2256

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 6, JUNE 2014

Efficient Implementation of Hyperspectral
Anomaly Detection Techniques on GPUs
and Multicore Processors

José M. Molero, Ester M. Garzon, Inmaculada Garcia,
Enrique S. Quintana-Orti, and Antonio Plaza, Senior Member, IEEE

Abstract—Anomaly detection is an important task for hyperspec-
tral data exploitation. Although many algorithms have been devel-
oped for this purpose in recent years, due to the large dimensionality
of hyperspectral image data, fast anomaly detection remains a
challenging task. In this work, we exploit the computational power
of commodity graphics processing units (GPUs) and multicore
processors to obtain implementations of a well-known anomaly
detection algorithm developed by Reed and Xiaoli (RX algorithm),
and a local (LRX) variant, which basically consists in applying the
same concept to a local sliding window centered around each image
pixel. LRX has been shown to be more accurate to detect small
anomalies but computationally more expensive than RX. Our
interest is focused on improving the computational aspects, not
only through efficient parallel implementations, but also by analyz-
ing the mathematical issues of the method and adopting computa-
tionally inexpensive solvers. Futhermore, we also assess the energy
consumption of the newly developed parallel implementations,
which is very important in practice. Our optimizations (based on
software and hardware techniques) result in a significant reduction
of execution time and energy consumption, which are keys to
increase the practical interest of the considered algorithms. Indeed,
for RX, the runtime obtained is less than the data acquisition time
when real hyperspectral images are used. Our experimental results
also indicate that the proposed optimizations and the parallelization
techniques can significantly improve the general performance of the
RX and LRX algorithms while retaining their anomaly detection
accuracy.

Manuscript received February 04,2014; revised April 27, 2014; accepted May
26, 2014. Date of publication July 08, 2014; date of current version August 01,
2014. This work was supported in part by the Spanish Ministry of Science
and Innovation under Grant TIN2008-01117, Grant TIN2011-23283, Grant
TIN2012-37483, and Grant AYA2011-29334-C02-02, Junta de Andalucia
(P10-TIC-6002) and Junta de Extremadura (PRIO9A110 and GR10035) and in
part by the European Regional Development Fund (ERDF). This work was
developed in the framework of the network High Performance Computing on
Heterogeneous Parallel Architectures (CAPAP-H4), supported by the Spanish
Ministry of Science and Innovation under Grant TIN2011-15734-E. The work of
E. S. Quintana-Orti was supported by the Project CICYT TIN2011-23283 and
FEDER.

J. M. Molero and E. M. Garzon are with the Department of Informatics and
Agrifood Campus of International Excellence (CEIA3), University of Almeria,
04120 Almeria, Spain (e-mail: jmp384(@ual.es; gmartin@ual.es).

1. Garcia is with the Department of Computer Architecture, University of
Malaga, 29071 Malaga, Spain (e-mail: igarciaf@uma.es).

E. S. Quintana-Orti is with the Departamento de Ingenieria y Ciencia de
Computadores, Universidad Jaume 1, 12071 Castellon, Spain (e-mail:
quintana@uji.es).

A. Plaza is with the Hyperspectral Computing Laboratory (HyperComp),
Department of Technology of Computers and Communications, University of
Extremadura, 10071 Céceres, Spain (e-mail: aplaza@unex.es).

Color versions of one or more of the figures in this paper are available online at
http://ieeexplore.iece.org.

Digital Object Identifier 10.1109/JSTARS.2014.2328614

Index Terms—Anomaly detection, energy consumption, graphics
processing units (GPUs), hyperspectral imaging, multicore
processors.

1. INTRODUCTION

hyperspectral image can be considered as a stack of

images where each image (or spectral band) represents
a wavelength of the electromagnetic spectrum—normally cov-
ering the visible and near infra-red regions—and each pixel has
an associated spectral signature or fingerprint that uniquely
characterizes the underlying objects [1]-[3]. These images are
composed of a large number of narrow spectral bands (b). In
spatial terms, the images comprise a number of columns or
samples (s) and a number of rows or lines (I) [4], [5].

Anomaly detection [6] is an important task for hyperspectral
data exploitation. An anomaly detector identifies spectral sig-
natures, which are spectrally distinct from their surroundings
without prior knowledge [7], [8]. Anomalies can be considered
as a set of isolated pixels with anomalous signatures (when
compared to the image background), which represent a very
small piece of the full image, and they only occur in the image
with low probabilities [9]-[11]. A classic example of anomaly
detector is the RX algorithm, developed by Reed and Xiaoli [12],
which has been widely used in several different hyperspectral
imaging applications. This method has shown great success
and is usually adopted as a benchmark for anomaly detection
purposes [13].

A variant of the RX algorithm is the local RX (LRX), which
consists in applying the same concept to a sliding window
centered around each image pixel. These type of variations can
be used to detect small anomalies [7]. LRX has shown great
success to detect small size and subpixel anomalies, improving
the results of the RX algorithm as demonstrated in previous
works [14], [15]. However, this kind of local methods is com-
putationally more expensive than the original RX because they
involve the computation of the RX filter for every local window
as opposed to the standard RX, which calculates the filter for the
whole image [15]-[17]. In summary, a local method offers better
accuracy and detection results for small anomalies at the expense
of increased computational cost.

Compared with RX, LRX exhibits a very large computational
burden, which generally limits its practical application [9].
However, the use of high-performance computing (HPC) plat-
forms and the design of appropriate optimizations can turn LRX

1939-1404 © 2014 1EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

MOLERO et al.: EFFICIENT IMPLEMENTATION OF HYPERSPECTRAL ANOMALY DETECTION TECHNIQUES

into areliable and accurate alternative with a reasonable response
time. However, this is not a simple task and requires a deep
knowledge of both the algorithm and the architecture [18]-[20].
So far, very few works in the literature have reported a real-time
processing performance for the RX algorithm or its local ver-
sions. Here, by real-time performance, we refer to the fact that
the processing can be performed without delay as the data are
collected (but not necessarily immediately after the data are
collected). In the following, we will avoid the term real-time
processing, and refer to processing concurrently or in parallel
with data collection [21], [22].

Current software and hardware advances in HPC offer an
unprecedented opportunity to significantly reduce the runtimes
for hyperspectral applications [19], [23]-[25]. In the particular
case of anomaly detection, the development and implementation
of optimized and parallel algorithms allow nowadays to explore
variations of these algorithms and new theoretical methods,
which present a high computational cost [9], [24], obtaining the
results in a reasonable processing time using recent multicore
processors [14], [15] and modern graphics processing units
(GPUs) architectures [26]-[29].

In the previous work, several optimizations and parallel
implementations were developed for the RX and LRX algo-
rithms on different HPC platforms. Concretely, the RX algorithm
has been implemented on a heterogeneous cluster in [30]; a local
version of RX, expressed in terms of the pseudoinverse, was
proposed and parallelized on a multicore platform in [14].
Moreover, novel implementations of both algorithms have been
investigated on a multicore platform in [15], where the mathe-
matical formulation of LRX is revisited and its computational
cost is reduced. The novelties in [15] consisted of: 1) including a
recurrence relation for the correlation matrix; and 2) the use of
the QR method to decompose the correlation matrix instead of
computing the inverse or pseudoinverse. The experimental
analysis carried out in [15], using both synthetic and real
hyperspectral datasets, revealed the great success of LRX for
detecting small-size anomalies, as well as discussed the effec-
tiveness (detection accuracy) and efficiency on multicore plat-
forms of RX and LRX methods. Focusing on the acceleration of
the RX algorithm on a GPU platform, [31] describes a GPU
implementation of the standard RX algorithm based on the
inverse of the correlation matrix, which is evaluated and com-
pared to other detection methods. However, GPU implementa-
tions of LRX have never been discussed in the past. Further, a
detailed analysis of the energy consumption of both RX and
LRX, which is relevant in terms of their practical exploitation,
has not been conducted in the previous developments.

