continuously gathering high-
dimensional image data with instru-
ments such as the Jet Propulsion 
Laboratory’s Airborne Visible-Infrared 
Imaging Spectrometer (AVIRIS). This 
advanced sensor for Earth observation 

records the visible and near-infrared 
spectrum of the reflected light using 
more than 200 spectral bands, thus pro-
ducing a stack of images in which each 
pixel (vector) is represented by a spec-
tral signal that uniquely characterizes 
the underlying objects. The resulting 
data volume typically comprises several 
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gigabytes per flight. In this article, we 
describe the state of the art in the devel-
opment and application of image and 
signal processing techniques for 
advanced information extraction from 
hyperspectral data. The article also 
describes new trends for efficient pro-
cessing of such data using parallel and 
distributed processing techniques in the 
context of time-critical applications. 

PROBLEM
Hyperspectral imaging is an emerging 
and fast-growing area in remote sensing. 

It is concerned with the measurement, 
analysis, and interpretation of spectra 
acquired from a given scene (or specific 
object) at a short, medium, or long dis-
tance by an airborne or satellite sensor 
[1]. The wealth of spectral information 
available from latest generation hyper-
spectral imaging instruments (which 
have substantially increased their spatial, 
spectral, and temporal resolutions) has 
quickly introduced new processing chal-
lenges. For instance, NASA’s AVIRIS 
(http://aviris.jpl.nasa.gov) is now able to 
record the visible and near-infrared spec-

trum (wavelength region from 400 to 
2,500 nm) of the reflected light of an 
area 2–12 km wide and several kilome-
ters long, using 224 spectral bands. The 
resulting data volume can be seen as a 
data cube with two spatial and one spec-
tral dimension (see Figure 1). Although 
AVIRIS is a widely used platform, it con-
stitutes only one source of hyperspectral 
data. Table 1 summarizes other interna-
tional Earth observation missions with 
hyperspectral sensors already launched 
or to be launched in the near future. 
While in this work our focus is on 

Atmosphere

Soil

Water

Vegetation

1

0.8

R
ef

le
ct

an
ce

0.6

0.4

0.2

0

400 800 1,200 1,600 2,000
Wavelength (nm)

2,400

1

0.8

R
ef

le
ct

an
ce

0.6

0.4

0.2

0

400 800 1,200 1,600 2,000
Wavelength (nm)

2,400

1

0.8

R
ef

le
ct

an
ce

0.6

0.4

0.2

0

400 800 1,200 1,600 2,000
Wavelength (nm)

2,400

1

0.8

R
ef

le
ct

an
ce

0.6

0.4

0.2

0

400 800 1,200 1,600 2,000
Wavelength (nm)

2,400

[FIG1] Hyperspectral data cube.
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remote sensing applications, hyperspec-
tral sensors have been widely used in 
many other areas. For instance, hyper-
spectral cameras are now routinely used 
for industrial quality control, food 
inspection, forensics, and medical imag-
ing purposes. Hyperspectral microscopes 
are also gaining popularity in applica-
tions such as nanotoxicology, chemo-
metrics, and drug discovery. 

HYPERSPECTRAL IMAGE AND 
SIGNAL PROCESSING TASKS
The number and variety of processing 
tasks in hyperspectral remote sensing is 
enormous [2]. However, the majority of 
algorithms can be organized according 
to the following specific tasks [3]: 

■ Dimensionality reduction consists 
of reducing the dimensionality of the 
input hyperspectral scene to facilitate 
subsequent processing tasks. 
■ Target and anomaly detection
consists of searching the pixels of a 
hyperspectral data cube for “rare” 
(either known or unknown) spectral 
signatures. 
■ Change detection consists of find-
ing the “significant” (i.e., important 
to the user) changes between two 
hyperspectral scenes of the same geo-
graphic region. 
■ Classification consists of assigning 
a label (class) to each pixel of a hyper-
spectral data cube. 
■ Spectral unmixing consists of esti-
mating the fraction of the pixel area 
covered by each material present in 
the scene. 
In particular, spectral unmixing has 

been an alluring exploitation goal since 

the earliest days of hyperspectral image 
and signal processing [4]. No matter the 
spatial resolution, the spectral signa-
tures collected in natural environments 
are invariably a mixture of signatures of 
the various materials found within the 
spatial extent of the ground instanta-
neous field view of the imaging instru-
ment. For instance, the pixel vector 
labeled as “vegetation” in Figure 1 may 
actually comprise a mixture of vegeta-
tion and soil or different types of soil 
and vegetation canopies. In this case, 
several spectrally pure signatures 
(called endmembers in hyperspectral 
imaging terminology) are combined 
into the same (mixed) pixel. 

