Spectral unmixing results for Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data acquired September 20, 2006 of the Cuprite Mining District, Nevada, USA.
SPECIAL ISSUE ON SPECTRAL UNMIXING OF REMOTELY SENSED DATA

Foreword to the Special Issue on Spectral Unmixing of Remotely Sensed Data

List of Reviewers

SPECIAL ISSUE PAPERS

Linear and Nonlinear Spectral Unmixing

Fully Constrained Least Squares Spectral Unmixing by Simplex Projection

R. Heylen, D. Burazerović, and P. Scheunders

Component Analysis-Based Unsupervised Linear Spectral Mixture Analysis for Hyperspectral Imagery

C.-I Chang, X. Jiao, C.-C. Wu, E. Y. Du, and H.-M. Chen

Analysis of Imaging Spectrometer Data Using N-Dimensional Geometry and a Mixture-Tuned Matched Filtering Approach

J. W. Boardman and F. A. Kruse

Nonlinear Unmixing of Hyperspectral Images Using a Generalized Bilinear Model

A. Halimi, Y. Altmann, N. Dobigeon, and J.-Y. Tourneret

Pixel Unmixing in Hyperspectral Data by Means of Neural Networks

G. A. Licciardi and F. Del Frate

Endmember Determination and Pure Class Modelling

Endmember Extraction of Hyperspectral Remote Sensing Images Based on the Discrete Particle Swarm Optimization Algorithm

B. Zhang, X. Sun, L. Gao, and L. Yang

A Simplex Volume Maximization Framework for Hyperspectral Endmember Extraction

T.-H. Chan, W.-K. Ma, A. Ambikapathi, and C.-Y. Chi

Endmember Determination Without Pure Pixel Assumption

Chance-Constrained Robust Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing

A. Ambikapathi, T.-H. Chan, W.-K. Ma, and C.-Y. Chi

Incorporation of Spatial Information Into Endmember Identification and Spectral Unmixing

Improving Spatial–Spectral Endmember Extraction in the Presence of Anomalous Ground Objects

S. Mei, M. He, Y. Zhang, Z. Wang, and D. Feng

A Hybrid Automatic Endmember Extraction Algorithm Based on a Local Window

H. Li and L. Zhang

Enhancing Hyperspectral Image Unmixing With Spatial Correlations

O. Eches, N. Dobigeon, and J.-Y. Tourneret

Spatially Adaptive Hyperspectral Unmixing

K. Canham, A. Schlamm, A. Ziemann, B. Basener, and D. Messinger

(Contents Continued on Page 4102)
Sparse Regression-Based Unmixing
Hyperspectral Unmixing via $L_{1/2}$ Sparsity-Constrained Nonnegative Matrix Factorization .. Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly 4282

Unmixing of Remotely Sensed Data With Moderate Spectral Resolution
Pixel-Unmixing Moderate-Resolution Remote Sensing Imagery Using Pairwise Coupling Support Vector Machines: A Case Study .. H. Li, Y. Wang, Y. Li, and X. Wang 4298

Connections Between Spectral Unmixing and Classification
SVM-Based Unmixing-to-Classification Conversion for Hyperspectral Abundance Quantification ... F. A. Mianji and Y. Zhang 4318

Applications of Spectral Unmixing
Retrieval of Canopy Closure and LAI of Moso Bamboo Forest Using Spectral Mixture Analysis Based on Real Scenario Simulation ... H. Du, W. Fan, G. Zhou, X. Xu, H. Ge, Y. Shi, Y. Zhou, R. Cui, and Y. Liu 4328
Intercomparison and Validation of Techniques for Spectral Unmixing of Hyperspectral Images: A Planetary Case Study X. Ceamanos, S. Douté, B. Luo, F. Schmidt, G. Jouannic, and J. Chanussot 4341

About the Cover: Spectral unmixing results for Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data acquired September 20, 2006 of the Cuprite Mining District, Nevada, USA. Visible true-color (0.65, 0.55, 0.45 μm as RGB) and shortwave infrared (SWIR) color (2.1, 2.2, 2.34 μm as RGB) images are shown at left for reference. Spectral endmembers extracted from the SWIR data (2.0–2.5 μm) are shown in the spectral plot. The color-coded images with color bars show the Matched Filter (MF) estimated abundances for each endmember. The lower left image is a Mixture-Tuned-Matched-Filter (MTMF) classification result that takes mixing feasibility into account, using 2-D scatterplotting of high MF abundance versus low infeasibility score to show the spectrally predominant surface mineralogy in the same colors as the plot spectral endmembers. This “Feasibility Constraint” insures that minerals incorporated in the final mineral map are feasible mixtures of the background and the target mineral spectrum. Cuprite is a well-known geologic site often used for testing sensor and algorithm performance. Several of the papers in this issue show analysis results for these data. For more information, please see “Analysis of Imaging Spectrometer Data Using N-Dimensional Geometry and a Mixture-Tuned Matched Filtering Approach,” by Boardman and Kruse, which begins on page 4138.