Reducing the runtime and exploiting the HPC architectures is
quite important in terms of the energy needed to process
hyperspectral images. With this goal, we have developed new
parallel implementations tailored to multicore and GPU archi-
tectures. This paper thus introduces new optimized versions of
RX and LRX based on the Cholesky decomposition of the
correlation matrices, which result in computationally cheaper
approaches than the solutions based on the QR method. Spe-
cifically, parallel implementations have been developed to
exploit several forms of acceleration, with the ultimate goal
of achieving similar times for the processing and data

2257

acquisition stages for RX, and explore the practical interest of
its local version LRX. In this way, the in-depth study of these
algorithms, the use of efficient and adequate algebraic opera-
tions, and the application of HPC techniques can result in
efficient of algorithms for anomaly detection. Therefore, our
aim in this work is threefold: 1) we provide new mathematical
expressions for computing RX and LRX based on the Cholesky
decomposition; 2) these new versions are implemented on two
HPC platforms: multicore systems and GPUs; and 3) the newly
developed multicore and GPU implementations are compared
in terms of performance (run-time), and efficiency (energy
consumption) using real hyperspectral datasets.

This paper is organized as follows. Section II briefly describes
the RX algorithm and its local variant (LRX). Section III in-
troduces the sequential and parallel optimizations studied and
developed for the RX and LRX algorithms. Section IV describes
the real hyperspectral datasets used in our experimental evalua-
tion and the results obtained in terms of parallel performance and
energy efficiency. Finally, Section V summarizes the most
relevant conclusions and discusses future work.

II. ANOMALY DETECTION BASED ON THE RX ALGORITHM
A. RX and Local RX Algorithms

The RX algorithm has been widely used in hyperspectral
signal and image processing [12]. A variant of this algorithm [7],
[13] replaces the covariance matrix by the sample correlation
matrix and removes the mean vector from each b-dimensional
hyperspectral pixel vector x = [z(9), 21 ... z(®)]. This modi-
fication represents an adaptation of the original RX to online
analysis scenarios, without penalization on its ability to detect
anomalies.

The RX algorithm can be considered as a global anomaly
detector because the correlation matrix () is computed using all
the pixels of the image. However, local versions of RX consider
that each pixel of the image has its own correlation matrix 3,
which is computed by just considering a small region of pixels
around the pixel under test. This implementation, named LRX,
uses the concept of a sliding local window [9], [14]. Specifically
for each pixel x, the LRX filter (and the corresponding correla-
tion matrix) is computed using a local square window of size
K X K pixels, centered at pixel x. Consequently, the RX and LRX
filters can be written as

o(x) = xR 'x
where the correlation matrix N is defined as follows:
HT.H

ER — = n
{ R, (x) =

Ny

for the RX algorithm, and
for the LRX algorithm

where H is the hyperspectral image, i.e., H! = [x1,Xa, . .., X,],
with n = [x s pixel vectors, and the subscript « indicates the
pixels included in the local sliding window for the LRX algo-
rithm. Notice that the anomaly detection results can be simply
visualized as a grayscale image where each pixel value represents
its probability of being an anomalous pixel [3].

2258

B. Optimizations of the RX and Local RX Algorithms

In this section, we describe the optimizations applied to the
anomaly detection algorithms. In order to assess the computa-
tional benefits of there optimizations, we introduce the term flops,
which counts the number of floating-point arithmetic operations
implied in a computational calculation [32]. Bearing in mind the
previous descriptions, two stages can be identified in the com-
putation of both RX and LRX:

a) Stage 1. Evaluation of the correlation matrix R: This
computation can be simplified/accelerated taking into account:
1) the symmetry of the correlation matrix, since it is not necessary
to compute the entire matrix but only its lower or upper triangle,
dividing the cost of this step by 2; 2) the correlation can be
expressed in terms of a fast matrix—matrix product; and 3) in the
local version, the recurrence relation between the correlation
matrices for two contiguous pixels can be exploited to reduce
the computational cost by a factor of x. All summed up, the
complexity of this stage without optimizations is (b* - s - [) flops
forRX and (b? - k2 - 52 - I?) flops for LRX, which is reduced with
the optimizations previously described to (%) flops for RX and
(552L) flops for LRX [15], [29].

b) Stage 2. Computation of the filter §(x) = x” R x: There
are different approaches to compute ¢(x). The classic one first
computes the inverse (or pseudoinverse) matrix %t ~' followed by
the evaluation of the product x:% ~'x [9], [30]. However, in this
work, we propose an alternative approach to reduce the high cost
of explicitly computing the inverse matrices based on the
Cholesky factorization and the solution of subsequent linear
systems [15]. This implementation of RX and LRX, based on
solving the linear systems, is superior not only in terms of
performance [33] but also has numerical advantages because
the instabilities caused by ill-conditioned correlation matrices
can be better tackled by solving the linear equations [34]. At this
point, it is important to emphasize that solving the linear system
is cheaper than calculating the inverse of the matrix. In our case,
this advantage is more relevant because, as the correlation matrix
N is symmetric and positive-definite, an efficient solver based on
the Cholesky factorization can be applied [33], [35]. Given the
Cholesky factorization)t = UTU, his approach computes §(x)
as follows:

6(x) =x"Rhx =xT(UTU) 'x =x"UU Tx
= (U)" (U %) = 2(x)"2(x).

Therefore, this method based on the Cholesky factorization
consists of the following steps: 1) decompose the correlation
matrix R into a product of two triangular matrices R = U7 U;
2) solve the triangular system U7 z(x) = x for the intermediate
vector z(x); and 3) §(x), which represents the probability of a
pixel to be anomalous, is computed by the evaluation of the norm
of the vector z(x) [21], [22]. Therefore, the symmetry of
allows us to compute 6(x) by solving only one triangular system
of equations to determine z(x) due to this particular property of
Cholesky factorization. Considering that the correlation matrix
is square, symmetric and positive definite, the Cholesky decom-
position is the most efficient way (in fact twice more efficient
than the LU decomposition and four times more than the QR

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 6, JUNE 2014

decomposition discussed in previous works) for solving this type
of linear systems [14]. Bearing in mind these considerations the
complexity of this stage is (b—;) flops for RX and (%b;) flops
for LRX, while the complexity without this optimization, only
for the inverse matrix is (b*) flops for RX and (s - [- b*) flops for
LRX (more details about the complexity can be found in [33,
Sect.2.9]and [35, Sec. 4.2.5]). Moreover, it is worth pointing out
that these three phases can be merged into the same iterative
process used to compute §(x).

III. PARALLELIZATION OF RX AND LOCAL RX ALGORITHMS

This section describes in detail the parallel implementations of
RX and LRX, which incorporate all the afore-mentioned opti-
mizations. These parallel algorithms have been developed for
two different target architectures: a multicore processor and a
manycore GPU. These architectures are quite different but
appropriate for processing hyperspectral images, as they both
achieve similar performances, reduce the total runtime of the
algorithms, and save energy with respect to the sequential
executions [28], [36], [37]. One additional advantage of these
platforms is that they can be used to tackle large hyperspectral
images and experiment with new algorithms of high computa-
tional cost [15], [24], [25], [28], [38].