COMPUTATIONAL REQUIREMENTS
The increased spatial, spectral, and tem-
poral resolution of advanced Earth ob-
servation instruments, together with the 
real-time requirements of certain appli-
cations, have led to the incorporation of 
high-performance computing infrastruc-
ture to accelerate spectral signature-relat-
ed computations [5] (see Figure 2). The 
wealth of information available from hy-
perspectral imaging instruments has 
opened ground-breaking perspectives in 
several applications, including environ-
mental modeling and assessment for 
Earth-based and atmospheric studies, risk/
hazard prevention and response including 
wild land fire tracking, biological threat 
detection, monitoring of oil spills and 
other types of chemical contamination, 
target detection for military and defense/
security purposes, and urban planning 
and management studies, among many 
others [6]. 

In the following, we review different 
strategies to unmix hyperspectral data 
cubes including parallel and distributed 
processing implementations. An applica-
tion of the discussed techniques to the 
analysis of hyperspectral data collected by 
AVIRIS over the World Trade Center 
(WTC) in New York City, five days after the 
terrorist attacks of September 11, 2001, is 
presented as an application case study. 

SPECTRAL UNMIXING OF 
HYPERSPECTRAL DATA
Spectral unmixing involves the sepa-
ration of a pixel spectrum into its 
pure component endmember spectra 
and the estimation of the abundance 
value for each endmember in each 
pixel of the scene [4]. A standard tech-
nique for this purpose is linear spec-
tral unmixing, which assumes that 
the collected spectra at the spectrom-
eter can be expressed in the form of a 
linear combination of endmembers 
weighted by their corresponding 
abundances. Under the linear mixture 
model assumption, each n-dimension-
al pixel vector of the hyperspectral 
scene can be modeled using the fol-
lowing expression [7]: 

 fi5 a
p

j51
ej
# Fj1 t,  (1)

where ej denotes the spectral response of 
an endmember, Fj is a scalar value desig-
nating the fractional abundance of the 
endmember ej, p is the total number of 
endmembers, and t is a noise term. If we 
assume that n.. p, the solution of the 
problem described in (1) relies on the 
correct determination of a set 5ej6j51

p  of 

[TABLE 1] OVERVIEW OF SOME PRESENT AND FUTURE REMOTE SENSING MISSIONS INCLUDING 
HYPERSPECTRAL SENSORS.

HYPERION* PRISMA† ENMAP‡ HYSPIRI§

COUNTRY OF ORIGIN USA ITALY GERMANY USA 
SPATIAL RESOLUTION 30 M 5–30 M 30 M 60 M 
REVISIT TIME 16 DAYS 3/7 DAYS 4 DAYS 18 DAYS 
SPECTRAL RANGE 400–2500 NM 400–2500 NM 420–2450 NM 380–2500 NM 
SPECTRAL RESOLUTION 10 NM 10 NM 6.5–10 NM 10 NM 
SWATH WIDTH 7.7 KM 30 KM 30 KM 120 KM 
EARTH COVERAGE PARTIAL FULL FULL FULL 
LAUNCH 2000 2010 2012 2018 
LIFETIME 10 YEARS < 6 YEARS < 6 YEARS < 6 YEARS 

*http://eo1.gsfc.nasa.gov       †http://www.asi.it/en/flash_en/observing/prisma       ‡http://www.enmap.org       §http://hyspiri.jpl.nasa.gov 
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endmembers and their  correspondent 
abundance fractions F5 5Fj6j51

p  at each 
pixel fi. 

ENDMEMBER EXTRACTION
Over the last decade, several algorithms 
have been developed for the automatic 
extraction of spectral endmembers 
directly from the input data [8]. A popu-
lar algorithm based on signal process-

ing concepts has been the pixel purity 
index (PPI) [9], which calculates a spec-
tral purity score for each n-dimensional 
pixel in the original data by generating 
random unit vectors (called skewers) so 
that all pixel vectors are projected onto 
the skewers and the ones falling at the 
extremes of each skewer are counted. 
After many repeated projections to dif-
ferent skewers, those pixels that count 

above a certain cut-off threshold are 
declared “pure” (see Figure 3). 

Another widely used approach to end-
member extraction is N-FINDR [10], 
which begins with a random initial selec-
tion of endmembers and iteratively looks 
for the set of pixels that maximize the vol-
ume of the simplex defined by the 
selected endmembers. This is calculated 
for every pixel in each endmember posi-
tion by replacing that endmember and 
finding the resulting volume. If the 
replacement results in an increase of vol-
ume, the pixel replaces the endmember. 
This procedure is repeated until there are 
no more endmember replacements. 
Other techniques for endmember 
 extraction have been developed based on 
image processing concepts. Among sev-
eral others, the automatic morphological 
endmember extraction (AMEE) uses 
extended mathematical morphology oper-
ators [8] to select spectral endmembers. 