A. Multicore Implementations

Modern multicore processors provide an inexpensive and
widely available technology for HPC, which represents a source
of computational power to optimize the performance and the
energy consumption of anomaly detection algorithms for hyper-
spectral data [32], [39]. Currently, the number of cores for the
most popular processors ranges from 2 to 8 and their design
includes energy-saving mechanisms. Therefore, our interest is
focused on exploiting this kind of architectures in anomaly
detection.

There exist several programming tools such as OpenMP and
POSIX threads to exploit concurrency on a multicore processor.
Besides, there exists a wide variety of linear algebra libraries
optimized for these architectures (Intel MKL,' LAPACK,>
BLAS,? etc.) which can be leveraged to exploit the inherent
parallelism of the algebraic computations [40]-[42].

In this work, the multicore implementations of RX and LRX
leverage OpenMP as the parallelization programming interface.
The strategies for distributing the workload of RX and LRX are
different. The workload distribution for RX is compute-oriented
while LRX load distribution is data-oriented, with the image
being distributed among the cores by groups of lines.

Our approaches to optimize the computation of matrix It have
been presented in detail in the previous work [14], [15]. We next
describe the improvements and new considerations of the multi-
core implementation introduced in this work. The above-
described stageshave been parallelized and accelerated using
the Intel MKL library [41]. For the calculation of the correlation

! Available: http:/software.intel.com/en-us/intel-mkl.
2Available: http://www.netlib.org/lapack.
3 Available: http://www.netlib.org/blas.

MOLERO et al.: EFFICIENT IMPLEMENTATION OF HYPERSPECTRAL ANOMALY DETECTION TECHNIQUES

matrices (Stage 1), the gemm function was used for RX, and a
specific routine, which takes advantage of the relation between
the matrices associated to neighbor pixels was developed for the
LRX algorithm. For the factorization of the correlation matrix
(Stage 2), routine potrf has been used for the Cholesky factori-
zation; and routine trtrs for the triangular system with multiple
right-hand sides in the case of RX algorithm, and routine trsv
for the triangular system with single right-hand side in LRX,
obtaining in both cases the intermediate vector z(x) for each
pixel. For the inner product for z(x), the dot function was used.
This implementation is detailed in Algorithm 1.

Algorithm 1. Pseudocode of the multicore implementation of
RX algorithm. Parallelization has been carried out using the
multithreaded library Intel MKL.

H = Load Hyperspectral Image
R = H" - H {matrix-matrix product using gemm function}

U = Cholesky factorization (R) {Cholesky fact. R matrix
using potrf function}

z = Solve linear systems (U, H) {solve triangular system
with multiple right-hand sides using trtrs function}

for : = 1 to [do {paralellized by OpenMP threads}
for j =1 to s do
8[i, j] = z - z {compute RX filter using dot function}
end for

end for

B. GPU Implementations

GPU constitute an alternative HPC platform considered in our
work. Nowadays, NVIDIA GPUs are widely used in scientific
computation [39], [43]. NVIDIA has developed CUDA* as a
standard GPU application programming interface to ease pro-
gramming of this kind of architectures. A GPU is composed of
hundreds of simple cores organized as a set of stream multi-
processors. According to the CUDA model, each GPU routine,
called “kernel,” is executed by a batch of threads organized as a
grid of thread blocks whose configuration is defined by the
programmer. The computation corresponding to each CUDA
block is executed in one stream multiprocessor sharing the local
memory [43]-[46].

In general, GPU architectures require large-scale problems to
deliver high performance. There are optimized linear algebra
CUDA libraries (CUBLAS,” CULA,®* MAGMA,’ etc.). CULA
and MAGMA provide a GPU implementation of the blocked
Cholesky factorization, but these implementations have been

4Available: http://www.nvidia.com/object/cuda_home_new.html.
3Available: https:/developer.nvidia.com/cuBLAS.

SAvailable: http://www.culatools.com.

7 Available: https:/developer.nvidia.com/magma.

2259

designed to accelerate a single solve and are especially tuned to
deal with very large dense matrices [47].

The aforementioned libraries achieve high performance only
for very large matrices because all threads collaborate to compute
the operation. However, this strategy is not optimal because in
LRX it is necessary to solve hundreds of systems of small to
moderate size. Thus, our anomaly detection algorithms require a
different parallelization strategy.

This kind of computation is often referred to as batched
processing [48]. In order to take advantage of a batched ap-
proach, two types of concurrency can be exploited on the GPU:
1) the parallelism of the standard operations, which is con-
strained by the data dependencies and the size of the local
problem and 2) the intrinsic concurrency of the CUDA blocks.
Very few references address the parallel implementation of
batched implementations on GPUs. In this work, we have
developed a CUDA Batched Cholesky Solver (hereafter, re-
ferred to CuBCholS). This new batched GPU implementation is
especially appropriate to handle hundreds of small to moderate
dense linear systems. We expect that this implementation and/or
strategy can also be applied in analogous and related operations
arising in hyperspectral image processing.

1) Parallel RX on the GPU Architecture: The various stages
in the RX algorithm have been parallelized using different
strategies. In the first stage, the correlation matrix is computed
using the entire GPU architecture. In this case, the calculation of
the correlation matrix is cast as a matrix—matrix product and is
computed via function gemm of the CUBLAS library (available
in the NVIDIA CUDA SDK [49]). For real hyperspectral
images, the matrix—matrix product is usually large enough to
be efficiently performed by the GPU, since the two matrices
being multiplied are of dimension (I - s) X b.

For the second stage, we have developed specialized kernels
for the Cholesky factorization, the computation of the linear
system solver, and the inner product. In this case, the small size of
the system drove us to implement our own algebraic routines
instead of leveraging routines from existing general libraries.
The Cholesky factorization of the matrix is carried out using only
one CUDA block to avoid communication penalties, and the
results are stored in the GPU memory. For the solution of the
linear system, each pixel of the image is assigned to one CUDA
block and each simple band of the image is mapped to one CUDA
thread. That is, the threads of a block cooperate in the computa-
tion of a single independent linear system and all the blocks work
independently in parallel, avoiding communication between
different blocks. Furthermore, the inner product involving z is
merged with the same function of the system solver.

2) Parallel LRX on the GPU Architecture: The previous
description of LRX reveals that, for real hyperspectral scenes,
this algorithm exhibits a high computational cost. Fig. 1 shows
the workflow of our proposed GPU processing of the LRX
algorithm including the routine CuBCholS.

In principle, the computation of the correlation matrices
(Stage 1) can be regarded as a set of independent procedures
or tasks assigned to a CUDA block, where each block computes
the matrix associated to the pixel being processed. However,
our implementation takes advantage of the recurrence relation
between the correlation matrices associated to neighbor pixels to

2260

Hyperspectral image

Bands (b)
/w

ndow size (k)

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 6, JUNE 2014

LRX filter

CUDA block <= local window
CUDA thread <= spectral band

l

CUDA block

Lines(l)

R(Xx),=UTU

[Cubhals | 79 = U7

Lines(l) i

§(x) =z()T z(x)

Samples(s)

Samples(s)

Fig. 1. Workflow of our proposed GPU processing of the LRX algorithm. (Left) representation of a hyperspectral image. (Center) stages for the computation of LRX
algorithm and the use of CuBcholS. (Right) grayscale image resulting after LRX process.

Hyperspectral image

Samples(s)

(s) Correlation matrices "

Bands (b)

Window size (k)

(saury

* Kernel Rpixel
* Kernel Rsubline

* Line under
process

* Kernel Rpixel
* Kernel Rsubline

=>R(sh
r
=>R(s)3

_R(s)2-R(s)1 + R(s)3
= R

R(s)

(s) Partial correlation
matrices

CUDA blocks

Bands(b)

speaiy1 vand

Sam;Y)les(s)

Bands(b)

Fig. 2. Diagram of the recurrence correlation matrix implementation for LRX on GPU.

reduce the computational cost [15], [29]. As a result, it is
important to note that each pixel y defines a correlation matrix
as Rix1(y) =y - ", and the correlation matrix related to each
Kk X k£ window centered at pixel x can be computed as
Rixi(z) = ZyeW R11(y), where W denotes the set of pixels
within the window. Therefore, windows which share pixels also
have in common partial computations of their correlation matri-
ces. Thus, the computation of the correlation matrices Ry« ()
on GPUs that avoids redundant operations is based on the
following two kernels: 1) Rpixel computes the correlation
matrices R1x1(y) = y;y! forall pixels into one line of the image,
where each CUDA block computes one matrix R (y), which is
stored in the global memory of GPU and 2) RSubline evaluates
the correlation matrices involved in the 1 X x windows centered
at pixels of one line (sublines), so that each CUDA block
computes the sum of matrices Rix,(z) = 3,y Rix1(y). Both
kernels use local registers to improve their performance; shared
memory is not utilized; instead, after executing each kernel, the
correlation matrices are stored in global memory. Bearing in

mind the recurrence relation between the correlation matrices
involved in two consecutive lines, described in [15], the matrices
of anew line can be computed as a downdating/updating process
from the matrices in the previous line. In particular, by subtract-
ing the matrices R, (z) of pixels from the line that disappears
from the windows, and adding the matrices of pixels associated
with the new line comprised by the new windows. Therefore,
after the computation of the correlation matrices for the first line
of the hyperspectral image, this stage on the GPU is expressed as
an repetitive procedure where the matrices involved in the new/
old sublines into/out the new windows are computed via kernels
Rpixel and RSubline, and then they are added/subtracted to
update the correlation matrices related to every new line and
scaled by the number of elements into the window. Fig. 2
graphically illustrates this procedure. This implementation strat-
egy prevents computational redundancies during the first stage of
LRX, at the cost of intensive access to the GPU global memory.

To summarize the previous description, the main task of the
initial stage is the computation of a set of correlation matrices for

MOLERO et al.: EFFICIENT IMPLEMENTATION OF HYPERSPECTRAL ANOMALY DETECTION TECHNIQUES

the first line of the hyperspectral image, followed by the correla-
tion matrices associated with the second, third, fourth, etc., lines
ofthe image using the aforementioned recurrence relation, which
saves significant computational cost. As a result, in this scheme,
Stage 1 is composed by s (the number of pixels in one line) tasks
which compute in parallel the s correlation matrices related to the
samples in a specific line.

The second stage of LRX is computed on the GPU, with our
proposed Batched Cholesky Solver. In particular, in this case, s
factorizations and linear systems have to be solved per image
line, so we need to tackle hundreds of independent linear systems
of small size. For this reason, we leverage a batched GPU kernel
to solve these systems on the GPU. Our introspection is that
this approach can solve several linear systems efficiently and is
more suitable for an optimized implementation in terms of
performance.

Our optimized GPU kernel CUDA Batched Cholesly Solver
(CuBCholS) aggregates the solution of s Cholesky factorizations
with their corresponding linear systems, and the inner product,
which can be computed in parallel. According to this scheme, in
our optimized implementation, the resources of a single CUDA
block such as shared memory and thread registers are optimally
exploited, and the set of blocks exploit the resources of the entire
GPU platform processing in parallel the s pixels of an image line.

In summary, two levels of parallelism are exploited by
CuBCholS in the GPU (for illustrative purposes, Algorithm 2
shows a pseudocode of this kernel):

a) Internally: Each factorization is decomposed into a set of
tasks with dependencies among them. The pixel vector x and the
intermediate vector z are stored in shared memory during the
computation of the system, enabling fast data access. Stage 2 is
computed with a fused loop that comprises the factorization, the
system solution, and calculation of the norm of vector z; and
computed using a thread per linear system. Since the operations
are performed in the same loop, the partial products are computed
at the same time the elements of the intermediate vector z are
obtained, take advantage of the memory cache, the shared
memory, and data locality.

b) Externally: The computation can proceed independently
and in parallel for each block in execution, where the number of
blocks depends on the number of pixels in a line of the image.
Each CUDA block reads from global memory its corresponding
correlation matrix computed previously and the pixel vector of
the image. These data are organized in memory so as to ensure a
coalesced access memory by the threads of each block [49].

IV. EXPERIMENTAL RESULTS

This section is devoted to describing the datasets and the
computational platforms used in the performance evaluation of
the strategies proposed in this paper. The section ends with an
analysis of the obtained experimental results in terms of running
time and energy consumption.

A. Hyperspectral Datasets

Two real hyperspectral datasets, collected by different instru-
ments, have been used in our experiments in order to evaluate
the computational performance (efficiency) of the proposed

2261

TABLE I
AVERAGE POWER REQUIREMENTS (W) FOR THE EXECUTION OF THE RX/LRX
ALGORITHMS IN PLATFORMS TARGETED IN THE EXPERIMENTS

| Platform [Idle (W) [1 core (W) | Max. cores (W) |
Intel Xeon (8 cores) 65 101 179
Intel i7 (6 cores) 78 135 235
NVIDIA Tesla K20 94 — 220

optimized algorithms in the task of detecting anomalies. These
scenarios feature different characteristics, such as the image size,
the spectral resolution, the spatial location of the anomalous
pixels in the image, the hyperspectral instrument used for data
collection, or the size of the anomalies to be detected.

HYDICE: The scene is extensively described and used in [13].
It is an image consisting of 64 x 64 pixels and 169 bands with 15
panels in the scene. The sizes (in meters) of the panels in the first,
second, and third columns are 3 x 3, 2 x 2 and 1 x 1, respec-
tively. This image was acquired with 210 spectral bands and a
spectral coverage from 0.4 to 2.5 microns. Low signal/high noise
bands: 1-3 and 202-210; as well as water vapor absorption
bands: 101-112 and 137-153, were removed prior to the experi-
ments so a total of 169 bands were finally used. The spatial
resolution of the scene is 1.56 m (i.e., the last column of targets
are subpixel in size) and the spectral resolution is 10 nm.

WTC: The second real hyperspectral dataset was collected by
the AVIRIS instrument, flown by NASA’s Jet Propulsion Lab-
oratory over the World Trade Center (WTC) area in New York
City on September 16, 2001. The size of the full scene is
614 x 512 pixels with 224 spectral bands, for a total size of
about 140 MB (this is the standard size of the data chunks
collected by the AVIRIS instrument before saving the data to
disk in the onboard data collection). Extensive reference infor-
mation, collected by U.S. Geological Survey (USGS), is avail-
able for the WTC scene.® A subset of this scene was selected for
experiments, centered at the region of interest (hot spots zone at
the WTC), consisting of 192 x 192 pixels and 224 spectral
bands. This subset is referred as W7C160 in the experiments,
while the whole image is denoted as WTC614.