ABUNDANCE ESTIMATION
Once a set of endmembers E5 5ej6j51

p

has been obtained, an unconstrained 
abundance estimation (in least squares 

[FIG2] Computational requirements introduced by hyperspectral imaging instruments.
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sense) can be obtained by the following 
expression [7]: 

F < 1ETE 221ETfi. (2)

It should be noted that the abundance 
estimation in (2) does not satisfy the two 
physical constraints that are generally 
imposed in the linear mixture model: the 
abundance nonnegativity constraint, i.e.,
Fj $ 0, and the abundance sum-to-one 
constraint, i.e., g p

j51Fj5 1. As described 
in [7], these constraints can be imposed 
leading to a fully constrained abundance 
estimation in the framework of linear 
spectral unmixing. 

PARALLEL AND DISTRIBUTED 
IMPLEMENTATIONS
Several strategies have been explored 
in the literature to accelerate hyper-
spectral unmixing algorithms [5]. To 
take advantage of the computational 
power offered by parallel computing 
architectures, a spatial-domain decom-
position approach that subdivides the 
image cube into multiple blocks made 
up of entire pixel vectors and assigns 
each block to a different processing ele-
ment has been adopted [see Figure 
4(b)]. The standard hyperspectral 
unmixing chain (made up of the PPI 
algorithm for endmember extraction 
followed by fully constrained abun-
dance estimation) is based on calcula-
tions in which pixels are always treated 
as entire spectral signatures. Therefore, 
spectral-domain partitioning [see 
Figure 4(a)] or mixed spatial-spectral 
partitioning [see Figure 4(c)] are not 
appropriate for parallel implementation 
because the calculations made for each 
hyperspectral pixel would need to origi-
nate from several processing elements, 
thus requiring intensive inter-proces-
sor communication. 

In our implementation of the unmix-
ing chain for clusters of computers, we 
adopted a simple master-slave approach 
in which the master processor distrib-
utes spatial-domain partitions of the data 
to the workers and coordinates their 
actions. Then, the master gathers the 
partial results provided by the workers 
and produces a global result. It is impor-

tant to emphasize that some steps of this 
parallel algorithm (e.g., the generation 
of skewers) are purely sequential. This 
means that the master node performs 
some steps of the algorithm on its own. 
Nevertheless, the execution time of these 
sequential steps is insignificant in com-
parison to the total execution time. To 
adapt this framework to heterogeneous 
networks of computers, the data parti-
tioning should be made so that each pro-
cessor executes an amount of work 
proportional to its speed [11]. For this 
purpose, we have developed a workload 
estimation algorithm for heterogeneous 
networks that assumes that the 
 workload allocated to each processor 
must be directly proportional to its pro-
cessing power. 

Even though hyperspectral process-
ing algorithms map nicely to clusters 
and heterogeneous networks, these sys-
tems are generally expensive and diffi-
cult to adapt to on-board data processing 
scenarios in which low-weight and low-
power integrated components are essen-
tial to reduce mission payload. To bridge 
the gap towards on-board, real-time 
analysis of hyperspectral data, parallel 
versions of spectral unmixing algo-
rithms have been developed on field pro-
grammable gate arrays (FPGAs) and 
graphic processing units (GPUs) [5]. 
FPGAs are now fully reconfigurable, 
thus allowing for adaptive selection of a 
data processing algorithm (out of a pool 
of available ones) from a control station 
on Earth. Our strategy for implementing 
the hyperspectral unmixing chain in 
reconfigurable hardware is aimed at 
enhancing replicability and reusability of 

slices in FPGA devices through the utili-
zation of a systolic array, which per-
forms the skewer projections in an 
embarrassingly parallel fashion. A read 
queue and a transmitter are also used to 
send the endmembers to the FPGA via 
an RS232 port, while a control unit and 
modules for direct memory access and 
random generation of skewers are also 
implemented. 

On the other hand, the emergence of 
GPUs (driven by the ever-growing 
demands of the video game industry) has 
allowed these systems to evolve from 
expensive application-specific units into 
highly parallel and programmable com-
modity components. GPUs can be 
abstracted in terms of a stream model, 
under which all data sets are represented 
as streams (i.e., ordered data sets). Our 
implementation of the hyperspectral 
unmixing chain is constructed by chain-
ing so-called kernels, which operate on 
the input data stream, and produce the 
endmembers and fractional abundances 
as outputs. Thereby, data-level parallel-
ism is exposed to hardware, and kernels 
can be concurrently applied with mini-
mal synchronization, thus maximizing 
parallel performance. 