B. Platforms and Methodology for Measurements

In this section, we describe the computational platforms,
techniques, and metrics used in the performance analysis of our
implementations in terms of runtime, power requirements, and
energy consumption. The following experiments were per-
formed on two multicore systems and one GPU-equipped plat-
form. The first multicore server comprises two Intel Xeon E5504
(8 cores) at 2.0 GHz with 2 x 4 MB of L3 cache memory and
32 GB of RAM. The second multicore platform is composed by
an Intel 17 4960 (6 cores) at 3.6 GHz with 16 GB of RAM. The
17 processor is considerably faster than the Xeon but requires more
power (see Table I for details). Finally, the GPU is an NVIDIA
Tesla K20 with 2,496 CUDA cores at 706 MHz and 5 GB of
RAM; this GPU architecture supports the CUDA capability 3.5,
and is connected to the platform with the Intel i7 processor
described previously. These multicore processors and GPU
considered represent the state of the art in HPC technology.

8 Available: http://speclab.cr.usgs.gov/wtc.

2262

The operating system was Linux Rocks 64 bits version; the
compilers were icc 11 for the multicore servers and nvcc with
the CUDA toolkit 5.5 for the GPU, using in each case the
appropriate optimization flags at compilation time; the program-
ming language was C combined with the linear algebra libraries
Intel MKL 10.3.9 for the multicore servers, and CUBLAS
version 2 for the GPU. Different device configurations were in
order to optimize the use of the cache and shared memory for the
GPU implementations, but the global performance achieved was
basically the same.

Algorithm 2. Pseudocode of the CuBCholS kernel.

CuBCholS < < <s,b> > > {one CUDA block per sample
of a line, where s = samples and b = bands}

for k=1to b do

U = sqrt(diag(U)) {sqrt of diagonal elements of correla-
tion matrix }

z[k] = H,[k]/diag(U) {solve the linear system using the
corresponding pixel image as right hand side}

Ulk,k+1:b =Ulk,k+1:b]/diag(U) {update the tri-
angular matrix U. Paralellized by CUDA threads}

Hlk+1:b— =Ulk,k+1:b)" - 2[k] {update the right
hand sides of the equation. Paralellized by CUDA threads}

for j = k+ 1 to b do {paralellized by CUDA threads}
for i =k+ 1 to jdo
Uli, jl= = Ulk,i] - Ulk, j]
end for
end for

end for

For the energy consumption measurements, it was necessary
to obtain reliable data of the average power consumption of each
computing platform during the execution of our algorithms. Our
aim was to obtain the real power dissipation of the entire platform
considered when our algorithms are processed. This parameter
represents the near maximum power for a thermally significant
period due to processing. We used a WattsUp wattmeter directly
connected to the power distribution unit (PDU), and the library
pmlib [50] to automatically collect sampling measures of the
power consumption without perturbing the algorithm executions
[51], [52].

At this point, it is necessary to highlight that the power
requirements can oscillate during the execution time. In order
to obtain the real power dissipation of the platform during the
execution of our algorithms, we first performed a set of experi-
ments which consisted of repeating the different stages of the
algorithms during 5 min and collecting power samples for the last
4 min. The first minute (warm-up time) was discarded to allow
the architecture to achieve a close-to-stable power dissipation.
These experiments indicate that, after the warm-up time, the

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 6, JUNE 2014

TABLE II
RUNTIME (S) AND ENERGY CONSUMPTION (J) FOR THREE HYPERSPECTRAL IMAGES,
PROCESSING THE SEQUENTIAL, AND PARALLEL VERSION OF RX ALGORITHM

s ; Time (s) Energy (J)

Dataset H Platform H 1 core Max. cores H 1 core Max. cores
Xeon (3) 0.08 0.05 8.08 8.95

}éz])slﬁ © i7 6) 0.03 0.02 4.05 470
(64x64x169) || g k20 0.02 440
Xeon (8) 062 016 || 62.62 2864

";’gOClg% o || 176 0.19 0.08 || 25.65 18.80
(160x170x224) || pagiy k20 0.13 28.60
Xeon (8) 7.08 133 || 715.08 238.07

Vg’le?é o || 7 ©® 2.05 0.69 || 276.75 162.15
(614x512x224) || Toq1a k20 131 288.20

power requirements reach a plateau and the value of this constant
is the same for all stages and datasets. This is mainly due to the
fact that, during the execution of a stage, a significant part of
the available resources are used. This fact was verified by the
results obtained from several profiling and performance software
analysis tools. (Specifically, Vtune® and the “top” Linux com-
mand for the multicore and Nsight'® for the GPU version.)
Consequently, we will assume that the average value of the
power consumptions measured in these experiments is an accu-
rate estimation of the power consumption during the execution of
RX or LRX in each platform.

The average values of the power consumption recorded during
these preliminary experiments are provided in Table 1. For the
multicore processors, we evaluated three different states of the
hardware: “idle,” when the platform is not computing; “1 core”
when the program is executed using a single core; and “Max.
cores,” using the maximum number of available cores. For the
GPU architecture, the options we selected were idle or “Max.
cores.” Using the average value of the power consumption for
each platform given in Table I, the energy consumption of
an algorithm is calculated as the product of runtime and the
average power.

The results tabulated in Table I indicate that, in terms of
power consumption, the Intel Xeon has less requirements than
the Intel 17 platform in all cases: idle state, use of a single core,
and use of all cores. Notice that Intel Xeon with 8 cores consumes
less power than Intel i7 with 6 cores. These differences are in part
due to the clock rate of each processor, but are also related with
the architecture organization. Moreover, the power required by
the GPU is similar to that of the Intel i7 platform using 6 cores.

C. Performance of RX and LRX on Multicore Processors and
GPUs

The performance of the RX and LRX algorithms was evalu-
ated using the three described platforms, and the three hyper-
spectral datasets. Tables Il and I1I collect the experimental results
obtained for the performance evaluation of the RX and LRX
algorithms, respectively. Table Il shows the values of the runtime
and energy consumption for the RX algorithm executed using a
single core (column “1 core”) and the maximum number of cores
available in each platform (column “Max. cores”). Similarly,
Table III shows the runtime and the energy consumption for the

% Available: http://software.intel.com/en-us/intel-vtune-amplifier-xe.
19 Available: http://www.nvidia.com/object/nsight.html.

MOLERO et al.: EFFICIENT IMPLEMENTATION OF HYPERSPECTRAL ANOMALY DETECTION TECHNIQUES

2263

TABLE III
RUNTIME () AND ENERGY CONSUMPTION (KJ) FOR THREE HYPERSPECTRAL IMAGES, PROCESSING THE SEQUENTIAL, AND PARALLEL VERSION OF LRX ALGORITHM

Time (s) Energy (kJ)
Dataset Platform 1 core Max. cores 1 core Max. cores
s 2 Total st 2 Total S1 $2 Total s1 S2 Total
Xeon (8) 16.82 73 18.56 178 092 271 169 017 187 | 032 016 048
gzgg:l - i7 (6) 6.64 0.65 730 091 047 1.39 0.89 0.08 098 | 021 011 032
Tesla k20 123 072 1.95 027 016 043
SPgpu =1.4x(Xeon), 0.7x(i7)
Xeon (8) 21282 2250 23535 | 2957 432 392 || 2149 227 BT | 529 077 607
y{g& 1167%X2 o) i7 (6) 10237 755 10995 | 1665 627 22094 || 1382 102 1484 | 391 147 539
Tesla k20 1337 852 21.93 294 187 482
SPgpu =1.5x(Xeon), 1x(i7)
— Xeon (5) || 240296 25370 265696 | 32039 4461 363.05 || 242.60 25.62 26825 | 5735 889 6498
L1222 i7 (6) 134519 8747 143310 | 19951 72.89 27254 || 181.60 11.81 19346 | 4688 17.13 64.04
Tesla k20 15943 90.32 249.98 3507 1987 54.99
SPgpy =1.4x(Xeon), 1.1x(i7)

Also, the speedup for the GPU version (S P;pyr) as compared to each multicore version is included.