APPLICATION CASE STUDY
To illustrate the potential of hyperspec-
tral technology in an application with 
real-time constraints, we use an AVIRIS 
scene collected over the WTC in New 
York City on 16 September 2001, five 
days after the terrorist attacks that col-
lapsed the two main towers and other 
buildings in the WTC complex. The data 
consists of 614 3 512 pixels and 224 

[FIG4] Strategies for hyperspectral data partitioning: (a) spatial, (b) spectral, and (c) 
spatial-spectral.

(a) (b) (c)
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bands, for a total size of 140 MB. Figure 
5(a) shows a false color composite of the 
data set using the 1,682, 1,107, and 655 
nm channels, displayed as red, green, 
and blue, respectively. Vegetated areas 
appear green, while burned areas appear 
dark gray. Smoke coming from the WTC 
area (in the red rectangle) appears bright 
blue due to high spectral reflectance in 
the 655-nm channel. Figure 5(b) shows 
a thermal map with the locations of hot 
spots at the WTC area, available from the 
U.S. Geological Survey (USGS) (http://
speclab.cr.usgs.gov/wtc). This map was 
used to validate a hyperspectral unmix-
ing chain available in ENVI, a popular 
commercial software package distributed 
by ITT Visual Information Solutions 
(http://www.ittvis.com/ProductServices/
ENVI.aspx). The chain consists of two 
stages: 1) endmember extraction using 
the PPI algorithm (with 104 skewers) 
and 2) fully constrained abundance esti-
mation. It was implemented on four dif-
ferent parallel platforms: 

■ Thunderhead, a Beowulf cluster at 
NASA’s Goddard Space Flight Center in 
Maryland and made up of 256 Intel 
Xeon nodes at 2.4 GHz, each with 1 
GB of memory and 80 GB of main 
memory, interconnected with 2 Ghz 
optical fibre Myrinet. This is an expen-
sive platform in terms of cost and 
maintenance. The parallel implemen-
tation was developed using the C++ 
programming language with calls to 
MPI library (http://www.mcs.anl.gov/
research/projects/mpi). 
■ A heterogeneous network that con-
sists of 16 different workstations (one 
i386 Intel Pentium 4, six Intel Xeons, 
seven AMD Athlons, and a SUNW 
UltraSparc) interconnected via het-
erogeneous links [5]. 
■ A Xilinx Virtex-II XC2V6000-6 
FPGA, an architecture that is similar 
to other FPGAs that have been certi-
fied by several international agencies 
for aerospace operation. The cost of 
this platform is around US$300. The 
parallel implementation was synthe-
sized using Handel-C (http://www.
mentor.com/products/fpga/handel-c), 
a hardware design and prototyping 
language. 
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■ An NVidia Tesla C1060 GPU with 
240 processor cores operating at 1,296 
GHz, with a total memory of 4 GB and 
a memory bandwidth of 102 GB/s. The 
cost of this platform is around 
US$1,000. The implementation was 
developed using the compute unified 
device architecture (CUDA) (http://
www.nvidia.com/object/cuda_home.
html), a collection of C extensions and 
a runtime library that allows general-
purpose programming of NVidia GPUs. 
Figure 6 shows the abundance maps 

for the most relevant endmembers 
extracted by the parallel implementations 
(which all provided exactly the same 
results as the serial version and the ENVI 
software). On the other hand, Table 2 
shows the total time spent by our parallel 
implementations on the Thunderhead 
cluster and on the heterogeneous net-
work. Two types of computation times 
were analyzed, sequential (those per-
formed by the master node with no other 
parallel tasks active in the system) and 
parallel (the rest of computations, i.e., 
those performed by the master node and/
or the workers in parallel). The latter 
includes the times in which the workers 
remain idle. In addition, Table 2 also dis-
plays the communication times, the total 
execution times, and the speedups (num-
ber of times that the parallel implemen-
tation was faster than the serial 
implementation). The total execution 
time measured for the serial version on a 
single Thunderhead processor was 
1,163.05 s, while the same code executed 
on the fastest processor of the heteroge-
neous network was 1,098.63 s. 