LRX algorithm, using a window size of 23 x 23(x = 23) which
was demonstrated to yield reasonable anomaly detection results
compared with RX [15]. To analyze the behavior of LRX, the
values of the runtime and energy consumption for Stages 1 and 2
(columns S1 and S2) are also provided in this table. Notice that
these stages comprise most of the computational cost of LRX
[more than 99% of the total runtimes (column Total)]. For the
GPU version, the values in column Total also include the time of
copying the image dataset from the CPU memory to the device
memory.

Table II clearly shows that the multicore servers outperform
the GPU in terms of runtime and energy consumption for the
three image datasets, and the Intel i7 processor is superior than
the Intel Xeon in all cases, both when using 1 core and the
maximum number of available cores.

In terms of the total runtime, according to the results in
Tables II and III, when parallelism is leveraged in the multicore
servers, performance can be competitive with that of the GPU
[36]. The best platform for the RX algorithm is the Intel i7
multicore processor since it delivers the best results in both
metrics for all the experiments. Although the Intel 17 has only 6
cores, its power dissipation rate is higher than that of the Intel
Xeon. The vast computational power of the GPU cannot be
exploited because this algorithm does not present enough
computational load due to the reduced size of the image datasets.

Table III reports experimental results for the LRX algorithm,
including data for the most computationally expensive stages (S1
and S2). The cost of the initialization stage is included in the total
execution time but are negligible compared with the runtime of
Stages 1 and 2. In fact, Stages 1 and 2 exhibit different perfor-
mances for the multicore processors and GPUs. Notice that the
peak performance of the GPU cannot be achieved since the
computational load associated to processing the entire image is
not high enough. Since the process is computed line-by-line,
there are several CUDA kernel calls in the processing of the
image. In this case the main bottleneck is the memory latency,
especially for Stage 2, since 1) there are several accesses to global
memory; 2) for each pixel several matrices need to be stored;
3) there is little reuse of the data; 4) the matrices change at each
step of the Cholesky factorization; and 5) irregular accesses to the
triangular matrices occur. However, it is remarkable that the
occupancy achieved is around 90% for the kernels of Stage 1 and
85% for those in Stage 2.

Focusing now on the multicore servers, using a single core,
the Intel 17 implementation outperforms the Intel Xeon version
for all the image datasets, stages and globally (Total). For the
smallest image dataset, the Intel 17 is always superior to the Intel
Xeon and also better than the Tesla K20. For the medium and
large size image datasets, the GPU solution outperforms the
multicore implementations for Stage 1 and globally (Total), but
Intel Xeon is faster for Stage 2. Analogous comments apply to
energy consumption.

From the experimental results reported in Tables II and II1, it
is clear that RX is much faster and consumes less energy than
LRX. However, the LRX algorithm has demonstrated to provide
better anomaly detection results compared with RX [15]. Also,
in Table III, we have included the results of the speed-up of
GPU versus each multicore CPU using the maximum number of
cores. In order to simplify the comparison of the different
architectures (multicore processors and GPUs), and the different
metrics (runtime, speed-up, and energy consumption), Fig. 3
displays the acceleration factor for each dataset. Both perfor-
mance metrics, runtime (leftmost part of the graphics) and energy
consumption (rightmost part of the graphics) have been normal-
ized to 1, taking as reference the best result in each case. Also, for
each platform, the values are decomposed into the different
stages of the algorithm.

This analysis reveals that if a multicore processor is used for
sequential processing (1 core), the results in terms of runtime
and energy consumption are poor compared to the GPU. On the
other hand, according to both metrics the GPU is the best
platform for LRX when the image is large enough (i.e., when
the computational workload is sufficiently high). When the
image is composed by a large number of samples per line, the
GPU can deliver high performance because, in this implemen-
tation, the GPU accelerates the computation of each line of
the image with the batched implementation. Moreover, these
results show the advantage of the CuBCholS routine in terms of
performance when images of large dimension are considered,
since in the GPU version all the pixels in a row are executed
concurrently. In this context, when large image datasets are
processed, the GPU approach outperforms the multicore
implementations. It is also worth pointing out that the platforms
with higher power requirements (Intel i7 and NVIDIA K20; see
Table I) obtain the best result in terms of both runtime and
energy consumption.

2264 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 6, JUNE 2014

Normalized time and energy compsuption for LRX

HYDICE WTC160 WTC614
14 14
12 12
10 10 Z .. 10 Z ...

S S S
8 8 8
= 8 = 8 = 8
K] 9 k]
g S S
[} [[0
g 6 7 o 6 R
g 7 3 3
< < = i < i

4 4 4

(73
73 3
2 % 2 2
7 VA vz 4 o= T i
0 0 0
RS oo R S o S S Bt S ot Stk
Time Energy Time Energy Time Energy

1 Stagel
zzzzzza Stage2

Fig. 3. Comparison of the time and energy normalized for the LRX algorithm. The number of cores used in each case is reported in brackets.

One final observation related to energy consumption is that — optimizations. Although in this work the RX and the LRX were
exploiting all the method’s concurrency and the resources of the separately exploited, we plan to develop a hybrid implementation
architectures is crucial, since the impact is critical to reduce using both algorithms adaptively as part of future work. Another

energy consumption. planned future direction consists in developing alternative local
variants of the RX algorithm in order to improve detection
V. CONCLUDING REMARKS accuracy. An third topic deserving future research is a more in-

depth investigation of strategies to further reduce the runtime, in
particular, for the LRX algorithm. For this purpose, we plan to take
advantage of multi-GPU implementations. Since each line can be
processed independently, the main idea here is to divide the image,
and process each subimage independently on a different GPU
without significant communications, which generally impose a
major bottleneck for multi-GPU implementations.

In this paper, we have developed several efficient implemen-
tations of anomaly detectors for hyperspectral imagery on multi-
core processors and commodity GPUs. Specifically, we have
focused on the RX detector and its local variant LRX, extensively
analyzing the computational performance and the energy
consumption of the newly developed implementations, which
exploit both sequential and parallel, as well as software and
hardware, optimizations. An innovative contribution of this
work is the use of Cholesky factorization for the solution of REFERENCES
thoulsands Of dense linear systems Of sma'lll dimensior.l, whichis 17 A Goetz, G. Vane, J. Solomon, and B. Rock, “Imaging spectrometry for
particularly important for the efficient implementation of the earth remote sensing,” Science, vol. 228, pp. 1147-1153, 1985.

LRX algorithm. We have also exploited the GPU resources using [2] R. Green et al., “Imaging spectroscopy and the airborne visible/infrared
. imaging spectrometer (AVIRIS),” Remote Sens. Environ., vol. 65, no. 3,

batched implementations. An additional important contribution op. %27%21318, 1993. ()
of this work is the detailed analysis of the runtime versus the [3] C.-I. Chang, Hyperspectral Data Processing: Algorithm Design and
energy consumption of the different solutions discussed, which Analysis. Hoboken, NJ, USA: Wiley, 2013.
. g.y P . . g . [4] J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis: An
is quite relevant for practical purposes in real Earth observation Introduction. New York, NY, USA: Springer, 2006.
missions. Our experimental results, conducted using a variety of [5] C.-I. Chang, Hyperspectral Data Exploitation: Theory and Applications.
hyperspectral scenes and multicore/GPU platforms, indicate Hoboken, NJ, USA: Wiley, 2007,

YPersp . . . P ’ . [6] G. Shaw and D. Manolakis, “Signal processing for hyperspectral image
that the target architectures can provide hlgh p.erformance with exploitation,” IEEE Signal Process. Mag., vol. 19, no. 1, pp. 12-16,
moderate energy consumption, thus opening important future Jan. 2002.

perspectives for the practical exploitation of anomaly detection ~ [7] C-I. Chang and S.-8. Chiang, “Anomaly detection and classification for
hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 40, no. 6,

algorithms in real missions. For instance, it has been observed pp. 1314-1325, Jun. 2002.
experimentally that our parallel implementations can execution [8] D. W. J. Stein ef al., “Anomaly detection from hyperspectral imagery,”
the RX algorithm in parallel (i.e., simultaneously) with the [EEE Signal Process. Mag., vol. 19, no. 1, pp. 58-69, Jan. 2002.

. . . [9] S. Matteoli, M. Diani, and G. Corsini, “A tutorial overview of anomaly
collection of the data, while the LRX performance is also detection in hyperspectral images,” IEEE Aerosp. Electron. Syst. Mag.,

significantly reduced by the exploitation of the proposed vol. 25, no. 7, pp. 5-28, Jul. 2010.

MOLERO et al.: EFFICIENT IMPLEMENTATION OF HYPERSPECTRAL ANOMALY DETECTION TECHNIQUES

[10] B. Du and L. Zhang, “Random selection based anomaly detector for
hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5,
pp. 1578-1589, May 2011.

[11] D. Borghys, I. Kasen, V. Achard, and C. Perneel, “Comparative evaluation
of hyperspectral anomaly detectors in different types of background,” in
Proc. SPIE, 2012, pp. 83 902J-83 902J-12.

[12] L. S.Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical
pattern with unknown spectral distribution,” IEEE Trans. Acoust. Speech
Signal Process., vol. 38, no. 10, pp. 1760-1770, Oct. 1990.

[13] C.-1. Chang, Hyperspectral Imaging: Techniques for Spectral Detection
and Classification. New York, NY, USA: Kluwer/Plenum, 2003.

[14] J. M. Molero, E. M. Garzén, 1. Garcia, and A. Plaza, “Anomaly detection
based on a parallel kernel RX algorithm for multicore platforms,” J. Appl.
Remote Sens., vol. 6, p. 12, 2012.

[15] J. M. Molero, E. M. Garzon, 1. Garcia, and A. Plaza, “Analysis and
optimizations of global and local versions of the RX algorithm for anomaly
detection in hyperspectral data,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 6, no. 2, pp. 801-814, Apr. 2013.

[16] Y. P. Taitano, B. A. Geier, and K. W. Bauer, “A locally adaptable iterative
RX detector,” EURASIP J. Adv. Signal Process.,vol.2010,p. 10,2010, doi:
10.1155/2010/341908

[17] L. Ma, M. M. Crawford, and J. Tian, “Anomaly detection for hyperspectral
images based on robust locally linear embedding,” J. Infrared Millimeter
Terahertz Waves, vol. 31, pp. 753-762, 2010.

[18] N. Acito, M. Diani, and G. Corsini, “Computational load reduction for
anomaly detection in hyperspectral images: An experimental comparative
analysis,” in Proc. I[EEE Geosci. Remote Sens. Symp., 2009, vol. 1,
pp. 3206-3209.

[19] A.PlazaandC.-I. Chang, “Special issue on high performance computing for
hyperspectral imaging,” Int. J. High Perform. Comput. Appl., vol. 22, no. 4,
pp. 363-365, 2008.

[20] A. Plaza, “Special issue on architectures and techniques for real-time
processing of remotely sensed images,” J. Real-Time Image Process., vol. 4,
no. 3, pp. 191-193, 2009.

[21] A.Rossi, N. Acito, M. Diani, and G. Corsini, “RX architectures for real-time
anomaly detection in hyperspectral images,” J. Real-Time Image Process.,
pp. 1-15, 2012.

[22] C.-I. Chang, H. Ren, and S.-S. Chiang, “Real-time processing algorithms
for target detection and classification in hyperspectral imagery,” [EEE
Trans. Geosci. Remote Sens., vol. 39, no. 4, pp. 760-768, Apr. 2001.

[23] C. Lee, S. Gasster, A. Plaza, C.-I1. Chang, and B. Huang, “Recent devel-
opments in high performance computing for remote sensing: A review,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4, no. 3,
pp. 508-527, Sep. 2011.

[24] A.Plazaand C.-1. Chang, High Performance Computing in Remote Sensing.
Boca Raton, FL, USA: CRC Press, 2007.

[25] A. Plaza, Q. Du, Y.-L. Chang, and R. L. King, “High performance
computing for hyperspectral remote sensing,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 4, no. 3, pp. 528-544, Sep. 2011.

[26] J.Setoain, M. Prieto, C. Tenllado, and F. Tirado, “GPU for parallel on-board
hyperspectral image processing,” Int. J. High Perform. Comput. Appl.,
vol. 22, no. 4, pp. 424-437, 2008.

[27] A.Pazand A. Plaza, “Clusters versus GPUs for parallel target and anomaly
detection in hyperspectral images,” EURASIP J. Adv. Signal Process.,
vol. 2010, pp. 35:1-35:18, Feb. 2010.

[28] E. Christophe, J. Michel, and J. Inglada, “Remote sensing processing: From
multicore to GPU,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 4, no. 3, pp. 643-652, Sep. 2011.

[29] J. M. Molero, E. M. Garzon, 1. Garcia, E. S. Quintana-Orti, and A. Plaza,
“Accelerating the KRX algorithm for anomaly detection in hyperspectral
data on GPUs,” in Proc. 12th Int. Conf. Comput. Math. Methods Sci. Eng.
(CMMSE), 2012, pp. 860-863.

[30] J. M. Molero et al., “Fast anomaly detection in hyperspectral images with
RX method on heterogeneous clusters,” J. Supercomput., vol. 58, no. 3,
pp. 411-419, 2011.

[31] A. Paz, A. Plaza, and S. Blazquez, “Parallel implementation of target and
anomaly detection algorithms for hyperspectral imagery,” in Proc. IEEE
Geosci. Remote Sens. Symp., 2008, vol. 2, pp. 589-592.

[32] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach, 5th ed. San Mateo, CA, USA: Morgan Kaufmann, 2012.

[33] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Nume-
rical Recipes in C: The Art of Scientific Computing. Cambridge, U.K.:
Cambridge Univ. Press, 1992.

[34] A. Quarteroni, R. Sacco, and F. Saleri, “Numerical Mathematics,” in Texts
in Applied Mathematics. New York, NY, USA: Springer, 2000.

[35] G. Golub and C. V. Loan, Matrix Computations, 3rd ed. Baltimore, MD,
USA: Johns Hopkins Univ. Press, 1996.

2265

[36] V. W. Lee et al., “Debunking the 100X GPU vs. CPU myth: An evaluation
of throughput computing on CPU and GPU,” SIGARCH Comput. Archit.
News, vol. 38, no. 3, pp. 451460, 2010.