It can be seen from Table 2 that the 
times for sequential computations were 
always very low when compared to the 

times for parallel computations, which 
indicates high parallel efficiency of the 
developed implementations on both the 
cluster and the heterogeneous network, 
even for a high number of processors. 
The Beowulf cluster implementation 
took 4.98 s to produce the final output 
using 256 processors, achieving a 
speedup of 233.45, with regards to the 
serial implementation executed in one 
processor of the cluster. Interestingly, the 
speedup achieved in the heterogeneous 
network (16 CPUs) is similar to that 
achieved in the cluster with the same 
number of CPUs. In turn, the FPGA 
implementation was able to perform the 
same analysis in 20.48 s, using approxi-
mately 36% of the available hardware 
resources in the FPGA. It should be noted 
that this implementation is not fully opti-
mized (better results can be achieved by 
increasing resource utilization on the 
FPGA). However, it is quite important to 
leave room in the FPGA for additional 
algorithms so that dynamic reconfigura-
tion and algorithm selection can be per-
formed on the fly. Finally, the GPU 
implementation took 5.93 s. This is close 
to real-time performance since the cross-
track line scan time in AVIRIS, a push-
broom instrument, is 8.3 ms (to collect 
512 full pixel vectors). This introduces 
the need to process the considered scene 
1614 3 512 pixels) in less than 5.09 s to 
fully achieve real-time performance. Note 
that similar real-time performance could 
only be achieved in the Thunderhead 
cluster by resorting to 256 processors. 
Although clusters and networks are 
appealing for analyzing hyperspectral 
data sets already transmitted to Earth, 
they are very difficult to adapt to on-
board data processing scenarios in which 

low-weight and low-power integrated 
components are essential to reduce mis-
sion payload. Despite the promising 
results achieved by the GPU implementa-
tion, the full incorporation of GPUs into 
satellite-based missions is still subject to 
further developments, particularly given 
the higher power consumption of GPUs 
when compared to FPGAs and the fact 
that radiation-hardened GPUs for space 
operation are not yet as widely available 
as their FPGA counterparts [12]. 

OUTLOOK
In this article, we have discussed the 
computational requirements involved in 
the analysis of hyperspectral images in 
the context of remote sensing applica-
tions. Through the analysis of a standard 
hyperspectral unmixing chain, we have 
illustrated different parallel systems and 
strategies to increase computational per-
formance of hyperspectral imaging 
 algorithms. Two of the considered tech-
niques, i.e., cluster-based parallel com-
puting and heterogeneous parallel 
computing, seem particularly appropri-
ate for efficient information extraction 
from large hyperspectral data reposito-
ries containing data sets already trans-
mitted to Earth. To fully address the 
real-time constraints introduced by 
many remote sensing applications, we 
have also discussed FPGA and GPU 
implementations of the hyperspectral 
unmixing chain, which are intended for 
on-board processing. A major goal is to 
overcome an existing limitation in many 
remote sensing and Earth observation 
systems: the bottleneck  introduced by 
the bandwidth of the downlink connec-
tion from the observatory platform. 
Experimental results demonstrate that 

[TABLE 2] TIMES (SECONDS) MEASURED AFTER PROCESSING THE AVIRIS WTC HYPERSPECTRAL 
SCENE IN DIFFERENT TYPES OF PARALLEL COMPUTING ARCHITECTURES.

THUNDERHEAD BEOWULF CLUSTER
HETEROGENEOUS 
NETWORK

# CPUS 1 4 16 36 64 100 144 196 256 16 
SEQUENTIAL COMPUTATIONS 1163.05 1.63 1.26 1.12 1.19 1.06 0.84 0.91 0.58 1.69 
PARALLEL COMPUTATIONS 0 292.09 73.24 30.46 15.44 8.76 5.08 3.18 1.91 79.56 
COMMUNICATIONS 0 2.20 2.41 2.39 2.21 2.46 2.65 2.32 2.49 3.56 
TOTAL TIME‡ 1163.05 295.92 76.91 33.97 18.84 12.38 8.57 6.41 4.98 83.05 
SPEEDUP – 3.93 15.12 34.23 61.73 93.89 135.67 181.34 233.45 13.23 
‡The total time consumed by our FPGA implementation was 20.48 s, while our GPU implementation took 5.93 s. 
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our hardware implementations make 
appropriate use of computing resources 
in the considered FPGA and GPU archi-
tectures and further provide a response 
in (near) real time, which is believed to 
be acceptable in many remote sensing 
applications. The reconfigurability of 
FPGA systems on the one hand, and the 
low cost of GPU systems on the other, 
open many innovative perspectives from 
an application point of view. Although 
the experimental results presented for 
the considered unmixing chain are 
encouraging, further work is still needed 
to arrive at optimal parallel design and 
implementation of other more sophisti-
cated hyperspectral processing algo-
rithms, such as supervised classification 
or change detection. 
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