[37] S. Bernabé et al., “Hyperspectral unmixing on GPUs and multi-core
processors: A comparison,” I[EEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 6, no. 3, pp. 1386-1398, Jun. 2013.

[38] A. Paz, A. Plaza, and J. Plaza, “Comparative analysis of different imple-
mentations of a parallel algorithm for automatic target detection and
classification of hyperspectral images,” in Proc. SPIE, 2009, vol. 7455,
pp. 74 550X-74 550X-11.

[39] D. B. Kirk and W. M. W. Hwu, Programming Massively Parallel
Processors. San Mateo, CA, USA: Morgan Kaufmann, 2013.

[40] M. Marqués, G. Quintana-Orti, E. S. Quintana-Orti, and R. van de Geijn,
“Using desktop computers to solve large-scale dense linear algebra pro-
blems,” J. Supercomput., vol. 58, pp. 145-150, 2011.

[41] Intel. (2013). Math kernel Library (MKL) Documentation [Online].
Available: http://software.intel.com/en-us/articles/intel-math-kernel-library-
documentation/

[42] J.J. Dongarra, 1. S. Duff, D. C. Sorensen, and H. V. D. Vorst, Solving Linear
Systems on Vector and Shared Memory Computers. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics (SIAM), 1990.

[43] R. Farber, CUDA: Application Design and Development. San Mateo, CA,
USA: Morgan Kaufmann, 2010.

[44] Nvidia. (2013). Kepler GKI110 Architecture Whitepaper [Online].
Available: http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-
GK110-Architecture-Whitepaper.pdf

[45] H. Ortega-Arranz, Y. Torres, D. Llanos, and A. Gonzalez-Escribano,
“A tuned concurrent-kernel approach to speed up the APSP problem,” in
Proc. 13th Int. Conf. Comput. Math. Methods Sci. Eng. (CMMSE), 2013,
pp. 1114-1125.

[46] minus4 Nvidia. (2013). CUDA C Programming Guide [Online]. Available:
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

[47] H. Ortega-Arranz, Y. Torres, D. R. Llanos, and A. Gonzalez-Escribano,
“A new GPU-based approach to the shortest path problem,” in Proc. Int.
Conf. High Perform. Comput. Simul. (HPCS), 2013, pp. 505-511.

[48] M. Anderson, D. Sheffield, and K. Keutzer, “A predictive model for solving
small linear algebra problems in GPU registers,” in /[EEE 26th Int. Parallel
Distrib. Process. Symp. (IPDPS), 2012, pp. 2—13.

[49] minus 4 Nvidia. (2013). CUBLAS Manual [Online]. Available: http://docs.
nvidia.com/cuda/cublas/index.html

[50] P. Alonso et al., “Tools for power-energy modelling and analysis of
parallel scientific applications,” in Proc. 2012 41st Int. Conf. Parallel
Process., 2012, pp. 420-429.

[51] M. Castillo et al., “Hyperspectral unmixing on multicore DSPs: Trading
off performance for energy,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., pp. 1-8, 2013, to be published.

[52] A. Remdn, S. Sanchez, S. Bernabé, E. Quintana-Orti, and A. Plaza,
“Performance versus energy consumption of hyperspectral unmixing
algorithms on multi-core platforms,” EURASIP J. Adv. Signal Process.,
vol. 2013, p. 68, 2013.

José M. Molero was born in Almeria, Spain, in 1983.
He received the M.Sc. degree in computer science
from the University of Almeria, Almeria, Spain, in
2009. He is currently pursuing the Ph.D. degree at the
Supercomputing-Algorithms Research Group, Uni-
versity of Almeria.

His research interests include high-performance
computing and remote sensing, especially in hyper-
spectral image processing.

Ester M. Garzén received the B.Sc. degree in physics
from the University of Granada, Granada, Spain, in
1985, and the Ph.D. degree in computer science from
the University of Almeria, Almeria, Spain, in 2000.

Currently, she is an Associate Professor with the
Department of Informatics, University of Almeria,
and Head of the Research Group Supercomputing
Algorithms. Her research interests include high-
performance computing, matrix computation, and
imaging processing.

2266

Inmaculada Garcia received the B.Sc. degree in
physics from the Complutense University of Madrid,
Madrid, Spain, in 1977, and the Ph.D. degree in
physics from the University of Santiago de Compos-
tela, A Corufia, Spain, in 1986.

From 1977 to 1987, she was an Assistant Professor,
Associate Professor during 1987-1997, between 1997
and 2010, a Full Professor with the University of
Almeria, Almeria, Spain and, since 2010, a Full Pro-
fessor with the University of Malaga, Malaga, Spain.
She was a Head of the Department of Computer
Architecture and Electronics, University of Almeria for more than 12 years. During
1994-1995, she was a Visiting Researcher with the University of Pennsylvania,
PA, USA. Her research interests include parallel algorithms for irregular problems
related to image processing, global optimization, and matrix computation.

Enrique S. Quintana-Orti received the Bachelor
and Ph.D. degrees in computer sciences from the
Universidad Politecnica de Valencia, Valencia, Spain,
in 1992 and 1996, respectively.

Currently, he is a Professor in computer architec-
ture with the Universidad Jaume I, Castellon, Spain.
He has published more than 200 papers in interna-
tional conferences and journals, and has contributed to
software libraries like SLICOT and libflame. His
research interests include parallel programming,

: linear algebra, power consumption, as well as
advanced architectures and hardware accelerators.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 6, JUNE 2014

Antonio Plaza (M’05-SM’07) received the Bachelor
and Ph.D. degrees in computer engineering from the
University of Extremadura, Spain, in 1999 and 2002,
respectively.

He is an Associate Professor (with accreditation
for Full Professor) with the Department of Technology
of Computers and Communications, University of
Extremadura, Badajoz, Spain, where he is the Head
of the Hyperspectral Computing Laboratory (Hyper-
Comp). He was the Coordinator of the Hyperspectral
Imaging Network, a European project with total fund-
ing of 2.8 MEuro. He authored more than 400 publications, including 119 JCR
journal papers (71 in IEEE journals), 20 book chapters, and over 240 peer-
reviewed conference proceeding papers (94 in IEEE conferences). He has guest
edited seven special issues on JCR journals (three in IEEE journals).

Prof. Plaza has been a Chair for the IEEE Workshop on Hyperspectral Image
and Signal Processing: Evolution in Remote Sensing (2011). He is arecipient of
the recognition of Best Reviewers of the IEEE GEOSCIENCE AND REMOTE SENSING
LerTERS (in 2009) and a recipient of the recognition of Best Reviewers of the
TEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (in 2010), a journal for
which he has served as Associate Editor in 2007-2012. He is also an Associate
Editor for IEEE Access, and was a member of the Editorial Board of the IEEE
Geoscience and Remote Sensing Newsletter (2011-2012) and the IEEE
Geoscience and Remote Sensing Magazine (2013). He was also a member of
the steering committee of the IEEE JOURNAL OF SELECTED TOPICS IN APPLIED
EARTH OBSERVATIONS AND REMOTE SENSING (2012). He served as the Director of
Education Activities for the IEEE Geoscience and Remote Sensing Society
(GRSS) during 2011-2012, and is currently serving as the President of the
Spanish Chapter of IEEE GRSS (since November 2012). He is currently serving
as the Editor-in-Chief of the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE
SENSING journal (since January 2013).

